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A B S T R A C T   

Proton exchange membrane (PEM) water electrolyzers are a promising technology for high-purity, efficient green 
hydrogen production, with expanding installations. This has increased demand for materials like platinum (Pt) 
used in PEM manufacturing. Conversely, Pt, which currently serves primarily as catalysts for internal combustion 
engine vehicles (ICEVs), would become available as ICEVs are phased out. Here, we simulate the Pt requirements 
for rapid scale-up PEM electrolyzers and quantitatively compare these requirements with the availability of Pt 
from scraped autocatalysts under the IEA-NZE scenario. Our results show that demand for Pt in PEM electrolyzers 
is expected to increase by an order of magnitude by 2050, while ICEVs are expected to cumulatively scrap ~2500 
tons of Pt. The Pt surplus from ICEVs would meet the increasing Pt demand for PEM eletrolyzers from 2030 
onwards. These findings offer fresh insights into using the potential of urban mines to meet the energy transition 
challenges.   

1. Introduction 

Green hydrogen, generated via water electrolysis using renewable 
energy sources, has attracted significant attention as an energy carrier 
for grid balancing and inter-seasonal energy storage (Abdollahipour and 
Sayyaadi, 2022; Folgado et al., 2022; Mac Dowell et al., 2021; Samsatli 
and Samsatli, 2019). Additionally, it serves as a valuable industrial 
feedstock for applications like steel-making and oil refining (Devlin 
et al., 2023; Moradpoor et al., 2023). Discussions about the hydrogen 
economy, which relies on hydrogen as a primary energy carrier, have 
been ongoing for years (Kleijn and van der Voet, 2010; van der Spek 
et al., 2022). Market turmoil and the energy crisis have further increased 
the focus on energy security and other energy solutions, such as green 
hydrogen (Goldthau and Tagliapietra, 2022). For instance, the Repo-
werEU plan sets a target of installing 80GW electrolyzer capacity by 
2030 (European Commission, 2022). The U.S. hydrogen roadmap also 
stated clean hydrogen could support ~10% economy-wide emission 
reduction in 2050 (DOE, 2023). The International Energy Agency’s 
Net-zero Emission by 2050 (IEA-NZE) scenario, which is also in line with 
the Sustainable Development Goals 2030 agenda (UN, 2016), calls for a 
2560-fold increase in water electrolyzer capacity over the next 30 years 
(IEA, 2021a). 

Three water electrolysis approaches are being considered for the 

generation of green hydrogen: proton exchange (or polymer electrolyte) 
membranes (PEM) electrolyzers and alkaline electrolyzers (AEL) 
designed for low-temperature operation, and solid oxide electrolyzers 
(SOEL) suitable for high-temperature environments which are less 
developed and only being tested in small scale (Chi and Yu, 2018; 
Schmidt et al., 2017). PEM electrolyzers offer benefits such as compact 
size, greater operational flexibility, and higher pressure output 
compared to AEL (IEA, 2021b). AEL is presently the dominating tech-
nology, but according to IEA’s Hydrogen Project Database (IEA, 2023a), 
PEM capacity has been steadily approaching that of AEL over the past 
five years. It is anticipated that the individual capacity of the PEM 
project will rise from megawatts to gigawatts by 2030 (FuelCellsWorks, 
2023; ITM power, 2023; Parkinson, 2018). With the increasing capacity 
of electrolysis, PEM electrolyzers are driving the demand for Pt, which is 
used as bipolar plate coating and cathode catalyst materials (Kiemel and 
Smolinka, 2021; Ouimet et al., 2022). The ongoing upscaling of PEM 
technology increases demand for precious Pt applications but also cre-
ates supply challenges due to the need for rapid ramp-up (IRENA, 2020; 
Minke et al., 2021). 

