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Summary
Background Endometrial cancer can be molecularly classified into POLEmut, mismatch repair deficient (MMRd), p53 
abnormal (p53abn), and no specific molecular profile (NSMP) subgroups. We aimed to develop an interpretable deep 
learning pipeline for whole-slide-image-based prediction of the four molecular classes in endometrial cancer 
(im4MEC), to identify morpho-molecular correlates, and to refine prognostication.

Methods This combined analysis included diagnostic haematoxylin and eosin-stained slides and molecular and 
clinicopathological data from 2028 patients with intermediate-to-high-risk endometrial cancer from the PORTEC-1 
(n=466), PORTEC-2 (n=375), and PORTEC-3 (n=393) randomised trials and the TransPORTEC pilot study (n=110), 
the Medisch Spectrum Twente cohort (n=242), a case series of patients with POLEmut endometrial cancer in the Leiden 
Endometrial Cancer Repository (n=47), and The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma 
cohort (n=395). PORTEC-3 was held out as an independent test set and a four-fold cross validation was performed. 
Performance was measured with the macro and class-wise area under the receiver operating characteristic curve 
(AUROC). Whole-slide images were segmented into tiles of 360 μm resized to 224 × 224 pixels. im4MEC was trained 
to learn tile-level morphological features with self-supervised learning and to molecularly classify whole-slide images 
with an attention mechanism. The top 20 tiles with the highest attention scores were reviewed to identify morpho-
molecular correlates. Predictions of a nuclear classification deep learning model serve to derive interpretable 
morphological features. We analysed 5-year recurrence-free survival and explored prognostic refinement by molecular 
class using the Kaplan-Meier method.

Findings im4MEC attained macro-average AUROCs of 0·874 (95% CI 0·856–0·893) on four-fold cross-validation and 
0·876 on the independent test set. The class-wise AUROCs were 0·849 for POLEmut (n=51), 0·844 for MMRd (n=134), 
0·883 for NSMP (n=120), and 0·928 for p53abn (n=88). POLEmut and MMRd tiles had a high density of lymphocytes, 
p53abn tiles had strong nuclear atypia, and the morphology of POLEmut and MMRd endometrial cancer overlapped. 
im4MEC highlighted a low tumour-to-stroma ratio as a potentially novel characteristic feature of the NSMP class. 5-year 
recurrence-free survival was significantly different between im4MEC predicted molecular classes in PORTEC-3 (log-rank 
p<0·0001). The ten patients with aggressive p53abn endometrial cancer that was predicted as MMRd showed inflammatory 
morphology and appeared to have a better prognosis than patients with correctly predicted p53abn endometrial cancer 
(p=0·30). The four patients with NSMP endometrial cancer that was predicted as p53abn showed higher nuclear atypia 
and appeared to have a worse prognosis than patients with correctly predicted NSMP (p=0·13). Patients with MMRd 
endometrial cancer predicted as POLEmut had an excellent prognosis, as do those with true POLEmut endometrial cancer.

Interpretation We present the first interpretable deep learning model, im4MEC, for haematoxylin and eosin-based 
prediction of molecular endometrial cancer classification. im4MEC robustly identified morpho-molecular correlates 
and could enable further prognostic refinement of patients with endometrial cancer.

Funding The Hanarth Foundation, the Promedica Foundation, and the Swiss Federal Institutes of Technology.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 
license.

Introduction 
Endorsed by the fifth edition (2020) of the WHO classi­
fication of female genital tumours1 and 2021 guidelines 

from the European Society of Gynaecological Oncology, 
the European Society for Radiotherapy and Oncology, 
and the European Society of Pathology,2 the introduction 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2589-7500(22)00210-2&domain=pdf
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implications for the diagnosis and clinical management 
of endometrial cancer. The new molecularly driven 
diagnostic algorithm uses clinically applicable surrogate 
markers for the four molecular classes3–5 described by 
The Cancer Genome Atlas (TCGA) Research Network 
in 2013.6 POLE mutational status is assessed by use of 
targeted DNA sequencing of exons 9–14 (POLEmut). Loss 
of expression of mismatch repair proteins (MMR 
deficient [MMRd]) by immunohistochemistry is an 
excellent surrogate for microsatellite instability. 
Tumours with a high copy number are characterised by 
TP53 mutations and can be identified by abnormal, 
mutant-like cellular tumour antigen p53 expression 
(p53abn). Tumours with a low copy number are referred 
to as having no specific molecular profile (NSMP). 
Endometrial cancers with more than one classifying 
feature should be classified according to their dominant 
molecular class by sequential testing of POLE, MMR, 
and p53 status.1 The molecular endometrial cancer 

classification has independent prognostic impact: 
patients with POLEmut endometrial cancer have an 
excellent prognosis, whereas patients with p53abn 
endometrial cancer have a poor prognosis and patients 
with MMRd or NSMP endometrial cancer have (stage-
dependent) intermediate clinical outcomes.3–5

