Electron microscopy has become an extremely important techniquein a wide variety of elds. The resolving power is vastly superiorto light microscopes and electron microscopy has proven tobe valuable... Show moreElectron microscopy has become an extremely important techniquein a wide variety of elds. The resolving power is vastly superiorto light microscopes and electron microscopy has proven tobe valuable in elds ranging from archaeology and geology to biology andcondensed-matter physics.A major disadvantage is that the electron energy used in conventional ElectronMicroscopy (EM) ranges from 10’s to 100’s of keV. Such energetic electronscan signicantly damage the specimen. This is especially relevant in thestudy of biological samples and organic materials in general. Major eorts arebeing made to avoid this radiation damage from interfering with the studyof such materials. There are several approaches to minimize damage in EM.These include developing better detectors such that lower electron doses aresucient to form an image, and lowering the electron energies to several keV.In this dissertation I present the development of, and measurements with, atransmission electron microscope that uses electron energies ve orders ofmagnitude lower than in conventional Transmission Electron Microscopes(TEMs). The energies we use are in the order of a few eV. Hence, we call ourtechnique ’eV-TEM’. Show less