In the Greater Serengeti-Mara ecosystem, with the Serengeti National Park (SNP) at its core, people and wildlife are strongly dependent on water supply that has a strong seasonal and inter-annual... Show moreIn the Greater Serengeti-Mara ecosystem, with the Serengeti National Park (SNP) at its core, people and wildlife are strongly dependent on water supply that has a strong seasonal and inter-annual variability. The Mara River, the only perennial river in SNP, and a number of small streams originate from outside SNP before flowing through it. In those watersheds increasing grazing pressure from livestock, deforestation, irrigation and other land uses affect river flows in SNP that subsequently have impacts on wildlife. We quantified the changes since the 1970s of river discharge dynamics. We found that the baseflow recession period for the Mbalageti River has remained unchanged at 70 days, which is a natural system inside SNP. By contrast it has decreased from 100 days in the 1970s to 16 days at present for the Mara River, coinciding with increased commercial-scale irrigation in Kenya that extract Mara River water before it reaches SNP. This irrigation will result in zero flow in the river in SNP if the proposed dams in the river in Kenya are built. We observed high flash floods and prolonged periods of zero flows in streams draining livestock grazed watersheds, where severe major erosion prevails that results in gully formation. This eroded sediment is expected to silt and dry out the scattered dry season water holes in SNP, which are an important source of drinkable water for wildlife during the dry season. It appears likely that the future water supply of SNP is at risk, and this has major consequences for its people and wildlife. Ecohydrology-based solutions at the catchment scale are urgently needed to reduce catchment degradation while ensuring sustainable water provision. Show less