The molecular-based and histology-based classification 
systems of endometrial cancer are still reported 
independently because histological subtypes and grades 
only partly overlap with molecular classes.3–5 This 
separation has introduced some controversies in 
endometrial cancer diagnostics, as molecular classi­
fication is now recommended over histological classi­
fication, especially for patients considered to have a high 
risk of recurrence on the basis of clinicopathological 
factors.1,2 To unify both classification systems, it is 
necessary to get an accurate and evidence-based repre­
sentation of the morphology associated with each 
molecular endometrial cancer class. Furthermore, 
improving clinical risk stratification might be possible 

Research in context

Evidence before this study
We searched Google Scholar for papers published from database 
inception to June 13, 2022, using the search terms (“deep 
learning” OR “artificial intelligence” OR “AI”) AND 
(“histopathology” OR “histology” OR “slide image”) AND 
(“molecular” OR “genotype” OR “phenotype”), without any 
date or language restrictions. This search returned 
45 500 articles. There is an increasing number of proof-of-
concept studies in various cancer types of deep learning models 
that can predict genetic mutations or molecular alterations by 
recognising associated morphology on haematoxylin and 
eosin-stained tumour whole-slide images. In the endometrial 
cancer field, only two studies have used deep learning for a 
haematoxylin and eosin-based molecular class prediction task 
on small cohorts of 456 or 516 patients, with no or very few 
samples including two histological subtypes for independent 
testing. Both studies provided insufficient development 
towards clinical translation for several reasons: the authors did 
not consider a four-class classification problem but rather one 
or multiple oversimplified binary tasks; molecular classes were 
defined by The Cancer Genome Atlas and not by the surrogate 
marker approach used in endometrial cancer diagnostics; the 
authors did not have access to structured survival outcome 
data; and interpretability was missing or limited to visualising 
image datapoints in a two-dimensional map. Additionally, in 
both deep learning models, molecular classification was done at 
the tile level instead of the whole-slide image level.

Added value of this study
To our knowledge, this study is the first to use a large-scale 
haematoxylin and eosin-stained whole-slide-image dataset of 
2028 patients with endometrial cancer from three randomised 
trials and four clinical cohorts to develop an interpretable, deep 

learning-based model, im4MEC, tailored towards predicting the 
four-class molecular classification of endometrial cancer. The 
im4MEC pipeline is novel as it leverages self-supervised 
learning to learn endometrial-cancer-specific morphological 
feature representation of tiles in whole-slide images along with 
an attention-based classification model for whole-slide-image-
level prediction. The attention mechanism enabled 
identification of the most predictive morphological regions and 
downstream interpretability by cell-level analysis. These design 
choices helped in the establishment of known and novel 
morpho-molecular correlates for each molecular class, which 
were shown to impact clinical outcome. The use of whole 
hysterectomy specimen slides without human-annotated 
regions of interest supported the discovery of relevant 
molecular-class-specific features outside of the tumour region. 
Future deep-learning-based studies should consider similar 
unbiased approaches, as novel and potentially relevant features 
might lie outside of the tumour area.

Implications of all the available evidence
Our study, with its state-of-the-art model performance and 
interpretable results, suggests that a deep learning-based 
model can have a relevant role in endometrial cancer 
diagnostics. The identification of morpho-molecular 
correlates and their impact on prognosis advances the 
evidence towards building an improved risk stratification 
system in endometrial cancer and unifying the molecular-
driven and morphology-driven classification systems. Future 
work should focus on prospective validation, the further 
exploration of tumour heterogeneity in endometrial cancer, 
solving the current difficulty in distinguishing POLEmut from 
mismatch-repair-deficient endometrial cancer, and 
reproducibility on biopsy specimens.
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when incorporating tumour microenvironmental 
immune-related features, which have been shown to 
carry prognostic value independent of molecular class;7,8 
however, how to best capture these features is not 
currently clear. Establishing the complete set of 
endometrial cancer morpho-molecular correlates and 
discovering those that are clinically relevant will thus 
deepen current understanding of the molecular classifi­
cation of endometrial cancer and provide opportunities 
for prognostic refinement.

Deep learning has shown impressive ability to associate 
complex visual features of tissue organisation with 
molecular disease characteristics,9–11 to predict treatment 
response,12 and to enable screening for hereditary cancer 
syndromes13 from clinically established and cost-effective 
haematoxylin and eosin-stained whole-slide images of 
tumours. Two studies have shown proof of concept for 
the binary prediction of molecular alterations in 
endometrial cancer from histopathology images.14,15 
Hong and colleagues14 considered one-versus-all binary 
classes and reported area under the receiver operating 
characteristic curve (AUROC) values of 0·66 for POLEmut, 
0·76 for microsatellite instability, 0·87 for high copy 
number, and 0·65 for low copy number on a small 
independent test set (n=95) and Wang and colleagues15 
predicted microsatellite instability status with an AUROC 
of 0·73 on a TCGA internal test set (n=155). However, 
their deep learning models did not predict the four-class 
molecular classification of endometrial cancer, had 
limited interpretability, and did not relate predictions to 
survival outcomes.

