Persistent URL of this record https://hdl.handle.net/1887/3641592
Documents
-
- Download
- Full text
- Publisher's Version
- open access
- Full text at publishers site
In Collections
This item can be found in the following collections:
Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts
- All authors
- Fremond, S.; Andani, S.; Wolf, J.B.; Dijkstra, J.; Melsbach, S.; Jobsen, J.J.; Brinkhuis, M.; Roothaan, S.; Jurgenliemk-Schulz, I.; Lutgens, L.C.H.W.; Nout, R.A.; Steen-banasik, E.M. van der; Boer, S.M. de; Powell, M.E.; Singh, N.; Mileshkin, L.R.; Mackay, H.J.; Leary, A.; Nijman, H.W.; Smit, V.T.H.B.M.; Creutzberg, C.L.; Horeweg, N.; Koelzer, V.H.; Bosse, T.
- Date
- 2023-01-25
- Journal
- The Lancet Digital Health
- Volume
- 5
- Issue
- 2
- Pages
- e71 - e82