Glucocorticoids are key executors of the physiological response to stress. Previous studies in mice showed that the androgen receptor (AR) influenced the transcriptional outcome of glucocorticoid... Show moreGlucocorticoids are key executors of the physiological response to stress. Previous studies in mice showed that the androgen receptor (AR) influenced the transcriptional outcome of glucocorticoid treatment in white and brown adipocytes and in the liver. In the brain, we observed that chronic hypercorticism induced changes in gene expression that tended to be more pronounced in male mice. In the present study, we investigated if glucocorticoid signaling in the brain could be modulated by androgen. After chronic treatment with corticosterone, dihydrotestosterone, a combination of both, and corticosterone in combination with the AR antagonist enzalutamide, we compared the expression of glucocorticoid receptor (NR3C1, also abbreviated GR) target genes in brain regions where AR and GR are co-expressed, namely: prefrontal cortex, hypothalamus, hippocampus, ventral tegmental area and substantia nigra. We observed that androgen affected glucocorticoid signaling only in the prefrontal cortex and the substantia nigra. Dihydrotestosterone and corticosterone independently and inversely regulated expression of Sgk1 and Tsc22d3 in prefrontal cortex. AR antagonism with enzalutamide attenuated corticosterone-induced expression of Fkbp5 in the prefrontal cortex and of Fkbp5 and Sgk1 in the substantia nigra. Additionally, in the substantia nigra, AR antagonism increased expression of Th and Slc18a1, two genes coding for key components of the dopaminergic system. Our data indicate that androgen influence over glucocorticoid stimulation in the brain is not a dominant phenomenon in the context of high corticosterone levels, but can occur in the prefrontal cortex and substantia nigra. Show less
Sleep/wake alterations are predominant in neurological and neuropsychiatric disorders involving dopamine dysfunction. Unfortunately, specific, mechanisms-based therapies for these debilitating... Show moreSleep/wake alterations are predominant in neurological and neuropsychiatric disorders involving dopamine dysfunction. Unfortunately, specific, mechanisms-based therapies for these debilitating sleep problems are currently lacking. The pathophysiological mechanisms of sleep/wake alterations within a hypodopaminergic MitoPark mouse model of Parkinson's disease (PD) are investigated. MitoPark mice replicate most PD-related sleep alterations, including sleep fragmentation, hypersomnia, and daytime sleepiness. Surprisingly, these alterations are not accounted for by a dysfunction in the circadian or homeostatic regulatory processes of sleep, nor by acute masking effects of light or darkness. Rather, the sleep phenotype is linked with the impairment of instrumental arousal and sleep modulation by behavioral valence. These alterations correlate with changes in high-theta (8-11.5 Hz) electroencephalogram power density during motivationally-charged wakefulness. These results demonstrate that sleep/wake alterations induced by dopamine dysfunction are mediated by impaired modulation of sleep by motivational valence and provide translational insights into sleep problems associated with disorders linked to dopamine dysfunction. Show less
Sleep/wake alterations are predominant in neurological and neuropsychiatric disorders involving dopamine dysfunction. Unfortunately, specific, mechanisms-based therapies for these debilitating... Show moreSleep/wake alterations are predominant in neurological and neuropsychiatric disorders involving dopamine dysfunction. Unfortunately, specific, mechanisms-based therapies for these debilitating sleep problems are currently lacking. The pathophysiological mechanisms of sleep/wake alterations within a hypodopaminergic MitoPark mouse model of Parkinson's disease (PD) are investigated. MitoPark mice replicate most PD-related sleep alterations, including sleep fragmentation, hypersomnia, and daytime sleepiness. Surprisingly, these alterations are not accounted for by a dysfunction in the circadian or homeostatic regulatory processes of sleep, nor by acute masking effects of light or darkness. Rather, the sleep phenotype is linked with the impairment of instrumental arousal and sleep modulation by behavioral valence. These alterations correlate with changes in high-theta (8–11.5 Hz) electroencephalogram power density during motivationally-charged wakefulness. These results demonstrate that sleep/wake alterations induced by dopamine dysfunction are mediated by impaired modulation of sleep by motivational valence and provide translational insights into sleep problems associated with disorders linked to dopamine dysfunction. Show less
Jepma, M.; Roy, M.; Ramlakhan, K.; Velzen, M. van; Dahan, A. 2022
Both unexpected pain and unexpected pain absence can drive avoidance learning, but whether they do so via shared or separate neural and neurochemical systems is largely unknown. To address this... Show moreBoth unexpected pain and unexpected pain absence can drive avoidance learning, but whether they do so via shared or separate neural and neurochemical systems is largely unknown. To address this issue, we combined an instrumental pain-avoidance learning task with computational modeling, functional magnetic resonance imaging (fMRI), and pharmacological manipulations of the dopaminergic (100 mg levodopa) and opioidergic (50 mg naltrexone) systems (N = 83). Computational modeling provided evidence that untreated participants learned more from received than avoided pain. Our dopamine and opioid manipulations negated this learning asymmetry by selectively increasing learning rates for avoided pain. Furthermore, our fMRI analyses revealed that pain prediction errors were encoded in subcortical and limbic brain regions, whereas no-pain prediction errors were encoded in frontal and parietal cortical regions. However, we found no effects of our pharmacological manipulations on the neural encoding of prediction errors. Together, our results suggest that human pain-avoidance learning is supported by separate threat- and safety-learning systems, and that dopamine and endogenous opioids specifically regulate learning from successfully avoided pain. Show less
Schalbroeck, R.; Geus-Oei, L.F. de; Selten, J.P.; Yaqub, M.; Schrantee, A.; Amelsvoort, T. van; ... ; Velden, F.H.P. van 2021
Dopaminergic signaling is believed to be related to autistic traits. We conducted an exploratory 3,4-dihydroxy-6-[F-18]-fluoro-L-phenylalanine positron emission tomography/computed tomography ([F... Show moreDopaminergic signaling is believed to be related to autistic traits. We conducted an exploratory 3,4-dihydroxy-6-[F-18]-fluoro-L-phenylalanine positron emission tomography/computed tomography ([F-18]-FDOPA PET/CT) study, to examine cerebral [F-18]-FDOPA influx constant (k(i)(cer) min(-1)), reflecting predominantly striatal dopamine synthesis capacity and a mixed monoaminergic innervation in extrastriatal neurons, in 44 adults diagnosed with autism spectrum disorder (ASD) and 22 controls, aged 18 to 30 years. Autistic traits were assessed with the Autism Spectrum Quotient (AQ). Region-of-interest and voxel-based analyses showed no statistically significant differences in k(i)(cer) between autistic adults and controls. In autistic adults, striatal k(i)(cer) was significantly, negatively associated with AQ attention to detail subscale scores, although Bayesian analyses did not support this finding. In conclusion, among autistic adults, specific autistic traits can be associated with reduced striatal dopamine synthesis capacity. However, replication of this finding is necessary. Show less