To apply deep learning in pathology, gigapixel whole-
slide images are often partitioned into smaller regions 
called tiles. Many deep learning models rely on tile-
based, weakly supervised learning by assigning a 
molecular class to each tile during training and then 
aggregating tiles to obtain a prediction at the whole-slide-
image level.9–11,14–16 This approach is built on the 
assumption that each tile contributes equally towards the 
prediction at the whole-slide-image level, which is 
sensitive to spatial morphological heterogeneity within 
the whole-slide image. To address this limitation, Lu and 
colleagues17 proposed a deep learning model with an 
attention mechanism that identifies tiles containing the 
most predictive morphological information to classify 
the whole-slide image. In addition to improving classi­
fication performance, an attention-based model can 
produce interpretable attention heatmaps that highlight 
the relative importance of tissue subregions for the 
whole-slide image classification. These deep learning 
architectures use a deep learning model that represents 
histology tile images as feature vectors, referred to as a 
feature extractor model, which is often trained on the 
non-histology-related ImageNet dataset.18 Instead, self-
supervised learning possesses great potential for training 
feature extractor models that outperform ImageNet-
based models in identifying tile-level, cancer-specific 

morphological features when trained on large-scale and 
heterogeneous histology datasets.19,20

In this study, we aimed to develop a deep learning 
pipeline (im4MEC) for the image-based prediction of the 
molecular classification of endometrial cancer from 
haematoxylin and eosin-stained whole-slide images and 
for the identification of known and novel human-
interpretable morpho-molecular correlates and the 
investigation of their prognostic relevance. To this end, 
we leveraged self-supervised learning to extract 
endometrial-cancer-specific morphological features, and 
trained an interpretable attention-based classification 
model using data from the three PORTEC randomised 
trials and four clinical cohorts.

Methods 
Study design and participants 
In this combined analysis, we used formalin-fixed 
paraffin-embedded tumour material and complete 
molecular and clinicopathological data from three 
randomised trials and four clinical cohorts (appendix 1 
pp 2–4): the randomised PORTEC-1 trial21 (714 patients 
with early-stage, intermediate-risk endometrial cancer, 
recruited in the Netherlands); the randomised 
PORTEC-2 trial22 (427 patients with early-stage, high-to-
intermediate-risk endometrial cancer; the Netherlands); 
the randomised PORTEC-3 trial23 (660 patients with 
stage I–III, high-risk endometrial cancer; the 
Netherlands, UK, France, Italy, Canada, Australia, and 
New Zealand); the retrospective TransPORTEC pilot 
study5 (116 patients with high-risk endometrial cancer; 
the Netherlands, UK, and France); the prospective 
Medisch Spectrum Twente (MST) cohort24 (257 patients 
with high-risk endometrial cancer; the Netherlands); a 
case series of 48 patients with POLEmut endometrial 
cancer from the Leiden Endometrial Cancer Repository 
(the Netherlands); and TCGA-Uterine Corpus 
Endometrial Carcinoma cohort (TCGA-UCEC; n=529), 
extracted from the cBioPortal for Cancer Genomics.6,25 
Long-term follow-up is available for the PORTEC-1, 
PORTEC-2, and PORTEC-3 trials. For all patients, 
except those in TCGA-UCEC, molecular classification 
had been done by our group3–5 following the surrogate 
marker-based diagnostic algorithm of WHO 2020,1 
resulting in POLEmut, MMRd, p53abn, NSMP, or 
inconclusive molecular class.

Of 2751 patients, we excluded 360 for not having 
available haematoxylin and eosin-stained tumour slides 
or material, 177 for having an inconclusive molecular 
class, and 60 for not having available hysterectomy 
specimens (appendix 1 p 5). For patients with a conclusive 
molecular class, one representative haematoxylin and 
eosin-stained slide of the endometrial cancer 
hysterectomy specimen was selected by a gynaecological 
pathologist (TB; appendix 1 p 2). Slides were digitised at 
40× magnification on a 3DHISTECH P250 digital 
scanner (Budapest, Hungary; 0·19 μm/pixel) and a 

For the cBioPortal for Cancer 
Genomics see https://www.
cbioportal.org/

See Online for appendix 1

https://www.cbioportal.org/
https://www.cbioportal.org/
https://www.cbioportal.org/
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3DHISTECH P1000 (0·24 μm/pixel). We excluded three 
patients due to persistent blurriness of their scans, 
60 patients from TCGA-UCEC with low-magnification 
scans, 33 patients with slide images containing no 
tumour, and 30 patients (25 from TCGA-UCEC, two from 
PORTEC-1, two from PORTEC-2, and one from MST) 
with slide images of very poor tissue quality 
(appendix 1 p 5). 2028 patients with endometrial cancer 
were included in the final analysis.

The entire PORTEC-3 randomised trial of 393 patients 
with endometrial cancer, consisting of 51 patients with 
POLEmut, 134 with MMRd, 120 with NSMP, and 88 with 
p53abn, was kept as an independent test set (appendix 1 
p 6). All patients from the PORTEC-1 (n=466), 
PORTEC-2 (n=375), TransPORTEC pilot (n=110), MST 
(n=242), POLEmut Leiden Endometrial Cancer Repository 
(n=47), and TCGA-UCEC (n=395) cohorts (n=1635) were 
used to train the feature extractor model using self-
supervised learning. To then train the classification 
model, TCGA-UCEC was excluded because molecular 
classification in TCGA-UCEC did not use the surrogate 
marker-based approach. Therefore, the supervised 
training set consisted of 1240 patients (141 with POLEmut 

