A fundamental process in the development and progression of heart failure is fibrotic remodeling, characterized by excessive deposition of extracellular matrix proteins in response to injury.... Show moreA fundamental process in the development and progression of heart failure is fibrotic remodeling, characterized by excessive deposition of extracellular matrix proteins in response to injury. Currently, therapies that effectively target and reverse cardiac fibrosis are lacking, warranting novel therapeutic strategies and reliable methods to study their effect. Using a gelatin methacryloyl hydrogel, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and human fetal cardiac fibroblasts (hfCF), we developed a multi-cellular mechanically tunable 3D in vitro model of human cardiac fibrosis. This model was used to evaluate the effects of a promising anti-fibrotic drug-pirfenidone-and yields proof-of-concept of the drug testing potential of this platform. Our study demonstrates that pirfenidone has anti-fibrotic effects but does not reverse all TGF-beta 1 induced pro-fibrotic changes, which provides new insights into its mechanism of action. Show less
Synthetic peptides are a critical requirement for the development and application of targeted mass spectrometry (MS)-based assays for the quantitation of proteins from biological matrices.... Show moreSynthetic peptides are a critical requirement for the development and application of targeted mass spectrometry (MS)-based assays for the quantitation of proteins from biological matrices. Transporting synthetic peptides on dry ice from one laboratory to another is costly and often difficult because of country-specific import and export regulations. Therefore, in this study, we assessed the impact of leaving a lyophilized mixture consisting of 125 peptides at room temperature for up to 20 days, and we assessed the effect on the quantitative performance of multiple reaction monitoring-MS (MRM-MS) assays. The findings suggest that there are no significant differences in the MRM-MS results for the time points assessed in this study (up to 20 days). All the calibration curves and quality control (QC) samples met the acceptance criteria for precision and accuracy (raw data are available via the public MS data repository PanoramaWeb, identifier: /MRM Proteomics/2020_BAK125_RT). The number of endogenous proteins quantifiable across five plasma samples was consistently between 87 and 99 out of 125 for all time points. Moreover, the coefficients of variation (CVs) calculated for the majority of peptide concentrations across all samples and time points were <5%. In addition, a lyophilized peptide mixture was transported from Canada to Iceland without dry ice. The results showed that there was no significant difference in the quantitative performance, with the determined concentrations of most proteins in the samples falling within 30% between the analyses performed on the same three plasma samples in Iceland and those in Canada. Overall, a comparison of the results obtained in Canada and in Iceland indicated that the peptides were stable under the conditions tested and also indicated that shipping lyophilized peptide mixtures without dry ice, but in the presence of sufficient desiccant material, could be a feasible option in cases where transport difficulties may arise or dry-ice sublimation may occur. Show less
Precise multiplexed quantification of proteins in biological samples can be achieved by targeted proteomics using multiple or parallel reaction monitoring (MRM/PRM). Combined with internal... Show morePrecise multiplexed quantification of proteins in biological samples can be achieved by targeted proteomics using multiple or parallel reaction monitoring (MRM/PRM). Combined with internal standards, the method achieves very good repeatability and reproducibility enabling excellent protein quantification and allowing longitudinal and cohort studies. A laborious part of performing such experiments lies in the preparation steps dedicated to the development and validation of individual protein assays. Several public repositories host information on targeted proteomics assays, including NCI's Clinical Proteomic Tumor Analysis Consortium assay portals, PeptideAtlas SRM Experiment Library, SRMAtlas, PanoramaWeb, and PeptideTracker, with all offering varying levels of details. We introduced MRMAssayDB in 2018 as an integrated resource for targeted proteomics assays. The Web-based application maps and links the assays from the repositories, includes comprehensive up-to-date protein and sequence annotations, and provides multiple visualization options on the peptide and protein level. We have extended MRMAssayDB with more assays and extensive annotations. Currently it contains >828 000 assays covering >51 000 proteins from 94 organisms, of which >17 000 proteins are present in >2400 biological pathways, and >48 000 mapping to >21 000 Gene Ontology terms. This is an increase of about four times the number of assays since introduction. We have expanded annotations of interaction, biological pathways, and disease associations. A newly added visualization module for coupled molecular structural annotation browsing allows the user to interactively examine peptide sequence and any known PTMs and disease mutations, and map all to available protein 3D structures. Because of its integrative approach, MRMAssayDB enables a holistic view of suitable proteotypic peptides and commonly used transitions in empirical data. Availability: http://mrmassaydb.proteincentre.com. Show less
Dittrich, J.; Adam, M.; Maas, H.; Hecht, M.; Reinicke, M.; Ruhaak, L.R.; ... ; Ceglarek, U. 2018