Background: Adoptive transfer of genetically engineered T cells expressing antigen-specific T-cell receptors (TCRs) is an appealing therapeutic approach for Epstein-Barr virus (EBV)-associated... Show moreBackground: Adoptive transfer of genetically engineered T cells expressing antigen-specific T-cell receptors (TCRs) is an appealing therapeutic approach for Epstein-Barr virus (EBV)-associated malignancies of latency type II/III that express EBV antigens (LMP1/2). Patients who are HLA-A*01:01 positive could benefit from such products, since no T cells recognizing any EBV-derived peptide in this common HLA allele have been found thus far. Methods: HLA-A*01:01-restricted EBV-LMP2-specific T cells were isolated using peptide major histocompatibility complex (pMHC) tetramers. Functionality was assessed by production of interferon gamma (IFN-gamma) and cytotoxicity when stimulated with EBV-LMP2-expressing cell lines. Functionality of primary T cells transduced with HLA-A*01:01-restricted EBV-LMP2-specific TCRs was optimized by knocking out the endogenous TCRs of primary T cells ( increment TCR) using CRISPR-Cas9 technology. Results: EBV-LMP2-specific T cells were successfully isolated and their TCRs were characterized. TCR gene transfer in primary T cells resulted in specific pMHC tetramer binding and reactivity against EBV-LMP2-expressing cell lines. The mean fluorescence intensity of pMHC-tetramer binding was increased 1.5-2 fold when the endogenous TCRs of CD8(+) T cells was knocked out. CD8(+/ increment TCR) T cells modified to express EBV-LMP2-specific TCRs showed IFN-gamma secretion and cytotoxicity toward EBV-LMP2-expressing malignant cell lines. Conclusions: We isolated the first functional HLA-A*01:01-restricted EBV-LMP2-specific T-cell populations and TCRs, which can potentially be used in future TCR gene therapy to treat EBV-associated latency type II/III malignancies.Here we identify the first HLA-A*01:01-restricted Epstein-Barr virus Latent Membrane Protein 2 (EBV-LMP2)-specific T-cell population and show that these T-cell populations and T cells modified to express the LMP2-specific T-cell receptor showed IFN-gamma secretion and cytotoxicity toward EBV-LMP2-expressing malignant cell lines. Show less
Sedek, L.; Flores-Montero, J.; Sluijs, A. van der; Kulis, J.; Marvelde, J. te; Philippe, J.; ... ; Orfao, A. 2022
Simple Summary Objective: interpretation of flow cytometry may be hampered by a lack of standardized sample preparation procedures. The EuroFlow consortium conducted a series of experiments to... Show moreSimple Summary Objective: interpretation of flow cytometry may be hampered by a lack of standardized sample preparation procedures. The EuroFlow consortium conducted a series of experiments to determine the potential impact of different pre-analytical and analytical factors on the variability of results in terms of relative cell populations distribution and marker expression levels. The experiments were performed on healthy donors and patients with different hematological malignancies (e.g., acute leukemia, lymphoma, multiple myeloma, and myelodysplastic syndrome) to mimic real-world clinical settings. Overall, the results showed that sample storage conditions, anticoagulant use, and sample processing protocol might need to be tailored for sample and cell type(s), as well as to the specific markers evaluated. However, defining of well-balanced boundaries for storage time to 24 h, staining-acquisition delay to 3 h, and choosing a washing buffer of pH within the range of 7.2 to 7.8 would be a valid recommendation for most applications and circumstances described herein. Objective: interpretation of FC results may still be hampered by limited technical standardization. The EuroFlow consortium conducted a series of experiments to determine the impact of different variables on the relative distribution and the median fluorescence intensity (MFI) of markers stained on different cell populations, from both healthy donors and patients' samples with distinct hematological malignancies. The use of different anticoagulants; the time interval between sample collection, preparation, and acquisition; pH of washing buffers; and the use of cell surface membrane-only (SM) vs. cell surface plus intracytoplasmic (SM+CY) staining protocols, were evaluated. Our results showed that only monocytes were represented at higher percentages in EDTA- vs. heparin-anticoagulated samples. Application of SM or SM+CY protocols resulted in slight differences in the percentage of neutrophils and debris determined only with particular antibody combinations. In turn, storage of samples for 24 h at RT was associated with greater percentage of debris and cell doublets when the plasma cell disorder panel was used. Furthermore, 24 h storage of stained cells at RT was selectively detrimental for MFI levels of CD19 and CD45 on mature B- and T-cells (but not on leukemic blasts, clonal B- and plasma cells, neutrophils, and NK cells). The obtained results showed that the variables evaluated might need to be tailored for sample and cell type(s) as well as to the specific markers compared; however, defining of well-balanced boundaries for storage time, staining-to-acquisition delay, and pH of washing buffer would be a valid recommendation for most applications and circumstances described herein. Show less
