PurposeDielectric resonator antenna (DRAs) are compact structures that exhibit low coupling between adjacent elements and therefore can be used as MRI transmit arrays. In this study, we use very... Show morePurposeDielectric resonator antenna (DRAs) are compact structures that exhibit low coupling between adjacent elements and therefore can be used as MRI transmit arrays. In this study, we use very high permittivity materials to construct modular flexible transceive arrays of a variable numbers of elements for operation at 7T.MethodsDRAs were constructed using rectangular blocks of ceramic (lead zirconate titanate, epsilon(r)=1070) with the transverse electric (TE)(01) mode tuned to 298 MHz. Finite-difference time-domain simulations were used to determine the B-1 and specific absorption rate distributions. B1+ maps were acquired in a phantom to validate the simulations. Performance was compared to an equally sized surface coil. In vivo images were acquired of the wrist (four elements), ankle (seven elements), and calf muscle (16 elements).ResultsCoupling between DRAs spaced 5mm apart on a phantom was -18.2 dB compared to -9.1 dB for equivalently spaced surface coils. DRAs showed a higher B1+ intensity close to the antenna but a lower penetration depth compared to the surface coil.ConclusionDRAs show very low coupling compared to equally sized surface coils and can be used in transceive arrays without requiring decoupling networks. The penetration depth of the current DRA geometry means they are ideally suited to imaging of extremities. Magn Reson Med 79:1781-1788, 2018. (c) 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. Show less