BackgroundThe prognosis of malignant primary high-grade brain tumors, predominantly glioblastomas, is poor despite intensive multimodality treatment options. In more than 50% of patients with... Show moreBackgroundThe prognosis of malignant primary high-grade brain tumors, predominantly glioblastomas, is poor despite intensive multimodality treatment options. In more than 50% of patients with glioblastomas, potentially targetable mutations are present, including rearrangements, altered splicing, and/or focal amplifications of epidermal growth factor receptor (EGFR) by signaling through the RAF/RAS pathway. We studied whether treatment with the clinically available anti-EGFR monoclonal antibody panitumumab provides clinical benefit for patients with RAF/RAS-wild-type (wt) glioblastomas in the Drug Rediscovery Protocol (DRUP).MethodsPatients with progression of treatment refractory RAF/RASwt glioblastoma were included for treatment with panitumumab in DRUP when measurable according to RANO criteria. The primary endpoints of this study are clinical benefit (CB: defined as confirmed objective response [OR] or stable disease [SD] ≥ 16 weeks) and safety. Patients were enrolled using a Simon-like 2-stage model, with 8 patients in stage 1 and up to 24 patients in stage 2 if at least 1 in 8 patients had CB in stage 1.ResultsBetween 03-2018 and 02-2022, 24 evaluable patients were treated. CB was observed in 5 patients (21%), including 2 patients with partial response (8.3%) and 3 patients with SD ≥ 16 weeks (12.5%). After median follow-up of 15 months, median progression-free survival and overall survival were 1.7 months (95% CI 1.6-2.1 months) and 4.5 months (95% CI 2.9-8.6 months), respectively. No unexpected toxicities were observed.ConclusionsPanitumumab treatment provides limited CB in patients with recurrent RAF/RASwt glioblastoma precluding further development of this therapeutic strategy. Show less
Introduction: The coronavirus disease 2019 (COVID-19) pandemic has led to the death of almost 7 million people, however, with a cumulative incidence of 0.76 billion, most people survive COVID-19.... Show moreIntroduction: The coronavirus disease 2019 (COVID-19) pandemic has led to the death of almost 7 million people, however, with a cumulative incidence of 0.76 billion, most people survive COVID-19. Several studies indicate that the acute phase of COVID-19 may be followed by persistent symptoms including fatigue, dyspnea, headache, musculoskeletal symptoms, and pulmonary functional-and radiological abnormalities. However, the impact of COVID-19 on long-term health outcomes remains to be elucidated. Aims: The Precision Medicine for more Oxygen (P4O2) consortium COVID-19 extension aims to identify long COVID patients that are at risk for developing chronic lung disease and furthermore, to identify treatable traits and innovative personalized therapeutic strategies for prevention and treatment. This study aims to describe the study design and first results of the P4O2 COVID-19 cohort. Methods: The P4O2 COVID-19 study is a prospective multicenter cohort study that includes nested personalized counseling intervention trial. Patients, aged 40-65 years, were recruited from outpatient post-COVID clinics from five hospitals in The Netherlands. During study visits at 3-6 and 12-18 months post-COVID-19, data from medical records, pulmonary function tests, chest computed tomography scans and biological samples were collected and questionnaires were administered. Furthermore, exposome data was collected at the patient's home and state-of-the-art imaging techniques as well as multi-omics analyses will be performed on collected data. Results: 95 long COVID patients were enrolled between May 2021 and September 2022. The current study showed persistence of clinical symptoms and signs of pulmonary function test/radiological abnormalities in post-COVID patients at 3-6 months post-COVID. The most commonly reported symptoms included respiratory symptoms (78.9%), neurological symptoms (68.4%) and fatigue (67.4%). Female sex and infection with the Delta, compared with the Beta, SARS-CoV-2 variant were significantly associated with more persisting symptom categories. Conclusions: The P4O2 COVID-19 study contributes to our understanding of the long-term health impacts of COVID-19. Furthermore, P4O2 COVID-19 can lead to the identification of different phenotypes of long COVID patients, for example those that are at risk for developing chronic lung disease. Understanding the mechanisms behind the different phenotypes and identifying these patients at an early stage can help to develop and optimize prevention and treatment strategies. Show less
Bernsen, E.C.; Hanff, L.M.; Haveman, L.M.; Tops, B.B.J.; Lee, M. van der; Swen, J.J.; ... ; Diekstra, M.H.M. 2022
Paediatric oncology patients who develop severe chemotherapy-induced toxicity that requires dose reduction, delay or termination of treatment are at risk of decreased treatment efficacy. Previous... Show morePaediatric oncology patients who develop severe chemotherapy-induced toxicity that requires dose reduction, delay or termination of treatment are at risk of decreased treatment efficacy. Previous research has provided evidence that genetic variants in TPMT, NUDT15, UGT1A1 and DPYD are associated with toxicity of anticancer drugs. This led to pharmacogenetic guidelines that are integrated into clinical practice in paediatric oncology. Recently, novel genetic variants have been associated with a higher risk of developing chemotherapy-induced toxicity. In this case series, we selected 21 novel variants and genotyped these in nine patients with excessive chemotherapy-induced toxicity using whole exome sequencing or micro-array data. We observed that six out of nine patients carried at least one variant that, according to recent studies, potentially increased the risk of developing methotrexate- or vincristine-induced toxicity. As patient-derived genetic data are becoming widely accessible in paediatric oncology, these variants could potentially enter clinical practice to mitigate chemotherapy-induced toxicity. Show less
