The problem of dynamic prediction with time-dependent covariates, given by biomarkers, repeatedly measured over time, has received much attention over the last decades. Two contrasting approaches... Show moreThe problem of dynamic prediction with time-dependent covariates, given by biomarkers, repeatedly measured over time, has received much attention over the last decades. Two contrasting approaches have become in widespread use. The first is joint modeling, which attempts to jointly model the longitudinal markers and the event time. The second is landmarking, a more pragmatic approach that avoids modeling the marker process. Landmarking has been shown to be less efficient than correctly specified joint models in simulation studies, when data are generated from the joint model. When the mean model is misspecified, however, simulation has shown that joint models may be inferior to landmarking. The objective of this article is to develop methods that improve the predictive accuracy of landmarking, while retaining its relative simplicity and robustness. We start by fitting a working longitudinal model for the biomarker, including a temporal correlation structure. Based on that model, we derive a predictable time-dependent process representing the expected value of the biomarker after the landmark time, and we fit a time-dependent Cox model based on the predictable time-dependent covariate. Dynamic predictions based on this approach for new patients can be obtained by first deriving the expected values of the biomarker, given the measured values before the landmark time point, and then calculating the predicted probabilities based on the time-dependent Cox model. We illustrate the approach in predicting overall survival in liver cirrhosis patients based on prothrombin index. Show less
Background & aims: Acute-on-chronic liver failure (ACLF) is usually associated with a precipitating event and results in the failure of other organ systems and high short-term mortality.... Show moreBackground & aims: Acute-on-chronic liver failure (ACLF) is usually associated with a precipitating event and results in the failure of other organ systems and high short-term mortality. Current prediction models fail to adequately estimate prognosis and need for liver transplantation (LT) in ACLF. This study develops and validates a dynamic prediction model for patients with ACLF that uses both longitudinal and survival data.Methods: Adult patients on the UNOS waitlist for LT between 11.01.2016-31.12.2019 were included. Repeated model for end-stage liver disease-sodium (MELD-Na) measurements were jointly modelled with Cox survival analysis to develop the ACLF joint model (ACLF-JM). Model validation was carried out using separate testing data with area under curve (AUC) and prediction errors. An online ACLF-JM tool was created for clinical application.Results: In total, 30,533 patients were included. ACLF grade 1 to 3 was present in 16.4%, 10.4% and 6.2% of patients, respectively. The ACLF-JM predicted survival significantly (p <0.001) better than the MELD-Na score, both at baseline and during follow-up. For 28- and 90-day predictions, ACLF-JM AUCs ranged between 0.840-0.871 and 0.833-875, respectively. Compared to MELD-Na, AUCs and prediction errors were improved by 23.1%-62.0% and 5%-37.6% respectively. Also, the ACLF-JM could have prioritized patients with relatively low MELD-Na scores but with a 4-fold higher rate of waiting list mortality.Conclusions: The ACLF-JM dynamically predicts outcome based on current and past disease severity. Prediction performance is excellent over time, even in patients with ACLF-3. Therefore, the ACLF-JM could be used as a clinical tool in the evaluation of prognosis and treatment in patients with ACLF.Lay summary: Acute-on-chronic liver failure (ACLF) progresses rapidly and often leads to death. Liver transplantation is used as a treatment and the sickest patients are treated first. In this study, we develop a model that predicts survival in ACLF and we show that the newly developed model performs better than the currently used model for ranking patients on the liver transplant waiting list. (C) 2021 The Author(s). Published by Elsevier B.V. Show less