The role of a cardio-oncologist has expanded significantly due to the broadened definition of cardiovascular toxicity, now encompassing a wide range of cardiovascular issues beyond the traditional... Show moreThe role of a cardio-oncologist has expanded significantly due to the broadened definition of cardiovascular toxicity, now encompassing a wide range of cardiovascular issues beyond the traditional focus on left ventricular dysfunction and heart failure. This complexity is further compounded by the continuous discovery of new associations between modern cancer therapies and cardiovascular complications. While ideally, all cancer patients would be thoroughly screened and monitored for cardiovascular toxicity, this approach is impractical, resource-intensive, and often lacks strong evidence-based guidelines. Therefore, identifying patients at increased risk for cardiovascular toxicity is essential to optimize monitoring and maximize patient benefit without unnecessary strain. The aim of this thesis is twofold. First, it seeks to identify novel predictors for the spectrum of cardiovascular toxicity resulting from both conventional and modern anticancer therapeutics. Second, it aims to explore innovative methods for harnessing the vast amount of data within the electronic health records of cancer patients, utilizing natural language processing, artificial intelligence, and automations. Show less
AI-powered emotion recognition, typing with thoughts or eavesdropping virtual assistants: three non-fictional examples illustrate how AI may impact society. AI-related products and services... Show moreAI-powered emotion recognition, typing with thoughts or eavesdropping virtual assistants: three non-fictional examples illustrate how AI may impact society. AI-related products and services increasingly find their way into daily life. Are the EU's fundamental rights to privacy and data protection equipped to protect individuals effectively? In addressing this question, the dissertation concludes that no new legal framework is needed. Instead, adjustments are required. First, the extent of adjustments depends on the AI discipline. There is nothing like 'the AI'. AI covers various concepts, including the disciplines machine learning, natural language processing, computer vision, affective computing and automated reasoning. Second, the extent of adjustments depends on the type of legal problem: legal provisions are violated (type 1), cannot be enforced (type 2) or are not fit for purpose (type 3). Type 2 and 3 problems require either adjustments of current provisions or new judicial interpretations. Two instruments might be helpful for more effective legislation: rebuttable presumptions and reversal of proof. In some cases, the solution is technical, not legal. Research in AI should solve reasoning deficiencies in AI systems and their lack of common sense. Show less
Background: Because anti-neutrophil cytoplasmatic antibody (ANCA)-associated vasculitis (AAV) is a rare, lifethreatening, auto-immune disease, conducting research is difficult but essential. A long... Show moreBackground: Because anti-neutrophil cytoplasmatic antibody (ANCA)-associated vasculitis (AAV) is a rare, lifethreatening, auto-immune disease, conducting research is difficult but essential. A long-lasting challenge is to identify rare AAV patients within the electronic-health-record (EHR)-system to facilitate real-world research. Artificial intelligence (AI)-search tools using natural language processing (NLP) for text-mining are increasingly postulated as a solution.Methods: We employed an AI-tool that combined text-mining with NLP-based exclusion, to accurately identify rare AAV patients within large EHR-systems (>2.000.000 records). We developed an identification method in an academic center with an established AAV-training set (n = 203) and validated the method in a non-academic center with an AAV-validation set (n = 84). To assess accuracy anonymized patient records were manually reviewed.Results: Based on an iterative process, a text-mining search was developed on disease description, laboratory measurements, medication and specialisms. In the training center, 608 patients were identified with a sensitivity of 97.0 % (95%CI [93.7, 98.9]) and positive predictive value (PPV) of 56.9 % (95%CI [52.9, 60.1]). NLP-based exclusion resulted in 444 patients increasing PPV to 77.9 % (95%CI [73.7, 81.7]) while sensitivity remained 96.3 % (95%CI [93.8, 98.0]). In the validation center, text-mining identified 333 patients (sensitivity 97.6 % (95%CI [91.6, 99.7]), PPV 58.2 % (95%CI [52.8, 63.6])) and NLP-based exclusion resulted in 223 patients, increasing PPV to 86.1 % (95%CI [80.9, 90.4]) with 98.0 % (95%CI [94.9, 99.4]) sensitivity. Our identification method outperformed ICD-10-coding predominantly in identifying MPO+ and organ-limited AAV patients.Conclusions: Our study highlights the advantages of implementing AI, notably NLP, to accurately identify rare AAV patients within large EHR-systems and demonstrates the applicability and transportability. Therefore, this method can reduce efforts to identify AAV patients and accelerate real-world research, while avoiding bias by ICD-10-coding. Show less
