In twisted bilayer graphene (TBG) a moiré pattern forms that introduces a new length scale to the material. At the 'magic' twist angle of 1.1°, this causes a flat band to form, yielding emergent... Show moreIn twisted bilayer graphene (TBG) a moiré pattern forms that introduces a new length scale to the material. At the 'magic' twist angle of 1.1°, this causes a flat band to form, yielding emergent properties such as correlated insulator behavior and superconductivity [1-4]. In general, the moiré structure in TBG varies spatially, influencing the local electronic properties [5-9] and hence the outcome of macroscopic charge transport experiments. In particular, to understand the wide variety observed in the phase diagrams and critical temperatures, a more detailed understanding of the local moiré variation is needed [10]. Here, we study spatial and temporal variations of the moiré pattern in TBG using aberration-corrected Low Energy Electron Microscopy (AC-LEEM) [11,12]. The spatial variation we find is lower than reported previously. At 500°C, we observe thermal fluctuations of the moiré lattice, corresponding to collective atomic displacements of less than 70pm on a time scale of seconds [13], homogenizing the sample. Despite previous concerns, no untwisting of the layers is found, even at temperatures as high as 600°C [14,15]. From these observations, we conclude that thermal annealing can be used to decrease the local disorder in TBG samples. Finally, we report the existence of individual edge dislocations in the atomic and moiré lattice. These topological defects break translation symmetry and are anticipated to exhibit unique local electronic properties. Show less
Benschop T., Jong, T.A. de, Stepanov P., Lu X., Stalman V., Molen, S.J. van der, Efetov K.E., Allan M.P. 2020
We introduce a new method to continuously map inhomogeneities of a moiré lattice and apply it to open-device twisted bilayer graphene (TBG). We show that the variation in the twist angle, which is... Show moreWe introduce a new method to continuously map inhomogeneities of a moiré lattice and apply it to open-device twisted bilayer graphene (TBG). We show that the variation in the twist angle, which is frequently conjectured to be the reason for differences between devices with a supposed similar twist angle, is about 0.04° over areas of several hundred nm, comparable to devices encapsulated between hBN slabs. We distinguish between an effective twist angle and local anisotropy and relate the latter to heterostrain. Our results suggest that the lack of evidence for superconductivity in open devices is not a consequence of higher heterogeneity in the twist angle, but possibly due to the absence of interaction with a top hBN layer. Furthermore, our results imply that for our devices, twist angle heterogeneity has a roughly equal effect to the electronic structure as local strain. The method introduced here is applicable to results from different imaging techniques, and on different moiré materials. Show less