Pt-based catalysts, as the most substantial application for Pt, 
constitute over a third of the global Pt consumption (Johnson, 2023; 
Rasmussen et al., 2019). These catalysts are employed to transform 
harmful exhaust emissions in ICEVs (Hughes et al., 2021). The global 
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energy and transportation landscape is changing rapidly (Crabtree, 
2019; Greim et al., 2020). The electromobility transitions have already 
begun and will continue to be accompanied by a phase-out of ICEVs 
(IEA, 2023b; Liang et al., 2023). Consequently, the demand for catalysts 
containing Pt is expected to decrease, leading to the potential accumu-
lation of significant quantities of Pt in the waste stage. The waste present 
in society contains vast reservoirs of materials that can be recycled and 
reused, known as ’urban mines’ (Auld et al., 2018; Brunner, 2011). 
Conversely, if we could recycle and repurpose these discarded urban 
mines, it would not only result in primary material savings but also 
significantly reduce the extended lead times associated with mining 
(IEA, 2021b). According to the IEA-NZE scenario, the sales of passenger 
ICEVs will cease globally by 2035 (IEA, 2022). Considering the time 
interval between vehicle use and end-of-life, coupled with the current 
99% share of ICEVs in the global vehicle fleet (IEA, 2021a), the gener-
ation of discarded Pt in automotive catalysts will continue until 2050 
and beyond (Tong et al., 2022; Zhang et al., 2023). 

The existing literature has provided a solid foundation for Pt cycle 
analysis at the national, regional (Hao et al., 2019b; Saurat and Bring-
ezu, 2009; Tong et al., 2022), and global levels (Nansai et al., 2014; 
Rasmussen et al., 2019; Xun et al., 2020). Research related to the Pt 
cycle provides detailed information on the flow of platinum in various 
applications. However, the increasing demand for Pt from PEM elec-
trolyzers has not been given sufficient consideration. As one of the rarest 
elements on Earth, some research also tracks the demand for Pt in 
large-scale PEM electrolyzer deployment (Clapp et al., 2023; Kiemel and 
Smolinka, 2021; Ouimet et al., 2022). They highlight that an increase in 
demand for Pt in electrolyzers could further increase supply tension as 
the energy transition process accelerates. However, we have not found 
any studies that provide a solution to mitigate the Pt demand for PEM 
electrolyzers by using existing urban mines. Furthermore, none of them 
connects green hydrogen and automobility under IEA-NZE scenario in 
an assessment of Pt supply and demand. 

To fill this gap, in this paper we make this connection by exploring 
the possibility of using Pt from end-of-life catalysts as a source to supply 
Pt for PEM electrolyzers under the IEA-NZE scenario. Our findings offer 
insights into reducing primary material dependence by recycling ma-
terials from existing urban mines. The paper is structured as follows: 
Section 2 presents the methodology and scenario setting for the pro-
spective analysis of Pt demand, outflows, and stocks of both PEM elec-
trolyzers and ICEVs. Section 3 contains our results, followed by the 
discussion and conclusion in Section 4, where we elaborate on the main 
findings and conclusions of this work. 

2. Methodology 

2.1. Material flow analysis 

Our analysis relies on projected global electrolysis capacity from the 
IEA-NZE. Then we determine the potential yearly deployment of elec-
trolyzers capacity by using an S-shaped logistic function (Odenweller 
et al., 2022) (Eq. (1)). As a well-established commercial technology, the 
PEM electrolyzers are projected to capture a 40% market share by 2050 
(Clapp et al., 2023; IEA, 2022; Kiemel and Smolinka, 2021; Smolinka 
et al., 2018), scaled from Germany to worldwide (Eq. (2)). 

Stotal (t) =
Smax

(1 + e− k(t− t0))
(1)  

SPEM(t) = Stotal (t) × MSPEM(t) (2)  

Where Stotal (t) and SPEM(t) represent the total installed capacity and the 
PEM electrolyzers capacity in year t, respectively. Smax is the saturation 
level (target capacity 2050) of global electrolyzers. k is the growth 
constant. MSPEM(t) represents the dynamic market penetration of PEM 
electrolyzers in year t. 

A stock-driven dynamic material flow analysis (DMFA) (Müller, 
2006; Pauliuk and Heeren, 2020) was applied to calculate the total 
annual newly installed capacity of PEM electrolyzers (IPEM(t)) (Eq. (3)). 
Then, the prospective inflow of the materials Imat (t,i) is a conversion of 
the demand for capacity from Eq. (3) multiplied by the dynamic material 
intensity data (MI(t,i)) in year t (Eq. (4)). 