Classical statistical methods, such as p-values, are difficult for researchers to apply correctly. They for example do not allow drawing conclusions from a study early, or for extending a study... Show moreClassical statistical methods, such as p-values, are difficult for researchers to apply correctly. They for example do not allow drawing conclusions from a study early, or for extending a study with extra research groups that want to make their data available later. Sadly, in practice this often leads to faulty application of statistics and subsequent invalidity of experiment conclusions.Partly because of the above, recently, interest in safe, anytime-valid inference (SAVI) with e-values has emerged. This framework offers the same functionality as classical statistics, but also provides researchers with plenty of flexibility, for example through enabling early stopping and effect estimation at any time, extending a study in hindsight, and analyzing data located across multiple hospitals. In this thesis, this theory is further developed for performing SAVI in scenarios applicable to healthcare, specifically for several use-cases in psychiatry. It is explored how one could set up real-time psychiatry research in practice in an automated manner, combining text mining with network analysis techniques for data preparation and exploration and then confirming hypotheses with SAVI. Through this, the work in this thesis contributes to an environment where continuous learning from routinely collected healthcare data for better personalized recommendations is the new standard. Show less
Dirkson, A.; Verberne, S.; Oortmerssen, G. van; Gelderblom, H.; Kraaij, W. 2023
Patients advise their peers on how to cope with their illness in daily life on online support groups. To date, no efforts have been made to automatically extract recommended coping strategies from... Show morePatients advise their peers on how to cope with their illness in daily life on online support groups. To date, no efforts have been made to automatically extract recommended coping strategies from online patient discussion groups. We introduce this new task, which poses a number of challenges including complex, long entities, a large long-tailed label space, and cross-document relations. We present an initial ontology for coping strategies as a starting point for future research on coping strategies, and the first end-to-end pipeline for extracting coping strategies for side effects. We also compared two possible computational solutions for this novel and highly challenging task; multi-label classification and named entity recognition (NER) with entity linking (EL). We evaluated our methods on the discussion forum from the Facebook group of the worldwide patient support organization ‘GIST support international’ (GSI); GIST support international donated the data to us. We found that coping strategy extraction is difficult and both methods attain limited performance (measured with score) on held out test sets; multi-label classification outperforms NER+EL ( vs ). An inspection of the multi-label classification output revealed that for some of the incorrect predictions, the reference label is close to the predicted label in the ontology (e.g. the predicted label ‘juice’ instead of the more specific reference label ‘grapefruit juice’). Performance increased to when we evaluated at a coarser level of the ontology. We conclude that our pipeline can be used in a semi-automatic setting, in interaction with domain experts to discover coping strategies for side effects from a patient forum. For example, we found that patients recommend ginger tea for nausea and magnesium and potassium supplements for cramps. This information can be used as input for patient surveys or clinical studies. Show less
Patients share valuable advice and experiences with their peers in online patient discussion groups. These uncensored experiences can provide a complementaryperspective to that of the health... Show morePatients share valuable advice and experiences with their peers in online patient discussion groups. These uncensored experiences can provide a complementaryperspective to that of the health professional and thereby yield novel hypotheses which could be tested in further rigorous medical research. This thesis focuses on the development of automatic extraction methods to harvest these patient experiences from online patient forums using text mining techniques. We also examine the complementary value of these patient-reported outcomes to traditional sources of medical knowledge for scientific hypothesis generation. Specifically, we focus on the extraction of adverse drug events (i.e., side effects) and coping strategies for dealing with adverse drug events. Show less
The societal burden of spinal conditions is vast and continues to grow with the in- creasing prevalence of patients with spinal degenerative disease, spinal metasta- ses, and spinal infections.... Show moreThe societal burden of spinal conditions is vast and continues to grow with the in- creasing prevalence of patients with spinal degenerative disease, spinal metasta- ses, and spinal infections. Recent application of artificial intelligence in healthcare have shown great promise and similar extensions in spine surgery may improve decision-making. The purpose of this thesis was to examine the utility of predictive analytics and natural language processing in spine surgery. Show less