Histiocytic disorders are a spectrum of rare diseases characterised by the accumulation of macrophage-, dendritic cell-, or monocyte-differentiated cells in various tissues and organs. The... Show moreHistiocytic disorders are a spectrum of rare diseases characterised by the accumulation of macrophage-, dendritic cell-, or monocyte-differentiated cells in various tissues and organs. The discovery of recurrent genetic alterations in many of these histiocytoses has led to their recognition as clonal neoplastic diseases. Moreover, the identification of the same somatic mutation in histiocytic lesions and peripheral blood and/or bone marrow cells from histiocytosis patients has provided evidence for systemic histiocytic neoplasms to originate from haematopoietic stem/progenitor cells (HSPCs). Here, we investigated associations between histiocytic disorders and additional haematological malignancies bearing the same genetic alteration(s) using the nationwide Dutch Pathology Registry. By searching on pathologist-assigned diagnostic terms for the various histiocytic disorders, we identified 4602 patients with a putative histopathological diagnosis of a histiocytic disorder between 1971 and 2019. Histiocytosis-affected tissue samples of 187 patients had been analysed for genetic alterations as part of routine molecular diagnostics, including from nine patients with an additional haematological malignancy. Among these patients, we discovered three cases with different histiocytic neoplasms and additional haematological malignancies bearing identical oncogenic mutations, including one patient with concomitantKRASp.A59E mutated histiocytic sarcoma and chronic myelomonocytic leukaemia (CMML), one patient with synchronousNRASp.G12V mutated indeterminate cell histiocytosis and CMML, and one patient with subsequentNRASp.Q61R mutated Erdheim-Chester disease and acute myeloid leukaemia. These cases support the existence of a common haematopoietic cell-of-origin in at least a proportion of patients with a histiocytic neoplasm and additional haematological malignancy. In addition, they suggest that driver mutations in particular genes (e.g.N/KRAS) may specifically predispose to the development of an additional clonally related haematological malignancy or secondary histiocytic neoplasm. Finally, the putative existence of derailed multipotent HSPCs in these patients emphasises the importance of adequate (bone marrow) staging, molecular analysis and long-term follow-up of all histiocytosis patients. Show less
N-linked glycans play an important role in immunity. Although the role of N-linked glycans in the Fragment crystallizable (Fc) region of immunoglobulins has been thoroughly described, the function... Show moreN-linked glycans play an important role in immunity. Although the role of N-linked glycans in the Fragment crystallizable (Fc) region of immunoglobulins has been thoroughly described, the function of N-linked glycans present in Ig-variable domains is only just being appreciated. Most of the N-linked glycans harbored by immunoglobulin variable domain are of the complex biantennary type and are found as a result of the presence of N-linked glycosylation that most often have been introduced by somatic hypermutation. Furthermore, these glycans are ubiquitously present on autoantibodies observed in some autoimmune diseases as well as certain B-cell lymphomas. For example, variable domain glycans are abundantly found by anti-citrullinated protein antibodies (ACPA) in rheumatoid arthritis (RA) as well as by the B-cell receptors of follicular lymphoma (FL). In FL, variable domain glycans are postulated to convey a selective advantage through interaction with lectins and/or microbiota, whereas the contribution of variable domain glycans on autoantibodies is not known. To aid the understanding how these seemingly comparable phenomena contribute to a variety of deranged B-responses in such different diseases this study summarizes the characteristics of ACPA and other auto-antibodies with FL and healthy donor immunoglobulins, to identify the commonalities and differences between variable domain glycans in autoimmune and malignant settings. Our finding indicate intriguing differences in variable domain glycan distribution, frequency and glycan composition in different conditions. These findings underline that variable domain glycosylation is a heterogeneous process that may lead to a number of pathogenic outcomes. Based on the current body of knowledge, we postulate three disease groups with distinct variable domain glycosylation patterns, which might correspond with distinct underlying pathogenic processes. Show less