Oncolytic viruses are promising agents for cancer therapy because they selectively infect and kill tumor cells, and because they trigger immune responses that can boost anticancer immunity. Key to... Show moreOncolytic viruses are promising agents for cancer therapy because they selectively infect and kill tumor cells, and because they trigger immune responses that can boost anticancer immunity. Key to the latter process is the production of type I interferons (IFN-Is) that can turn noninflamed "cold" tumors into "hot" ones. Besides this desired anticancer effect, IFN-Is are antiviral and successful oncolytic virotherapy thus relies on tightly controlled IFN-I levels. This requires a profound understanding of when and how tumor cells induce IFN-I in response to specific viruses. In this study, we uncovered two key factors that augment IFN-I production in transformed human myeloid cells infected with a tumor-selective reovirus. Viral replication and IFN-alpha/beta receptor (IFNAR) signaling progressively reinforced the levels of IFN-I expressed by infected cells. Mechanistically, both augmented the activation of interferon regulatory factor 3, a key transcription factor for IFN beta expression. Our findings imply that reovirus-permissive tumor cells themselves are a major source of IFN-I expression. As tumors can perturb the IFNAR pathway for their own survival, reovirus-exposed IFNAR-unresponsive tumors may need additional therapeutic intervention to promote the secretion of sufficient IFN-I into the tumor microenvironment. Our increased understanding of the parameters that affect reovirus-induced IFN-I levels could aid in the design of tailored virus-based cancer therapies. Show less
Programmed ribosomal frameshifting (PRF) is a mechanism used by arteriviruses like porcine reproductive and respiratory syndrome virus (PRRSV) to generate multiple proteins from overlapping reading... Show moreProgrammed ribosomal frameshifting (PRF) is a mechanism used by arteriviruses like porcine reproductive and respiratory syndrome virus (PRRSV) to generate multiple proteins from overlapping reading frames within its RNA genome. PRRSV employs -1 PRF directed by RNA secondary and tertiary structures within its viral genome (canonical PRF), as well as a noncanonical -1 and -2 PRF that are stimulated by the interactions of PRRSV nonstructural protein 1 beta (nsp1 beta) and host protein poly(C)-binding protein (PCBP) 1 or 2 with the viral genome. Together, nsp1 beta and one of the PCBPs act as transactivators that bind a C-rich motif near the shift site to stimulate -1 and -2 PRF, thereby enabling the ribosome to generate two frameshift products that are implicated in viral immune evasion. How nsp1 beta and PCBP associate with the viral RNA genome remains unclear. Here, we describe the purification of the nsp1 beta:PCBP2:viral RNA complex on a scale sufficient for structural analysis using small-angle X-ray scattering and stochiometric analysis by analytical ultracentrifugation. The proteins associate with the RNA C-rich motif as a 1:1:1 complex. The monomeric form of nsp1 beta within the complex differs from previously reported homodimer identified by X-ray crystallography. Functional analysis of the complex via mutational analysis combined with RNA-binding assays and cell-based frameshifting reporter assays reveal a number of key residues within nsp1 beta and PCBP2 that are involved in complex formation and function. Our results suggest that nsp1 beta and PCBP2 both interact directly with viral RNA during formation of the complex to coordinate this unusual PRF mechanism. Show less
Schaar, H.M. van der; Melia, C.E.; Bruggen, J.A.C. van; Strating, J.R.P.M.; Geenen, M.E.D. van; Koster, A.J.; ... ; Kuppeveld, M. van 2016