A spectrum of Pi Sco showing numerous atomic lines and 70 absorption features from the Lyman and Werner transitions of interstellar H2 in rotational level J from zero to five is presented. Their... Show moreA spectrum of Pi Sco showing numerous atomic lines and 70 absorption features from the Lyman and Werner transitions of interstellar H2 in rotational level J from zero to five is presented. Their shapes of the composite column density profiles are very nearly Gaussian with a one-dimensional rms velocity dispersion of 3 km/s. The behavior of shifts in the inferred N(H2) as a function of velocity are consistent with the overall profiles being composed of nearly symmetrical, tightly paced assemblies of about seven unresolved components. The relative overall column densities in the higher J levels of H2 are consistent with a model where these states are populated by optical pumping through the Lyman and Werner transitions, powered by UV radiation from nearby stars. The slight narrowing of the high-J profiles may be due to small clumps of H2 at radial velocities some 5-8 km/s from the core of the profile are exposed to a pumping flux about 10 times lower than that for the material near the profile's center. Show less
Recent high-resolution observations of interstellar absorption lines of CH and CN toward Zeta Oph obtained by Crane et al. (1986), and Palazzi et al. (1988), exhibit line widths that suggest... Show moreRecent high-resolution observations of interstellar absorption lines of CH and CN toward Zeta Oph obtained by Crane et al. (1986), and Palazzi et al. (1988), exhibit line widths that suggest thermal line broadening at high temperature, T about 1200 K. Observations of CO line emission at 2.6 mm toward Zeta Oph (Langer et al.,1987) indicate that the molecular gas resides in four distinct velocity components that span less than 3 km/s in Doppler velocity. Simulated CH and CN absorption line profiles are compared for high-temperature (T = 1200 K) thermal broadening and for a combination of low-temperature (T = 50 K) thermal plus turbulent broadening. It is shown that the two broadening models reproduce existing observations comparably well and are virtually indistinguishable at a lambda/Delta-lambda ratio of about 100,000. The observed differences in the CH and CN line widths may reflect slightly different distributions of those molecules along the line of sight. The simulations use very recent, improved laboratory spectroscopic data on CH (Bernath). Some related consequences of such unresolved velocity structure on the ultraviolet absorption lines of CO are examined. Indirect diagnostics of temperature in the Zeta Oph cloud favor low-temperature thermal plus turbulent broadening, and the implied rate of dissipation of turbulence is in harmony with estimates of the global input of mechanical energy into to interstellar medium. Show less