IPEM (t) = SPEM(t) −
∑t− 1

n=t0

IPEM(n) × Survival(t − n) (3)  

Imat (t,i) = IPEM(t) × MI(t,i) (4) 

Where Survival (t) refers to the complementary cumulative distri-
bution function (cdf) of the lifetime distribution of the PEM 

Furthermore, according to the normal lifetime distribution (Müller 
et al., 2014), an inflow-driven DMFA (Van der Voet et al., 2002) was 
applied to calculate the outflows (Omat (t,i)) and stocks (Smat (t,i)) of the 
materials based on Eqs. (5) and (6): 

Omat (t,i) =

∫t

t0

Imat (t′,i) ×

(
1

∂
̅̅̅̅̅
2π

√ × e
− 1

2×

(
t′− τ

∂

)2)

(5)  

Smat (t,i) − Smat (t− 1,i) = Imat (t,i) − Omat (t,i) (6) 

Where 
(

1
∂
̅̅̅̅
2π

√ ×e−
1
2×(

t− τ
∂ )

2)
is the normal distribution; τ is the average 

lifetime of PEM electrolyzers,; ∂ is the standard deviation (30% of the 
mean lifetime); t′ is the age of the PEM electrolyzers from produced to 
the year t. 

2.2. Scenario setting and data source 

For our calculations, we use the assumptions of the IEA-NZE scenario 
as published in May 2021 (IEA, 2022, 2021a). The IEA-NZE is the most 
ambitious energy transition scenario released by the IEA. It outlines a 
pathway for the global energy sector to achieve net-zero emissions by 
2050 using a variety of clean energy technologies, such as green 
hydrogen, without relying on land use measures for offsets. Addition-
ally, the IEA-NZE scenario assumes a higher share of hydrogen in final 
energy consumption compared to most other IPCC 1.5◦ scenarios (IEA, 
2021a; IPCC, 2018). This scenario provides projections of the global 
installed capacity of electrolyzers on a decadal basis. Historical global 
electrolysis capacity derived from the International Renewable Energy 
Agency (IRENA) (IRENA, 2020) and IEA (IEA, 2023c). Dynamic material 
intensity data of PEM electrolyzers, based on the current state of the art 
and considering future technological innovations, are derived from the 
reports of Joint Research Centre (JRC) (Dolci and Weidner, 2021), IEA 
(2021b), IRENA (2020), and other existing research (Delpierre et al., 
2021; Kiemel and Smolinka, 2021; Liang et al., 2022; Making and 
Possible, 2021; Minke et al., 2021; Stropnik et al., 2019; van der Star, 
2022). Presently, the lifetime of PEM electrolyzers is around 10 years, 
but the expectation is that it can double in the period up to 2050 (Clapp 
et al., 2023; Delpierre et al., 2021; Dolci and Weidner, 2021; IRENA, 
2020, 2022; Minke et al., 2021; Ouimet et al., 2022; Urban Europe, 
2019). Therefore, we assumed PEM electrolyzers’ lifetimes of 10 years 
(short lifetime), 20 years (long lifetime), and a gradual increase from 10 
to 20 years (changing lifetime: the lifetime is projected to increase from 
10 years in 2025 to 15 years in 2035, and ultimately to 20 years in 
2050), respectively. The detailed data are shown in the Table S1 of the 
Supporting Information (SI). 

To calculate the amount of Pt used in autocatalysts, we begin by 
calculating the difference between the total stock of passenger cars and 
the electric vehicle fleet, as outlined in (Liang et al., 2023). Then simi-
larly, we use the dynamic stock model (Eqs. (3) and (4)) to obtain the 
annual inflows, outflows, and stocks of platinum in autocatalysts. The 
average platinum content is determined using data from a wide range of 
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sources (see Fig. S2). 

3. Results 

3.1. The stocks and flows of Pt in PEM electrolyzers 

The anticipated increase in the capacity of PEM will result in a 
tenfold increase in global demand for Pt in the coming decades. Between 
2020 and 2050, the cumulative demand for Pt by PEM electrolyzers is 
projected to reach 700 tons (Fig. 1(b)). The resulting annual demand for 
Pt metals would peak around 2035 and then gradually drop. However, 
in the 10-year lifetime scenario, demand for Pt continues to grow after a 
plateau period (upper limits of the shaded area). 

The total outflow of Pt is negligible compared with the demand 
before the 2030s. Scrapping will increase significantly after 2040 due to 
the time interval between the peaks of inflow and outflow. The annual 
outflow accounts for more than half of the inflow in the same year since 
2040, and is even comparable to the inflow around 2050. In terms of 
socio-economic metabolism, the total cumulative outflow of Pt over the 
period 2020–2050 is between 25 and 55% of the cumulative inflow over 
the same period, with shorter lifetimes resulting in faster metabolism 
rates. 

After two decades of rapid accumulation of Pt stocks, there is a 
notable slowdown in stock growth after 2040. This slowdown benefits 
from technological innovations that have improved the efficient use of 
these materials. 

