Introduction Antimicrobial drugs are known to have effects on the human gut microbiota. We studied the long-term temporal relationship between several antimicrobial drug groups and the composition... Show moreIntroduction Antimicrobial drugs are known to have effects on the human gut microbiota. We studied the long-term temporal relationship between several antimicrobial drug groups and the composition of the human gut microbiota determined in feces samples.Methods Feces samples were obtained from a community-dwelling cohort of middle-aged and elderly individuals (Rotterdam Study). Bacterial DNA was isolated and sequenced using V3/V4 16 S ribosomal RNA sequencing (Illumina MiSeq). The time between the last prescription of several antimicrobial drug groups and the day of sampling was categorized into 0-12, 12-24, 24-48 and >48 months. The effects of the antimicrobial drug groups on the Shannon alpha-diversity (diversity), the Bray-Curtis beta-diversity (community structure), the Firmicutes/Bacteroidetes (F/B) ratio and individual genera were determined.Results We studied the gut microbiota of 1413 individuals (57.5% female, median age 62.6 years). The alpha-diversity was significantly lower up to 4 years after prescriptions of macrolides and lincosamides. It was also lower in the first year after the use of beta-lactams. The community structure (beta-diversity) of the microbiota was significantly different up to 4 years for macrolides and lincosamides, the first year for beta-lactams and at least the first year for quinolones. For the F/B ratio, drugs with a high anaerobic activity shifted the ratio toward Firmicutes in the first year whereas other antimicrobial drugs shifted the ratio toward Bacteroidetes.Conclusion Use of antimicrobial drugs is associated with a shift in the composition of the gut microbiota.These effects differ in strength and duration, depending on the antimicrobial drug group used. These findings should be considered when prescribing antimicrobial drugs. Show less