endometrial cancer, 326 with MMRd, 611 with NSMP, 
and 162 with p53abn). We reduced class imbalance in 
training by randomly downsampling the 611 NSMP 
whole-slide images to match the number of 326 MMRd 
whole-slide images, stratified by cohort and scanner 
type (resulting in 955 whole-slide images). A k-fold 
cross-validation split was done, stratified by molecular 
class, cohort, and scanner type, to determine the best 
model configuration and show model robustness on 
multiple validation sets. Due to the relative scarcity of 
POLEmut endometrial cancer, cross-validation was 
limited to four folds. Mean and SD or 95% CI of the 
macro-average AUROC of the four-fold cross-validation 
experiments were calculated. In ablation studies, we 
examined whether the inclusion of the self-supervised 
learning model in the pipeline improved the mean 
macro-average AUROC compared with the use of 
ImageNet18 pre-trained weights. The model config­
uration and hyperparameters that achieved the highest 
mean macro-average AUROC were subsequently used 
for final training on the combined folds of 955 whole-
slide images. To measure final performance, the model 
was tested on the independent test set from PORTEC-3 
(n=393) and the macro-average and class-wise AUROC, 
precision, recall, F1 score, accuracy, specificity, negative 
predictive value, and the confusion matrix were 
calculated.

Deep learning pipeline 
The proposed im4MEC deep learning model (figure 1) 
consists of: pre-processing the whole-slide image 
(figure 1A); training the feature extractor model with 
contrastive self-supervised learning,26 MoCo-v2, to learn 
tile-level morphological features (figure 1B); extracting all 

tile-level feature vectors from the self-supervised learning 
encoder (figure 1C); and training and inference of the 
attention-based classification model based on the 
proposal of Lu and colleagues17 to molecularly classify 
whole-slide images from all tile-level feature vectors 
(figure 1D). Our deep learning pipeline included nuclear 
segmentation and classification, which was done by use 
of HoVer-Net27 (trained on a curated endometrial cancer 
tile image dataset; appendix 1 p 9), to derive human-
interpretable, cell-level morpho-molecular features from 
the top 20 attended tiles, and a support vector machine 
trained to measure relative contributions of HoVer-Net-
based features to the profiling of the molecular classes 
(figure 1E). All deep learning models were implemented 
in PyTorch (version 1.11). The support vector machine 
model was used from the Python scikit-learn library 
(version 1.1.1).

During pre-processing, the tissue of each whole-slide 
image was automatically segmented by use of regular 
Otsu thresholding. The tissue region of each whole-slide 
image was cut into non-overlapping square tiles of 
360 μm at 40× magnification and resized to 224 × 224 pixels 
(figure 1A). This tile size was determined empirically 
(appendix 1 pp 6–7). Each whole-slide image in the 
training set (n=1240) contained a mean average of 
2600 tiles. Tiles with very little or no tissue were excluded 
by applying a minimum threshold of 20 to the median 
value of each 8-bit RGB channel.

To train the feature extractor model with self-supervised 
learning, a dataset of image tiles was curated by randomly 
sampling tiles from each whole-slide image. To ensure 
the equitable representation of each molecular class, the 
optimal number of tiles to sample was determined for 
each whole-slide image depending on its molecular class 
(appendix 1 pp 6–7). This approach yielded a dataset of 
1 170 931 tiles that were evenly distributed across the 
molecular classes, on which MoCo-v2 was trained for 
300 epochs on three NVIDIA RTX 6000 (Santa Clara, CA, 
USA) graphics processing units, with a ResNet-50 
encoder and a projection head as originally described 
(appendix 1 p 8).26 Experiments with a ResNet-34 encoder 
(appendix 1 p 7), which is shallower than the ResNet-50, 
and a fixed number of tiles per whole-slide image yielded 
a lower performance than the initial approach 
(appendix 1 pp 6–7).

The tile-level feature vectors from the whole-slide 
images were extracted from the self-supervised learning 
ResNet-50 encoder at the last layer, resulting in a feature 
vector of size 2048 for each tile (figure 1C). Thereafter, 
the attention-based slide classifier (figure 1D) was trained 
for 100 epochs on a single graphics processing unit 
(appendix 1 p 8). The architecture of this attention model 
was based on an architecture proposed by Lu and 
colleagues17 with the secondary clustering objective 
removed. Ablation studies showed that this clustering 
objective did not improve the AUROC for our task 
(appendix 1 p 7).
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A qualitative assessment of the attention heatmap 
(appendix 1 p 8) of the predicted molecular class and its 
top 20 tiles with the highest attention scores assigned by 
im4MEC was done for all PORTEC-3 patients by an 
expert gynaecological pathologist (TB). The spatial 
distribution of attention from the correctly classified 
patients was quantitatively analysed, and statistical 
significance was measured with an unpaired t test for 
each molecular class across three annotated regions: 
tumour, invasive border, and normal myometrium 
(appendix 1 p 8).

