Glucocorticoid stress hormones are powerful modulators of brain function and can affect mood and cognitive processes. The hippocampus is a prominent glucocorticoid target and expresses both the... Show moreGlucocorticoid stress hormones are powerful modulators of brain function and can affect mood and cognitive processes. The hippocampus is a prominent glucocorticoid target and expresses both the glucocorticoid receptor (GR: Nr3c1) and the mineralocorticoid receptor (MR: Nr3c2). These nuclear steroid receptors act as ligand-dependent transcription factors. Transcriptional effects of glucocorticoids have often been deduced from bulk mRNA measurements or spatially informed individual gene expression. However, only sparse data exists allowing insights on glucocorticoid-driven gene transcription at the cell type level. Here, we used publicly available single-cell RNA sequencing data to assess the cell-type specificity of GR and MR signaling in the adult mouse hippocampus. The data confirmed that Nr3c1 and Nr3c2 expression differs across neuronal and non-neuronal cell populations. We analyzed co-expression with sex hormones receptors, transcriptional coregulators, and receptors for neurotransmitters and neuropeptides. Our results provide insights in the cellular basis of previous bulk mRNA results and allow the formulation of more defined hypotheses on the effects of glucocorticoids on hippocampal function. Show less
Steroid receptors are pleiotropic transcription factors that coordinate adaptation to different physiological states. An important target organ is the brain, but even though their effects are well... Show moreSteroid receptors are pleiotropic transcription factors that coordinate adaptation to different physiological states. An important target organ is the brain, but even though their effects are well studied in specific regions, brain-wide steroid receptor targets and mediators remain largely unknown due to the complexity of the brain. Here, we tested the idea that novel aspects of steroid action can be identified through spatial correlation of steroid receptors with genome-wide mRNA expression across different regions in the mouse brain. First, we observed significant coexpression of six nuclear receptors (NRs) [androgen receptor (Ar), estrogen receptor alpha (Esr1), estrogen receptor beta (Esr2), glucocorticoid receptor (Gr), mineralocorticoid receptor (Mr), and progesterone receptor (Pgr)] with sets of steroid target genes that were identified in single brain regions. These coexpression relationships were also present in distinct other brain regions, suggestive of as yet unidentified coordinate regulation of brain regions by, for example, glucocorticoids and estrogens. Second, coexpression of a set of 62 known NR coregulators and the six steroid receptors in 12 non-overlapping mouse brain regions revealed selective downstream pathways, such as Pak6 as a mediator for the effects of Ar and Gr on dopaminergic transmission. Third, Magel2 and Irs4 were identified and validated as strongly responsive targets to the estrogen diethylstilbestrol in the mouse hypothalamus. The brain- and genome-wide correlations of mRNA expression levels of six steroid receptors that we provide constitute a rich resource for further predictions and understanding of brain modulation by steroid hormones. Show less