Kranenburg, F.J.; Arbous, S.M.; Caram-Deelder, C.; Putter, H.; Cessie, S. le; Bom, J.G. van der 2022
Background To develop a model for the prediction of the (most likely) effect of red blood cell (RBC) transfusion on subsequent organ functioning in nonbleeding critically ill patients with... Show moreBackground To develop a model for the prediction of the (most likely) effect of red blood cell (RBC) transfusion on subsequent organ functioning in nonbleeding critically ill patients with hemoglobin concentrations between 6 and 9 g/dL. Study Design and Methods We conducted a retrospective cohort study using electronic health care data of nonbleeding patients admitted between November 2004 and May 2016 at the intensive care unit (ICU) of the Leiden University Medical Center, The Netherlands. We analyzed the associations between transfusion (yes/no) and next-day SOFA scores (Sequential Organ Failure Assessment-as a measure for organ functioning) for all observed combinations of hemoglobin values (between 6 and 9 g/dL) and concurrent clinical variables. Results Data of 6425 ICU admission of 5756 critically ill patients with 28,702 hemoglobin values between 6 and 9 g/dL (transfusion decision moments) of which 22.1% were followed by a transfusion were analyzed. The adjusted average difference between the next-day SOFA score of transfused versus not-transfused patients was 0.08 (95% confidence interval [CI] -0.03 to 0.18). At singular transfusion decision moments, the score predicted a beneficial effect of transfusion on next-day SOFA score for some subgroups and medical conditions and a harmful effect in other occasions. Conclusions Among these critically ill patients with hemoglobin concentrations between 6 and 9 g/dL the population average effect of transfusion on the next SOFA score was negligible. Further, our results support caution in clinical decision-making regarding transfusion of critical ill, nonbleeding ICU patients. Show less
Wouden, C.H. van der; Marck, H.; Guchelaar, H.J.; Swen, J.J.; Hout, W.B. van den 2022
Aim: Prospective studies support the clinical impact of pharmacogenomics (PGx)-guided prescribing to reduce severe and potentially fatal adverse effects. Drug-gene interactions (DGIs) preventing... Show moreAim: Prospective studies support the clinical impact of pharmacogenomics (PGx)-guided prescribing to reduce severe and potentially fatal adverse effects. Drug-gene interactions (DGIs) preventing potential drug-related deaths have been categorized as "essential" by the Dutch Pharmacogenetics Working Group (DPWG). The collective clinical impact and cost-effectiveness of this sub-set is yet undetermined. Therefore, we aim to assess impact and cost-effectiveness of "essential" PGx tests for prevention of gene-drug-related deaths, when adopted nation-wide. Methods: We used a decision-analytic model to quantify the number and cost per gene-drug-related death prevented, from a 1-year Dutch healthcare perspective. The modelled intervention is a single gene PGx-test for CYP2C19, DPYD, TPMT or UGT1A1 to guide prescribing based on the DPWG recommendations among patients in the Netherlands initiating interacting drugs (clopidogrel, capecitabine, systemic fluorouracil, azathioprine, mercaptopurine, tioguanine or irinotecan). Results: For 148,128 patients initiating one of seven drugs in a given year, costs for PGx-testing, interpretation, and drugs would increase by euro21.4 million. Of these drug initiators, 35,762 (24.1%) would require an alternative dose or drug. PGx-guided prescribing would relatively reduce gene-drug related mortality by 10.6% (range per DGI: 8.1-14.5%) and prevent 419 (0.3% of initiators) deaths a year. Cost-effectiveness is estimated at euro51,000 per prevented gene-drug-related death (range per DGI: euro-752,000-euro633,000). Conclusion: Adoption of PGx-guided prescribing for "essential" DGIs potentially saves the lives of 0.3% of drug initiators, at reasonable costs. Show less
Pharmacogenomics (PGx) relates to the study of genetic factors determining variability in drug response. Implementing PGx testing in paediatric patients can enhance drug safety, helping to improve... Show morePharmacogenomics (PGx) relates to the study of genetic factors determining variability in drug response. Implementing PGx testing in paediatric patients can enhance drug safety, helping to improve drug efficacy or reduce the risk of toxicity. Despite its clinical relevance, the implementation of PGx testing in paediatric practice to date has been variable and limited. As with most paediatric pharmacological studies, there are well-recognised barriers to obtaining high-quality PGx evidence, particularly when patient numbers may be small, and off-label or unlicensed prescribing remains widespread. Furthermore, trials enrolling small numbers of children can rarely, in isolation, provide sufficient PGx evidence to change clinical practice, so extrapolation from larger PGx studies in adult patients, where scientifically sound, is essential. This review paper discusses the relevance of PGx to paediatrics and considers implementation strategies from a child health perspective. Examples are provided from Canada, the Netherlands and the UK, with consideration of the different healthcare systems and their distinct approaches to implementation, followed by future recommendations based on these cumulative experiences. Improving the evidence base demonstrating the clinical utility and cost-effectiveness of paediatric PGx testing will be critical to drive implementation forwards. International, interdisciplinary collaborations will enhance paediatric data collation, interpretation and evidence curation, while also supporting dedicated paediatric PGx educational initiatives. PGx consortia and paediatric clinical research networks will continue to play a central role in the streamlined development of effective PGx implementation strategies to help optimise paediatric pharmacotherapy. Show less