The top 20 tiles with the highest attention scores for 
each predicted molecular class were extracted. HoVer-
Net architecture27 was trained from scratch on a hand-
curated endometrial cancer tile image dataset to predict 
the nuclear contour and three cell types on these tiles: 
inflammatory cells, stromal cells, and tumour cells 
(appendix 1 pp 9–11). Five morphological features were 
computed from the HoVer-Net predictions: counts of the 
three cell types and nuclear size and shape of the tumour 
cells averaged across the top 20 attended tiles per whole-
slide image. The nuclear size used the nuclear surface 
area in μm, the nuclear shape used the non-convexity 
score because it describes the non-compactness of a 
particle, and together these features provided a proxy for 
nuclear atypia (appendix 1 p 12). A support vector 
machine with a linear kernel was trained on the five 
HoVer-Net-based morphological features to extract the 

support vector machine weights, a measure of relative 
feature importance. Input features were normalised after 
verifying non-collinearity with Pearson correlation and a 
cutoff of 0·5 (appendix 1 pp 12–13).

Statistical analysis 
We tested the associations between misclassification and 
the relative size of tumour tissue, HistoQC-based28 slide 
quality with an unpaired t test, or the presence of 
secondary molecular class labels by Fisher’s exact test. 
The statistical significance of any differences within the 
correctly classified cases or image-based molecular 
classes was measured pairwise with an unpaired t test for 
each of the five HoVer-Net-based morphological features. 
Additionally, the association between model predictions 
and endometrial cancer clinicopathological data 
(ie, histological subtypes, grade, and stage) was 
statistically tested with Fisher’s exact test (appendix 1 p 13). 
Statistical analyses were performed with Python SciPy 
library (version 1.5.2) and statistical significance was 
accepted for p values of less than 0·05. The analysis of 
recurrence-free survival at 5 years (recurrences included 
local-regional and distant events) by true and image-
based molecular classification was done according to the 
Kaplan-Meier method, with subgroups compared with 
the log-rank test. Prognostic refinement was also 
explored by selecting the predicted image-based 
molecular classes among one true molecular class. 

Figure 1: im4MEC deep learning pipeline
For a high-resolution version of this image see appendix 2. (A) Whole-slide images were segmented and cut into non-overlapping square tiles of 360 µm at 40× 
magnification and resized to 224 × 224 pixels. (B) The optimal number of tiles were sampled from each whole-slide image to build a training dataset for the MoCo-v2 
self-supervised learning model. (C) Features were extracted from all tiles of the whole-slide image by use of the self-supervised learning encoder, ResNet-50, at the 
last layer resulting in features of size 2048. (D) The model was trained to molecularly classify the whole-slide image, assigning attention scores to each tile and 
molecular class. Attention heatmaps are displayed from low attention (blue) to high attention (red). (E) The top 20 attended tiles were extracted from the predicted 
attention branch only. The predictions of HoVer-Net, a nuclear segmentation and classification deep learning model trained on an endometrial cancer tile image 
dataset, were used to compute counts of the three cell types and size and shape of the tumour nuclei (appendix 1 p 29). Subsequent analyses described these 
morphological features in association with the molecular classes and measured their relative feature importance with a support vector machine. MMRd=mismatch 
repair protein deficient. NSMP=no specific molecular profile. p53abn=abnormal cellular tumour antigen p53 expression.
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Survival analyses were done by use of the R software 
(version 3.6.3); statistical significance was accepted for 
two-sided p values of less than 0·05.

Role of the funding source 
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results
The im4MEC model attained a mean macro-average 
AUROC of 0·874 (95% CI 0·856–0·893) on the four-fold 
cross-validation. Ablation studies showed that the 
inclusion of the self-supervised learning model in the 
pipeline improved the mean macro-average AUROC by 
0·131 compared with the use of ImageNet pre-trained 
weights (appendix 1 p 7).

On the independent test set (PORTEC-3; n=393), 
im4MEC achieved a macro-average AUROC of 0·876 
(figure 2A). The class-wise AUROCs were 0·849 for 
POLEmut (n=51), 0·844 for MMRd (n=134), 0·883 for 
NSMP (n=120), and 0·928 for p53abn (n=88; figure 2A). 
We report macro-average and class-wise precision, recall, 
F1 score, accuracy, specificity, and negative predictive 
value in appendix 1 (p 14). The confusion matrix indicated 
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Figure 2: Model performance on the PORTEC-3 independent test set (n=393)
(A) The macro-average and class-wise one-versus-rest ROC curves. The true positive rate represents sensitivity and 
the false positive rate represents 1 minus the specificity. (B) The confusion matrix. AUROC=area under the receiver 
operating characteristic curve. MMRd=mismatch repair protein deficient. NSMP=no specific molecular profile. 
p53abn=abnormal cellular tumor antigen p53 expression.

Figure 3: Image tile galleries showing morpho-molecular correlates
For a high-resolution version of this image, see appendix 3. For each molecular class, we present an image gallery of the top one tile with the highest attention score 
of the 12 concordant cases with the highest class probability scores in PORTEC-3. MMRd=mismatch repair protein deficient. NSMP=no specific molecular profile. 
p53abn=abnormal cellular tumour antigen p53 expression.
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concordant and some discordant cases between the true 
molecular classes and the predicted image-based 
molecular classes (referred to by the prefix im; figure 2B). 
The discordant cases, such as the 35 patients with 
POLEmut endometrial cancer predicted as being imMMRd 
endometrial cancer, were further investigated. We found 
no evidence of associations between misclassification 
and low tumour surface (appendix 1 p 14), HistoQC-
based slide quality (appendix 1 p 15), or the presence of 
secondary molecular class labels (appendix 1 pp 15–16). 
The concordant cases were analysed for identification of 
endometrial cancer morpho-molecular correlates.

