With the rapidly growing number of extrasolar planets detected, we have firmly stepped into the era of detailed characterization. Diverse types of exoplanets such as gas giants on close-in orbits ... Show moreWith the rapidly growing number of extrasolar planets detected, we have firmly stepped into the era of detailed characterization. Diverse types of exoplanets such as gas giants on close-in orbits (hot Jupiters) and young massive giants on wide orbits (super Jupiters), with no analogs in the Solar System, pose challenges but also opportunities to our understanding of planet formation and evolution. Exoplanet atmospheres with imprints from their history open an important avenue to retrace the origin and evolution of planets. With high-dispersion spectroscopy, we can resolve atomic and molecular spectral features into unique forests of lines that serve as the fingerprints for identifying different species in planetary atmospheres. In this dissertation, I utilize this technique to explore atmospheric compositions, thermal structures, and dynamics of exoplanet atmospheres. I have discovered minor isotopologues in emission spectra of an exoplanet and a brown dwarf for the first time, pioneering the use of carbon isotopic ratios as potential tracers of planet formation. I have investigated the trend of atomic absorption strengths in a sample of ultra-hot Jupiters, which enables disentangling different dynamic regimes of highly-irradiated exoplanets. These works form the foundation to link spectroscopic observations to planet formation and evolution processes. Show less