Background Women with type 2 diabetes are disproportionally affected by macrovascular complications; we here investigated whether this is also the case for microvascular complications and retinal... Show moreBackground Women with type 2 diabetes are disproportionally affected by macrovascular complications; we here investigated whether this is also the case for microvascular complications and retinal microvascular measures. Methods In a population-based cohort study of individuals aged 40-75 years (n = 3410; 49% women, 29% type 2 diabetes (oversampled by design)), we estimated sex-specific associations, and differences therein, of (pre)diabetes (reference: normal glucose metabolism), and of continuous measures of glycemia with microvascular complications and retinal measures (nephropathy, sensory neuropathy, and retinal arteriolar and venular diameters and dilatation). Sex differences were analyzed using regression models with interaction terms (i.e. sex-by- (pre)diabetes and sex-by-glycemia) and were adjusted for potential confounders. Results Men with type 2 diabetes (but not those with prediabetes) compared to men with normal glucose metabolism, (and men with higher levels of glycemia), had significantly higher prevalences of nephropathy (odds ratio: 1.58 95% CI (1.01;2.46)) and sensory neuropathy (odds ratio: 2.46 (1.67;3.63)), larger retinal arteriolar diameters (difference: 4.29 mu m (1.22;7.36)) and less retinal arteriolar dilatation (difference: - 0.74% (- 1.22; - 0.25)). In women, these associations were numerically in the same direction, but generally not statistically significant (odds ratios: 1.71 (0.90;3.25) and 1.22 (0.75;1.98); differences: 0.29 mu m (- 3.50;4.07) and: - 0.52% (- 1.11;0.08), respectively). Interaction analyses revealed no consistent pattern of sex differences in the associations of either prediabetes or type 2 diabetes or glycemia with microvascular complications or retinal measures. The prevalence of advanced-stage complications was too low for evaluation. Conclusions Our findings show that women with type 2 diabetes are not disproportionately affected by early microvascular complications. Show less
There are clear sex differences in incidence and onset of stress-related and other psychiatric disorders in humans. Yet, rodent models for psychiatric disorders are predominantly based on male... Show moreThere are clear sex differences in incidence and onset of stress-related and other psychiatric disorders in humans. Yet, rodent models for psychiatric disorders are predominantly based on male animals. The strongest argument for not using female rodents is their estrous cycle and the fluctuating sex hormones per phase which multiplies the number of animals to be tested. Here, we will discuss studies focused on sex differences in emotionality and cognitive abilities in experimental conditions with and without stress. First, female sex hormones such as estrogens and progesterone affect emotions and cognition, contributing to sex differences in behavior. Second, females respond differently to stress than males which might be related to the phase of the estrous cycle. For example, female rats and mice express less anxiety than males in a novel environment. Proestrus females are less anxious than females in the other estrous phases. Third, males perform in spatial tasks superior to females. However, while stress impairs spatial memory in males, females improve their spatial abilities, depending on the task and kind of stressor. We conclude that the differences in emotion, cognition and responses to stress between males and females over the different phases of the estrous cycle should be used in animal models for stress-related psychiatric disorders. Show less