Quantitative evaluation of the attention spatial distri­
bution of the concordant cases for each molecular class  
showed that the model mainly focused on the tumour 
region rather than the invasive border and normal 
myometrium (appendix 1 pp 16–19). The model showed a 
significantly higher attention towards the normal 
myometrium for concordant POLEmut cases than for the 
other concordant cases (p=0·0063), where a strong 
representation of POLEmut-specific immune-related 
features,7,8 such as lymphocytic aggregates or tertiary 
lymphoid structures, were found (appendix 1 pp 18–19).

Image galleries of the top 20 highly attended tiles from 
concordant patients showed key prototypical and novel 
morpho-molecular correlates (appendix 1 pp 25–28); in 
figure 3 we present the top one tile with the highest 
attention score of the patients with the highest predicted 
confidence score for each molecular class. POLEmut tiles 
highlighted solid tumour growth, a high density of 
tumour-infiltrating and peritumoural lymphocytes, and 
the presence of scattered tumour giant cells. MMRd tiles 
displayed similar traits, with a high density of lympho­
cytes and mainly solid tumour growth; however, some 
tiles also had a glandular architecture. NSMP tiles 
predominantly showed glands with smooth luminal 
borders, mild nuclear atypia, a low density of lympho­
cytes, and focal squamous differentiation. Although 
these features in NSMP endometrial cancer are 
consistent with expert interpretation (by TB), we also 
identified a low tumour-to-stroma ratio. p53abn tiles 
displayed a low density of lymphocytes, strong nuclear 
atypia, a high tumour-to-stroma ratio, and tumoural 
areas with both solid and glandular architecture, in 
which the glands typically showed a ragged luminal 
surface.

We analysed the top 20 attended tiles of the concordant 
cases using interpretable cell-type predictions from 
HoVer-Net to investigate the composition of each 
molecular class at the resolution of a single cell 
(appendix 1 pp 19–20; appendix 1 pp 25–28). Concordant 
POLEmut and MMRd cases showed significantly more 
inflammatory cells than NSMP and p53abn cases. 
POLEmut cases also displayed a significantly larger size of 
tumour nuclei compared with MMRd and NSMP cases. 
Concordant NSMP cases showed significantly more 
stromal cells and fewer tumour cells than POLEmut, 

MMRd, and p53abn cases, implicating a low tumour-to-
stroma ratio as a novel feature of this class. Concordant 
p53abn cases showed a stronger tumour nuclear atypia, 
based on nuclear size and shape, than POLEmut, MMRd, 
and NSMP cases.

The subsequent training of a support vector machine 
on concordant cases showed the relative contribution of 
each morphological feature to the profile of the molecular 
class (figure 4). Our data indicated that the inflammatory 
cell count positively contributed towards the prediction 
of concordant POLEmut cases and MMRd cases and 
negatively contributed to the prediction of concordant 
NSMP and p53abn cases. The stromal cell count 
positively contributed to the prediction of concordant 
NSMP cases (indicative of a low tumour-to-stroma ratio) 
and tumour nuclear atypia strongly contributed to the 
prediction of concordant p53abn cases, with the size of 
tumour nuclei having a larger impact than nuclei shape. 
Similar morpho-molecular correlates and their relative 
contributions were observed when extending the analysis 
to the image-based molecular classes, indicating that 
predictive morphological features were provided by the 
im4MEC predictions and highlighted some degree of 
heterogeneity within each molecular class (appendix 1 
pp 20–21).

We examined the association between the im4MEC 
classification and endometrial cancer clinicopathological 
data (appendix 1 pp 21–22). We found that concordant 
POLEmut cases were associated with high-grade 
endometrial cancer (p=0·0004), that concordant MMRd 
cases were associated with an endometrioid histological 
subtype (p=0·0023), and that the only five low-grade, 
endometrioid POLEmut cases were predicted as imMMRd. 
Concordant NSMP cases were associated with a low 
grade, endometrioid subtype (p=0·062), whereas 
concordant p53abn cases were associated with a high 
grade subtype (p<0·0001). The only four low-grade 

Figure 4: Support vector machine-based morphological feature importance 
of concordant cases in PORTEC-3
MMRd=mismatch repair protein deficient. NSMP=no specific molecular profile. 
p53abn=abnormal cellular tumour antigen p53 expression.
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endometrioid p53abn cases were classified as imNSMP. 
When extending the scope to the image-based molecular 
classes, the associations between predictions and histo­
logical subtypes or grades were found to be consistent 
(appendix 1 pp 20–21). We did not find any correlation 
between model discordance and stage (appendix 1 p 22).

