BackgroundManic and depressive mood states in bipolar disorder (BD) may emerge from the non-linear relations between constantly changing mood symptoms exhibited as a complex dynamic system. Dynamic... Show moreBackgroundManic and depressive mood states in bipolar disorder (BD) may emerge from the non-linear relations between constantly changing mood symptoms exhibited as a complex dynamic system. Dynamic Time Warp (DTW) is an algorithm that may capture symptom interactions from panel data with sparse observations over time.MethodsThe Young Mania Rating Scale and Quick Inventory of Depressive Symptomatology were repeatedly assessed in 141 individuals with BD, with on average 5.5 assessments per subject every 3–6 months. Dynamic Time Warp calculated the distance between each of the 27 × 27 pairs of standardized symptom scores. The changing profile of standardized symptom scores of BD participants was analyzed in individual subjects, yielding symptom dimensions in aggregated group-level analyses. Using an asymmetric time-window, symptom changes that preceded other symptom changes (i.e., Granger causality) yielded a directed network.ResultsThe mean age of the BD participants was 40.1 (SD 13.5) years old, and 60% were female participants. Idiographic symptom networks were highly variable between subjects. Yet, nomothetic analyses showed five symptom dimensions: core (hypo)mania (6 items), dysphoric mania (5 items), lethargy (7 items), somatic/suicidality (6 items), and sleep (3 items). Symptoms of the “Lethargy” dimension showed the highest out-strength, and its changes preceded those of “somatic/suicidality,” while changes in “core (hypo)mania” preceded those of “dysphoric mania.”ConclusionDynamic Time Warp may help to capture meaningful BD symptom interactions from panel data with sparse observations. It may increase insight into the temporal dynamics of symptoms, as those with high out-strength (rather than high in-strength) could be promising targets for intervention. Show less
Objectives: Late-life major depressive disorder (MDD) can be conceptualized as a complex dynamic system. However, it is not straightforward how to analyze the covarying depressive symptoms over... Show moreObjectives: Late-life major depressive disorder (MDD) can be conceptualized as a complex dynamic system. However, it is not straightforward how to analyze the covarying depressive symptoms over time in case of sparse panel data. Dynamic time warping (DTW) analysis may yield symptom networks and dimensions both at the patient and group level. Methods: In the Netherlands Study of Depression in Older People (NESDO) depressive symptoms were assessed every 6 months using the 30-item Inventory of Depressive Symptomatology (IDS) with up to 13 assessments per participant. Our sample consisted of 182 persons, aged >= 60 years, with an IDS total score of 26 or higher at baseline. Symptom networks dimensions, and centrality metrics were analyzed using DTW and Distatis analyses. Results: The mean age was 69.8 years (SD 7.1), with 69.0% females, and a mean IDS score of 38.0 (SD = 8.7). DTW enabled visualization of an idiographic symptom network in a single NESDO participant. In the group-level nomothetic approach, four depressive symptom dimensions were identified: "core symptoms", "lethargy/somatic", "sleep", and "appetite/atypical". Items of the "internalizing symptoms" dimension had the highest centrality, whose symptom changes over time were most similar to those changes of other symptoms. Conclusions: DTW revealed symptom networks and dimensions based on the within-person symptom changes in older MDD patients. Its centrality metrics signal the most influential symptoms, which may aid personalized care. Show less