The gut microbiota has emerged as an important modulator of cardiovascular and renal homeostasis. The composition of gut microbiota in patients suffering from chronic kidney disease (CKD) is... Show moreThe gut microbiota has emerged as an important modulator of cardiovascular and renal homeostasis. The composition of gut microbiota in patients suffering from chronic kidney disease (CKD) is altered, where a lower number of bacteria producing short chain fatty acids (SCFAs) is observed. It is known that SCFAs, such as butyrate and acetate, have protective effects against cardiovascular diseases and CKD but their mechanisms of action remain largely unexplored. In the present study, we investigated the effect of butyrate and acetate on glomerular endothelial cells. Human glomerular microvascular endothelial cells (hgMVECs) were cultured and exposed to butyrate and acetate and their effects on cellular proliferation, mitochondrial mass and metabolism, as well as monolayer integrity were studied. While acetate did not show any effects on hgMVECs, our results revealed that butyrate reduces the proliferation of hgMVECs, strengthens the endothelial barrier through increased expression of VE-cadherin and Claudin-5 and promotes mitochondrial biogenesis. Moreover, butyrate reduces the increase in oxygen consumption induced by lipopolysaccharides (LPS), revealing a protective effect of butyrate against the detrimental effects of LPS. Taken together, our data show that butyrate is a key player in endothelial integrity and metabolic homeostasis. Show less
The vascular endothelium is a highly specialized barrier that controls passage of fluids and migration of cells from the lumen into the vessel wall. Endothelial cells assist leukocytes to... Show moreThe vascular endothelium is a highly specialized barrier that controls passage of fluids and migration of cells from the lumen into the vessel wall. Endothelial cells assist leukocytes to extravasate and despite the variety in the specific mechanisms utilized by different leukocytes to cross different vascular beds, there is a general principle of capture, rolling, slow rolling, arrest, crawling, and ultimately diapedesis via a paracellular or transcellular route. In atherosclerosis, the barrier function of the endothelium is impaired leading to uncontrolled leukocyte extravasation and vascular leakage. This is also observed in the neovessels that grow into the atherosclerotic plaque leading to intraplaque hemorrhage and plaque destabilization. This review focuses on the vascular endothelial barrier function and the interaction between endothelial cells and leukocytes during transmigration. We will discuss the role of endothelial dysfunction, transendothelial migration of leukocytes and plaque angiogenesis in atherosclerosis. Show less