The image-based molecular classification by im4MEC 
showed a strong prognostic value in the PORTEC-3 
independent test set, a randomised trial of patients with 
high risk endometrial cancer (p<0·0001; figure 5A). The 
observed 5-year recurrence-free survival outcomes were 
consistent with the true molecular classification 
(figure 5B), with the best prognosis observed in patients 
with predicted imPOLEmut endometrial cancer, inter­
mediate prognoses observed in patients with predicted 
imMMRd or imNSMP endometrial cancer, and poor 
prognosis observed in patients with predicted imp53abn 
endometrial cancer. The imPOLEmut class had a slightly 
worse prognosis than the true POLEmut class. This 
discrepancy was caused by the three patients with p53abn 
endometrial cancer and the three patients with NSMP 
endometrial cancer who were predicted as imPOLEmut 
and not by the five patients with MMRd endometrial 
cancer who were predicted as imPOLEmut and showed no 
recurrence (appendix 1 p 23).

The interpretability of our deep learning pipeline was 
leveraged to explore the prognostic relevance of the 
morpho-molecular correlates among the discordant cases 
(figure 6). The ten patients with p53abn endometrial 
cancer predicted as imMMRd did not show prototypical 
morphological features of p53abn endometrial cancer and 
instead showed MMRd endometrial cancer-like 
morphological features, including high counts of 
inflammatory cells and mild tumour nuclear atypia, which 
might have led to the discordance (figure 6A). Patients in 
this specific discordant subset of the p53abn class with 
MMRd-like morphology appeared to have a better 

prognosis than the concordant p53abn patients, although 
this difference was not statistically significant (p=0·30; 
figure 6A). Similarly, the three patients with p53abn 
endometrial cancer that was classified as imPOLEmut had a 
substantially higher count of inflammatory cells than 
concordant p53abn patients, although this finding did not 
translate into the good prognosis that is observed in 
patients with true POLEmut endometrial cancer 
(appendix 1 p 23). The four patients with NSMP endo­
metrial cancer predicted as imp53abn showed higher 
nuclear atypia (in terms of tumour nuclei size) and a 
higher tumour-to-stroma ratio, which are both prototypical 
features of p53abn endometrial cancer, compared with 
NSMP concordant patients (figure 6B). NSMP discordant 
patients with p53abn-like morphology appeared to have a 
worse prognosis than NSMP concordant patients, similar 
to the poor outcome of typical p53abn endometrial cancer, 
although this difference was not statistically significant 
(p=0·13; figure 6B). Similar observations were found for 
the 16 patients with MMRd endometrial cancer predicted 
as imNSMP endometrial cancer, who showed a lower 
count of inflammatory cells and a lower tumour-to-stroma 
ratio, with a similar prognosis as the MMRd concordant 
patients (appendix 1 p 24). Regarding the discordance 
between POLEmut and MMRd classes, im4MEC identified 
a set of five patients with MMRd endometrial cancer 
predicted as imPOLEmut who had an excellent prognosis 
(figure 6C). A morphological analysis of the respective 
discordant calls between these two classes indicated that 
predicted POLEmut slides had larger tumour nuclei than 
MMRd concordant slides but cellular composition was 
similar, which might explain the model’s confusion 
(figure 6C; appendix 1 p 24).

Discussion 
To our knowledge, we present the first interpretable deep 
learning pipeline that can predict the four-class molecular 

Figure 5: Recurrence-free survival at 5 years in PORTEC-3
Stratified by image-based molecular class (A) and true molecular class (B). The plus signs (+) on each curve represent censored patients. MMRd=mismatch repair 
protein deficient. NSMP=no specific molecular profile. p53abn=abnormal cellular tumour antigen p53 expression.
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endometrial cancer classification from digitised haema­
toxylin and eosin-stained whole-slide images. Our deep 
learning model, im4MEC, was built, validated, and tested 
in 2028 patients with molecularly classified endometrial 

cancer from three randomised trials3,4,21–23 and four clinical 
cohorts.5,6,24 We combined self-supervised learning26 with 
an attention-based, slide-level classification model17 for 
learning endometrial-cancer-specific morphological 

Figure 6: Discordant image-based predictions by prognosis and morphology in PORTEC-3
5-year recurrence-free survival and HoVer-Net-based morphological features stratified by concordant and discordant cases and the top two tiles of the top four discordant cases for the comparisons of 
concordant p53abn cases (n=54) versus discordant imMMRd cases (n=10) in the true p53abn class (A), concordant NSMP cases (n=89) versus discordant imp53abn cases (n=4) in the true NSMP class 
(B), and concordant MMRd cases (n=109) versus discordant imPOLEmut cases (n=5) in the true MMRd class (C). The plus signs (+) on each curve represent censored patients. High-resolution histology 
images can be found in appendix 1 (pp 30–32). MMRd=mismatch repair protein deficient. NSMP=no specific molecular profile. p53abn=abnormal cellular tumour antigen p53 expression. 
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features associated with each molecular class. The 
im4MEC model obtained a high performance that is 
comparable to other four-class molecular classification 
tasks of similar complexity, such as the image-based 
consensus molecular subtype classification of colorectal 
cancer.10 Additionally, im4MEC identified human-
interpretable morpho-molecular correlates that could 
improve prognostication.

