Persistent URL of this record https://hdl.handle.net/1887/3729695
Documents
-
- Download
- Resources_Conservation_and_Recycling_204_2024_107481
- Publisher's Version
- open access
- Full text at publishers site
In Collections
This item can be found in the following collections:
Unlocking the resources of end-of-life ICEVs: contributing platinum for green hydrogen production under the IEA-NZE scenario
Proton exchange membrane (PEM) water electrolyzers are a promising technology for high-purity, efficient green hydrogen production, with expanding installations. This has increased demand for materials like platinum (Pt) used in PEM manufacturing. Conversely, Pt, which currently serves primarily as catalysts for internal combustion engine vehicles (ICEVs), would become available as ICEVs are phased out. Here, we simulate the Pt requirements for rapid scale-up PEM electrolyzers and quantitatively compare these requirements with the availability of Pt from scraped autocatalysts under the IEA-NZE scenario. Our results show that demand for Pt in PEM electrolyzers is expected to increase by an order of magnitude by 2050, while ICEVs are expected to cumulatively scrap ∼2500 tons of Pt. The Pt surplus from ICEVs would meet the increasing Pt demand for PEM eletrolyzers from 2030 onwards. These findings offer fresh insights into using the potential of urban mines to meet the energy...Show more
Proton exchange membrane (PEM) water electrolyzers are a promising technology for high-purity, efficient green hydrogen production, with expanding installations. This has increased demand for materials like platinum (Pt) used in PEM manufacturing. Conversely, Pt, which currently serves primarily as catalysts for internal combustion engine vehicles (ICEVs), would become available as ICEVs are phased out. Here, we simulate the Pt requirements for rapid scale-up PEM electrolyzers and quantitatively compare these requirements with the availability of Pt from scraped autocatalysts under the IEA-NZE scenario. Our results show that demand for Pt in PEM electrolyzers is expected to increase by an order of magnitude by 2050, while ICEVs are expected to cumulatively scrap ∼2500 tons of Pt. The Pt surplus from ICEVs would meet the increasing Pt demand for PEM eletrolyzers from 2030 onwards. These findings offer fresh insights into using the potential of urban mines to meet the energy transition challenges.
Show less
- All authors
- Liang, Y.; Kleijn, E.G.M.; Voet, E. van der
- Date
- 2024-02-10
- Volume
- 204