This thesis takes steps toward understanding the interaction between gas-phase and solid-state molecules in star- and planet-forming regions. Chapter 1 and 2 provide the reader with an introduction... Show moreThis thesis takes steps toward understanding the interaction between gas-phase and solid-state molecules in star- and planet-forming regions. Chapter 1 and 2 provide the reader with an introduction and in-depth description of methods used in subsequent chapters. Chapter 3 and 4 present the spectroscopic infrared characterization of acetaldehyde, dimethyl ether, ethanol, and methyl formate in the solid state, both pure and mixed in astronomically relevant matrices. This characterization will allow for probing of the solid-state organic inventory of star- and planet-forming regions with the upcoming James Webb Space Telescope. Interferometric observations of the protoplanetary disk around TW Hya with the Atacama Large Millimeter/submillimeter Array are presented in Chapter 5. These results hint that the observed gas-phase formaldehyde is formed in the gas phase, contrary to the generally accepted solid-state formation. Chapter 6 provides an insight to the interaction between gas-phase carbon monoxide and solid-state hydroxyl radicals on the surface of vacuum-UV irradiated water ice. Even tough residence times of carbon monoxide are short, they are sufficient to allow reactions with hydroxyl radicals and produce carbon dioxide. This process could explain the lack of gas-phase carbon monoxide in protoplanetary disks and the presence of carbon dioxide mixed in solid-state water. Show less
Le Gal, R.; Öberg, K.I.; Teague, R.; Loomis, R.A.; Law, C.J.; Walsh, C.; ... ; Zhang, K. 2021