Hybrid e-health support was given to 11 insulin-dependent type 2 diabetes mellitus (DM2) patients, with electronic support plus a multi-disciplinary health support team. Challenges were low ICT and... Show moreHybrid e-health support was given to 11 insulin-dependent type 2 diabetes mellitus (DM2) patients, with electronic support plus a multi-disciplinary health support team. Challenges were low ICT and health literacy. After 50 weeks, attractiveness and feasibility of the intervention were perceived as high: recommendation 9.5 out of 10 and satisfaction 9.6 out of 10. Technology acceptance model (TAM) surveys showed high usefulness and feasibility. Acceptance and health behaviours were reinforced by the prolonged health results: aerobic and strength capacity levels were improved at 50 weeks, plus health related quality of life (plus biometric benefits and medication reductions, reported elsewhere). Regarding e-health theory, we conclude that iterative skill growth cycles are beneficial for long-term adoption and e-relationships. Next, the design analysis shows opportunities for additional affective and social support, on top of the strong benefits already apparent from the direct progress feedback loops used within the health coach processes. Show less
Background: Health care organizations are increasingly working with eHealth. However, the integration of eHealth into regular health care is challenging. It requires organizations to change the way... Show moreBackground: Health care organizations are increasingly working with eHealth. However, the integration of eHealth into regular health care is challenging. It requires organizations to change the way they work and their structure and care processes to be adapted to ensure that eHealth supports the attainment of the desired outcomes.Objective: The aims of this study are to investigate whether there are identifiable indicators in the structure, process, and outcome categories that are related to the successful integration of eHealth in regular health care, as well as to investigate which indicators of structure and process are related to outcome indicators.Methods: A systematic literature review was conducted using the Donabedian Structure-Process-Outcome (SPO) framework to identify indicators that are related to the integration of eHealth into health care organizations. Data extraction sheets were designed to provide an overview of the study characteristics, eHealth characteristics, and indicators. The extracted indicators were organized into themes and subthemes of the structure, process, and outcome categories.Results: Eleven studies were included, covering a variety of study designs, diseases, and eHealth tools. All studies identified structure, process, and outcome indicators that were potentially related to the integration of eHealth. The number of indicators found in the structure, process, and outcome categories was 175, 84, and 88, respectively. The themes with the most-noted indicators and their mutual interaction were inner setting (51 indicators, 16 interactions), care receiver (40 indicators, 11 interactions), and technology (38 indicators, 12 interactions)-all within the structure category; health care actions (38 indicators, 15 interactions) within the process category; and efficiency (30 indicators, 15 interactions) within the outcome category. In-depth examination identified four most-reported indicators, namely "deployment of human resources" (n=11), in the inner setting theme within the structure category; "ease of use" (n=16) and "technical issue" (n=10), both in the technology theme within the structure category; and "health logistics" (n=26), in the efficiency theme within the outcome category.Conclusions: Three principles are important for the successful integration of eHealth into health care. First, the role of the care receiver needs to be incorporated into the organizational structure and daily care process. Second, the technology must be well attuned to the organizational structure and daily care process. Third, the deployment of human resources to the daily care processes needs to be aligned with the desired end results. Not adhering to these points could negatively affect the organization, daily process, or the end results. Show less
Background: Worldwide nearly 3 million people die from chronic obstructive pulmonary disease (COPD) every year. Integrated disease management (IDM) improves quality of life for COPD patients and... Show moreBackground: Worldwide nearly 3 million people die from chronic obstructive pulmonary disease (COPD) every year. Integrated disease management (IDM) improves quality of life for COPD patients and can reduce hospitalization. Self-management of COPD through eHealth is an effective method to improve IDM and clinical outcomes.Objectives: The objective of this implementation study was to investigate the effect of 3 chronic obstructive pulmonary disease eHealth programs applied in primary care on health status. The e-Vita COPD study compares different levels of integration of Web-based self-management platforms in IDM in 3 primary care settings. Patient health status is examined using the Clinical COPD Questionnaire (CCQ).Methods: The parallel cohort design includes 3 levels of integration in IDM (groups 1, 2, 3) and randomization of 2 levels of personal assistance for patients (group A, high assistance, group B, low assistance). Interrupted time series (ITS) design was used to collect CCQ data at multiple time points before and after intervention, and multilevel linear regression modeling was used to analyze CCQ data.Results: Of the 702 invited patients, 215 (30.6%) registered to a platform. Of these, 82 participated in group 1 (high integration IDM), 36 in group 1A (high assistance), and 46 in group 1B (low assistance); 96 participated in group 2 (medium integration IDM), 44 in group 2A (high assistance) and 52 in group 2B (low assistance); also, 37 participated in group 3 (no integration IDM). In the total group, no significant difference was found in change in CCQ trend (P=.334) before (-0.47% per month) and after the intervention (-0.084% per month). Also, no significant difference was found in CCQ changes before versus after the intervention between the groups with high versus low personal assistance. In all subgroups, there was no significant change in the CCQ trend before and after the intervention (group 1A, P=.237; 1B, P=.991; 2A, P=.120; 2B, P=.166; 3, P=.945).Conclusions: The e-Vita eHealth-supported COPD programs had no beneficial impact on the health status of COPD patients. Also, no differences were found between the patient groups receiving different levels of personal assistance. Show less