We study the technique of photothermal microscopy by which we can detect single nano-objects by their absorption at room temperature. We optimize the sensitivity of this technique and demonstrate... Show moreWe study the technique of photothermal microscopy by which we can detect single nano-objects by their absorption at room temperature. We optimize the sensitivity of this technique and demonstrate the first optical detection of a single molecule by its absorption at room temperature. Moreover, we combine photothermal, luminescence and scattering of individual nano-objects (organic dye nanoparticles and gold nanoparticles) at single-particle level to gain insight into their radiative and nonradiative properties. Single organic nanoparticles exhibit a complex excitation power-dependent luminescence quantum yield due to singlet-singlet or singlet-triplet annihilation, and their luminescence quantum yield can be as high as 10^(__2). In contrast to organic dye nanoparticles, gold nanoparticles yield very stable optical signals. Gold nanoparticles are also easily detectable by their photoluminescence. We find that the luminescence quantum yield of single gold nanoparticles is nearly independent of their volumes and can be as high as ~10^(-5) for nanorods with a plasmon resonance of ~650 nm. We further investigate the sensitivity of a single gold nanorod to an approaching dielectric surface. We show that the nanorod exhibits significant red-shift in its plasmon resonance wavelength for distances less than 400 nm pointing the way towards the possible application of nanorods as distance sensors. Show less