By using the strength of our deep learning pipeline and 
an independent test set of 393 patients with high-risk 
endometrial cancer, long-term follow-up, and complete 
clinicopathological data from the PORTEC-3 randomised 
trial, we made concordant and discordant cases between 
true and image-based molecular classes interpretable. 
The attention mechanism and cell-level quantitative 
analyses revealed insights into endometrial cancer-
specific morpho-molecular correlates that are visible on 
haematoxylin and eosin-stained slides and go beyond 
classic histological subtyping or grading variables. 
Furthermore, our analyses provide insights into intra-
class heterogeneity within endometrial cancer molecular 
subgroups, which could be exploited to refine 
prognostication. Our data corroborated established 
prototypical morpho-molecular correlates in endometrial 
cancer, such as a high lymphocyte density in the POLEmut 
and MMRd classes7 and strong nuclear atypia in p53abn 
endometrial cancer.29 Our results suggested that it is 
possible to stratify a specific subset of patients with an 
MMRd-like morphology and a better prognosis than the 
typically aggressive p53abn endometrial cancer and to 
stratify a subset of patients with NSMP endometrial 
cancer of p53abn-like morphology and a poor prognosis. 
Our work also showed a low tumour-to-stroma ratio 
within NSMP endometrial cancer slides, which 
constitutes a novel morphological feature and might 
improve biological understanding of this poorly defined 
molecular class. Furthermore, the spatial distribution of 
highly attended regions not only demonstrated that the 
tumour centre was informative, but it also showed that 
predictive morphological features were present in the 
invasive border and even in the normal myometrium, 
which could be related to the presence of 
microenvironment immune-related features. This 
finding was particularly true for predicting POLEmut 
whole-slide images displaying lymphocytic aggregates or 
tertiary lymphoid structures within the normal 
myometrium, a specific phenotypical trait that has only 
recently been linked to this molecular class.8 These 
findings exemplify the fact that the use of attention-based 
deep learning models without predefined annotated 
regions can reveal biologically relevant morphological 
information in adjacent non-tumoural regions, which 
might also be of interest in other cancer types.10

This study has some limitations. First, im4MEC was 
trained on patients with early-stage, intermediate-to-
high-risk endometrial cancer3,5,21,22,24,30 and independently 
tested on patients with high-risk endometrial cancer.4,23 

Thus, the subsequently identified morpho-molecular 
correlates should be interpreted in the context of high-
risk endometrial cancer. Second, no data on patient 
ethnicity were available. Third, the cell-level morpho­
logical features used for interpretability were limited to 
the counts of inflammatory, stromal, and tumour cells 
and the size and shape of tumour nuclei. These features 
could be expanded by increasing cell-level granularity in 
the nuclear classification deep learning model, or by 
adding a layer of higher-order histopathological features, 
such as architectural growth pattern (solid, villoglandular, 
or papillary) and type of invasion (infiltrative or pushing 
invasion). Fourth, the difficulty im4MEC had in 
separating POLEmut endometrial cancer from MMRd 
endometrial cancer on haematoxylin and eosin-stained 
whole-slide images could have been caused by the 
relative scarcity of POLEmut in the training set. However, it 
is also plausible that these tumours simply have highly 
overlapping phenotypes as a result of their shared 
molecular characteristic of a high mutational load. 
Finally, our analyses indicated the possibility of 
prognostic refinement for a defined subset of patients 
with endometrial cancer within each molecular class. 
The clinical relevance of these findings requires 
prospective validation and our results should be further 
investigated by use of interpretable deep-learning-based 
models tailored to predict survival outcomes.

With the goal of implementing im4MEC in clinical 
practice, future work should address the generalisability 
of im4MEC’s performance on large cohorts with diverse 
morphology, especially those of patients with non-
endometrioid endometrial cancer, as these patients were 
under-represented in our training set. Next, the utility of 
im4MEC to delineate tumour heterogeneity should be 
tested and verified by predicting molecular class on 
consecutive haematoxylin and eosin-stained whole-slide 
images and tumour blocks from the same patient. 
Understanding the reproducibility of model performance 
and the identified clinically relevant morphological 
features on preoperative biopsies or metastases might be 
of additional interest. The impact of discordant 
predictions on clinical management and treatment 
decisions should be further investigated, especially for 
the most biologically aggressive p53abn and POLEmut 
endometrial cancers.

We envision the initial clinical application of im4MEC 
to evolve into two possible directions that could provide a 
haematoxylin and eosin-based molecular profiling of 
patients with endometrial cancer. First, im4MEC could 
be positioned as a potentially low-cost pre-screening tool 
to identify occurrences of p53abn endometrial cancer for 
further confirmatory immunohistochemistry or mol­
ecular testing. This approach would be particularly 
attractive in patients with low-risk and early-stage, low-
grade endometrial cancer, for whom molecular classi­
fication is not routinely done.2 Second, im4MEC could be 
used with immunohistochemistry to determine MMRd 
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status, which is recommended for all newly diagnosed 
patients with endometrial cancer.2 This second approach 
would result in a three-class (POLEmut, p53abn, and 
NSMP) model, im3MEC, which would achieve more 
accurate haematoxylin and eosin-based predictions than 
a four-class model by resolving the challenge of 
distinguishing POLEmut from MMRd endometrial cancer.

Taken together, we have proposed a robust deep 
learning model that has enabled the image-based mol­
ecular classification and prognostic refinement of endo­
metrial cancer by use of standard diagnostic histology 
sections in a digital pathology workflow. Prospective 
validation in well designed and statistically robust studies 
will be crucial to support clinical translation.
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