Introduction: Guidelines of management of dyslipidemias and prevention of cardiovascular disease (CVD) are based on firm scientific evidence obtained by randomized controlled trials (RCTs). However... Show moreIntroduction: Guidelines of management of dyslipidemias and prevention of cardiovascular disease (CVD) are based on firm scientific evidence obtained by randomized controlled trials (RCTs). However, the role of elevated low-density lipoprotein-cholesterol (LDL-C)as a risk factor of CVD and therapies to lower LDL-C are frequently disputed by colleagues who disagree with the conclusions of the RCTs published. This review focuses on this dispute, and evaluates the current approach of management of dyslipidemias and CVD prevention to find modern alternatives for more precise diagnosis and therapy of dyslipidemic patients.Areas covered: Recent interest in lipoprotein(a) (Lp(a)) and remnants lipoproteins and in therapies that do not influence LDL-C levels primarily, such as anti-inflammatory drugs and icosapent ethyl, has revitalized our concern to optimize the care for patients with increased CVD risk without focusing simply on reduction of LDL-C by therapy with statins, ezitemibe, and proprotein convertase subtilisinkexin type 9 (PCSK9) inhibitors.Expert opinion: The limited characterization of study populations by measurement of total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C) and triglycerides (TG) followed by measurement or calculation of LDL-C should be extended by a more integral approach in order to realize precision diagnostics and precision medicine, for the sake of personalized patient care. Show less
Following the neutral results of the dal-OUTCOMES trial, a genome-wide study identified the rs1967309 variant in the adenylate cyclase type 9 (ADCY9) gene on chromosome 16 as being associated with... Show moreFollowing the neutral results of the dal-OUTCOMES trial, a genome-wide study identified the rs1967309 variant in the adenylate cyclase type 9 (ADCY9) gene on chromosome 16 as being associated with the risk of future cardiovascular events only in subjects taking dalcetrapib, a CETP (cholesterol ester transfer protein) modulator. Homozygotes for the minor A allele (AA) were protected from recurrent cardiovascular events when treated with dalcetrapib, while homozygotes for the major G allele (GG) had increased risk. Here, we present the current state of knowledge regarding the impact of rs1967309 in ADCY9 on clinical observations and biomarkers in dalcetrapib trials and the effects of mouse ADCY9 gene inactivation on cardiovascular physiology. Finally, we present our current model of the interaction between dalcetrapib and ADCY9 gene variants in the arterial wall macrophage, based on the intracellular role of CETP in the transfer of complex lipids from endoplasmic reticulum membranes to lipid droplets. Briefly, the concept is that dalcetrapib would inhibit CETP-mediated transfer of cholesteryl esters, resulting in a progressive inhibition of cholesteryl ester synthesis and free cholesterol accumulation in the endoplasmic reticulum. Reduced ADCY9 activity, by paradoxically leading to higher cyclic AMP levels and in turn increased cellular cholesterol efflux, could impart cardiovascular protection in rs1967309 AA patients. The ongoing dal-GenE trial recruited 6145 patients with the protective AA genotype and will provide a definitive answer to whether dalcetrapib will be protective in this population. Show less
Heuvel, L. van den; Dorsey, R.R.; Prainsack, B.; Post, B.; Stiggelbout, A.M.; Meinders, M.J.; Bloem, B.R. 2020
Clinical decision making for Parkinson's disease patients is supported by a combination of three distinct information resources: best available scientific evidence, professional expertise, and the... Show moreClinical decision making for Parkinson's disease patients is supported by a combination of three distinct information resources: best available scientific evidence, professional expertise, and the personal needs and preferences of patients. All three sources have clear value but also share several important limitations, mainly regarding subjectivity, generalizability and variability. For example, current scientific evidence, especially from controlled clinical trials, is often based on selected study populations, making it difficult to translate the outcome to the care for individual patients in everyday clinical practice. Big data, including data from real-life unselected Parkinson populations, can help to bridge this information gap. Fine-grained patient profiles created from big data have the potential to aid in identifying therapeutic approaches that will be most effective given each patient's individual characteristics, which is particularly important for a disorder characterized by such tremendous interindividual variability as Parkinson's disease. In this viewpoint, we argue that big data approaches should be acknowledged and harnessed, not to replace existing information resources, but rather as a fourth and complimentary source of information in clinical decision making, helping to represent the full complexity of individual patients. We introduce the `quadruple decision making' model and illustrate its mode of action by showing how this can be used to pursue precision medicine for persons living with Parkinson's disease. Show less