3.2. Pt flows and stocks from ICEVs 

The projected demand for Pt in autocatalysts, presently a major 
application (Tang et al., 2023), will decrease as ICEVs are phased out 
(Fig. 2(a)). The amount of Pt in waste streams increases each year 
(outflows) up to the mid-2030s. After that, the annual scrap generation 
goes down as the remaining stock of ICEVs dwindles. According to the 
NZE scenario setup, no more passenger ICEVs will be sold worldwide 
since 2035 (IEA, 2021a). 

According to Fig. 2(b), the cumulative outflow of Pt from ICEV cat-
alysts between 2020 and 2050 is as high as 2500 tons, which means that 
a large surplus of Pt will be generated in addition to the amount of Pt 
needed to meet the demand of new ICEVs production. These surplus Pt 
have the potential to alleviate the demand pressures in emerging Pt end- 
use sectors, such as PEM electrolyzers. 

3.3. Surplus of Pt among ICEVs and PEM electrolyzers 

As shown in Fig. 3, in 2030 and beyond, Pt outflows from the ICEVs 
will exceed inflows, creating a surplus represented by the positive blue 
bar. Furthermore, the surplus Pt from the ICEVs alone would be suffi-
cient to meet the Pt requirements of the PEM electrolyzers after 2035. 
From the analysis, it appears that Pt surpluses from the ICEVs could 
contribute significantly to supplying the demand for Pt for PEM elec-
trolyzers. Whether or not this potential contribution can be realised, 
depends on the actual recycling rate of Pt in autocatalysts. The current 
end-of-life recycling rate (Eol-RR) is around 50% (Graedel et al., 2011; 
Hao et al., 2019b). We compare and provide a baseline of the Eol-RR 
that needs to be achieved to supply the Pt required for PEM electro-
lyzers (Table 1). Between 2031 and 2040, if the ICEV industry achieves 
an Eol-RR of 80.9% for Pt scrap, it is possible to eliminate the need for 
primary Pt mining for the deployment of PEM electrolyzers. When Pt 
scrap from PEM electrolyzers is included, the required EoL-RR drops to 
71.2%. After 2040, the Pt surplus from ICEVs decreases, but it is still 
possible to fully cover the Pt demand of the PEM electrolyzer in the same 
period with optimistic recycling rates. The current EoL-RR of Pt from 
autocatalysts would not be sufficient to supply the required amount of Pt 
for PEM electrolysers. However, from the technical perspective, studies 
of Pt recycling from automotive catalysts show that Pt recycling rates 
can be quite high: from 85% (Torrejos et al., 2021; Xia and Ghahreman, 
2023), 90% (Hong et al., 2020), 95% (Maes et al., 2016), or even 100% 
(Limjuco and Burnea, 2022). 

4. Discussion and conclusion 

Our analysis shows that under the IEA-NZE scenario, emerging PEM 
electrolyzers will increase the demand for Pt, while at the same time, 
large stocks of Pt currently in ICEVs will become obsolete in the future. 
From a materials perspective, Pt from end-of-life ICEVs have the po-
tential to meet the material demand for PEM electrolyzers. 

4.1. Rising surplus of Pt from autocatalysts could meet the Pt demand for 
PEM electrolyzers 

By quantifying the demand for PEM electrolyzers, we provide in-
sights into a particular bottleneck related to the energy transition. We 
investigate a potential solution as well: using scrap from ICEV catalysts. 
Our results show that Pt demand for green hydrogen production during 
2030–2050 could potentially be satisfied through the material recycling 
of scrap automotive catalysts (Table 1). This paper does not consider the 

Fig. 1. Annual Pt demand (above the horizontal axis) and scrap generation (below the horizontal axis) (a), cumulative demand and scrap generation in the PEM 
electrolyzers (b), and the Pt stocks in PEM electrolyzers (c) from 2020 to 2050 under the NZE scenario. The shaded area in Fig. 1(a) illustrates the variation in flows 
with different lifetime assumptions: a shorter lifetime leads to higher material demand and more scrap, while a longer lifetime has the opposite effect. Similarly, the 
upper and lower gray lines in Fig. 1(b) represent the cumulative Pt demand under different lifetime assumptions, with longer lifetimes (lower value) and shorter 
lifetimes (upper value). The dotted and dashed lines in Fig. 1(c) represent the material stock under a 20 yrs and 10 yrs assumption, respectively. 
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selection of different recycling methods or the technical details of Pt 
recycling. It is also unclear whether the losses that occur during the 
collection process are taken into account. Besides the Pt recycling from 
ICEV catalyst, according to the U.S. Hydrogen Strategy and Roadmap, 
the target recycling rate of Pt used in hydrogen production is even 

higher at 95% (2025) and 99% (2030–2035). 