Background Evaluating patients' experiences is essential when incorporating the patients' perspective in improving healthcare. Experiences are mainly collected using closed-ended questions,... Show moreBackground Evaluating patients' experiences is essential when incorporating the patients' perspective in improving healthcare. Experiences are mainly collected using closed-ended questions, although the value of open-ended questions is widely recognized. Natural language processing (NLP) can automate the analysis of open-ended questions for an efficient approach to patient-centeredness. Methods We developed the Artificial Intelligence Patient-Reported Experience Measures (AI-PREM) tool, consisting of a new, open-ended questionnaire, an NLP pipeline to analyze the answers using sentiment analysis and topic modeling, and a visualization to guide physicians through the results. The questionnaire and NLP pipeline were iteratively developed and validated in a clinical context. Results The final AI-PREM consisted of five open-ended questions about the provided information, personal approach, collaboration between healthcare professionals, organization of care, and other experiences. The AI-PREM was sent to 867 vestibular schwannoma patients, 534 of which responded. The sentiment analysis model attained an F1 score of 0.97 for positive texts and 0.63 for negative texts. There was a 90% overlap between automatically and manually extracted topics. The visualization was hierarchically structured into three stages: the sentiment per question, the topics per sentiment and question, and the original patient responses per topic. Conclusions The AI-PREM tool is a comprehensive method that combines a validated, open-ended questionnaire with a well-performing NLP pipeline and visualization. Thematically organizing and quantifying patient feedback reduces the time invested by healthcare professionals to evaluate and prioritize patient experiences without being confined to the limited answer options of closed-ended questions. Show less
Spark NLP is a Natural Language Processing (NLP) library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines that can scale... Show moreSpark NLP is a Natural Language Processing (NLP) library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines that can scale easily in a distributed environment. Spark NLP comes with 1100+ pretrained pipelines and models in more than 192+ languages. It supports nearly all the NLP tasks and modules that can be used seamlessly in a cluster. Downloaded more than 2.7 million times and experiencing 9x growth since January 2020, Spark NLP is used by 54% of healthcare organizations as the world’s most widely used NLP library in the enterprise. Show less
Cammel, S.A.; Vos, M.S. de; Soest, D. van; Hettne, K.M.; Boer, F.; Steyerberg, E.W.; Boosman, H. 2020
Background Patient experience surveys often include free-text responses. Analysis of these responses is time-consuming and often underutilized. This study examined whether Natural Language... Show moreBackground Patient experience surveys often include free-text responses. Analysis of these responses is time-consuming and often underutilized. This study examined whether Natural Language Processing (NLP) techniques could provide a data-driven, hospital-independent solution to indicate points for quality improvement. Methods This retrospective study used routinely collected patient experience data from two hospitals. A data-driven NLP approach was used. Free-text responses were categorized into topics, subtopics (i.e. n-grams) and labelled with a sentiment score. The indicator 'impact', combining sentiment and frequency, was calculated to reveal topics to improve, monitor or celebrate. The topic modelling architecture was tested on data from a second hospital to examine whether the architecture is transferable to another hospital. Results A total of 38,664 survey responses from the first hospital resulted in 127 topics and 294 n-grams. The indicator 'impact' revealed n-grams to celebrate (15.3%), improve (8.8%), and monitor (16.7%). For hospital 2, a similar percentage of free-text responses could be labelled with a topic and n-grams. Between-hospitals, most topics (69.7%) were similar, but 32.2% of topics for hospital 1 and 29.0% of topics for hospital 2 were unique. Conclusions In both hospitals, NLP techniques could be used to categorize patient experience free-text responses into topics, sentiment labels and to define priorities for improvement. The model's architecture was shown to be hospital-specific as it was able to discover new topics for the second hospital. These methods should be considered for future patient experience analyses to make better use of this valuable source of information. Show less
Hoogendoorn, M.; Szolovits, P.; Moons, L.M.G.; Numans, M.E. 2016