4.2. Other platinum group metals used for autocatalysts and PEM 
electrolyzers 

We explored the contribution of Pt from end-of-life automotive cat-
alysts to PEM Pt demand. Typically autocatalysts species also contain a 
small fraction of other platinum group metals such as rhodium and 
palladium, which are very low in content and interchangeable with Pt 
and have not been taken into account due to the lack of reliable content 
data. For PEM electrolyzers, in addition to the need for Pt, the risk of 
shortages of the other scarce platinum group element iridium (which is 
used as an anode material for PEM) has been widely discussed (Clapp 
et al., 2023; Minke et al., 2021; Rozain et al., 2016), but this is not a 
solution that can be found in end-of-life automotive catalysts. 

4.3. Saving and recycling help balance the Pt supply and demand 

The analysis in this paper has taken into account the increased ma-
terial efficiency of technology innovations, with the Pt intensity of PEM 
in 2050 being only 30% of current levels (SI, Fig. S5). This is the main 
reason why the growth in installed capacity of PEM is two orders of 
magnitude greater than the growth in material demand, and without 
effective material efficiency improvements, the demand for Pt in PEM 
will increase dramatically. Emphasizing efficiency (less use) for this 
valuable element will support hydrogen’s critical role in our journey to 
net-zero emissions. 

Leveraging secondary materials through recycling not only mitigates 
the environmental impact often associated with primary mining 
(Hagelüken and Goldmann, 2022), but also reduces lead time (IEA, 
2021b) and ultimately reshapes the Pt supply landscape. In addition, the 
supply of primary Pt is concentrated in South Africa (Nansai et al., 
2014), while most of the Pt mines in autocatalysts are concentrated in 
developed countries with high car ownership (Pauliuk et al., 2021). By 
establishing a well-developed recycling industry, the secondary Pt sup-
ply chain will be more diversified, reducing potential supply risks. 

4.4. Limitations and outlook 

This paper does not address the PGMs used in heavy-duty trucks, as 
their number is minimal compared to passenger cars and the electrifi-
cation of heavy-duty vehicles is slow (Hao et al., 2019a; IEA, 2023b). 
The supply and demand for Pt in other socio-economic sectors (e.g., 

Fig. 2. Annual flows (a), cumulative demand and outflows (b), and stocks of Pt from ICEVs catalysts during the 2020–2050 period (unit: tonne) under the IEA- 
NZE scenario. 

Fig. 3. The Pt surplus from ICEVs and the Pt demand of PEM electrolyzers.  

Table 1 
End-of-life recycling rates of Pt from catalysts required to meet the demand of Pt 
for electrolyzers.  

Time Baseline Eol-RR (Surplus 
ICEV) 

Baseline Eol-RR (Surplus ICEV+ PEM 
scrap) 

2031- 
2040 

80.9% 71.2% 

2041- 
2050 

85.5% 54.9%  
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jewellery and investment) have also not been considered (Sun et al., 
2022). Expanding the scope of research in future studies will provide a 
clearer picture of the socio-economic metabolism of Pt. Some studies 
suggest that fuel cell vehicles rely on Pt, which would potentially offset 
the Pt surplus (Hao et al., 2019b; Tong et al., 2022; Zhang et al., 2023). 
However, this paper does not address this issue given the cost advantage 
of batteries for electric vehicles over performance enhancements such as 
range and the high uncertainty surrounding the development of fuel cell 
vehicles (IEA, 2023d, 2021a; Pivovar, 2019). Besides, different recycling 
technologies have their own advantages and disadvantages, which can 
also lead to differences in recycling rates (Tang et al., 2022). Several 
studies have also mentioned that high pressure and high temperature 
environments during vehicle operation may sometimes cause very small 
(microgram) Pt losses (Helmers, 2000; Xun et al., 2020), which are not 
considered here. 

Bringing the recycling industry in line with the size of the waste 
market. Our results demonstrate the potential of using autocatalyst 
scrap as a source of Pt to supply emerging technology PEM electrolyzers. 
Future research should focus on how the recycling industry could meet 
the growing demand for Pt from this urban mine. 
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