Immunoglobulin G (IgG) antibodies can exert their functions via both Fab-mediated neutralization and Fc-mediated effector functions, both of which are crucial for protective immunity in COVID-19.... Show moreImmunoglobulin G (IgG) antibodies can exert their functions via both Fab-mediated neutralization and Fc-mediated effector functions, both of which are crucial for protective immunity in COVID-19. Importantly, effector functions and resulting inflammatory responses are impacted by the structure of N-glycans linked to the Fc-tail of IgG. Studying antibody glycosylation in emerging infectious diseases such as SARS-CoV-2 allows to gain insight into specific glycan signatures at the early stages of infection, and to investigate whether these reflect how the disease would progress. For example, low fucosylation is a common glyco-phenotypic signature of IgG1 produced against the spike (S) protein of severely ill SARS-CoV-2 infected patients early on in their disease course, but has likewise been described in other disease settings, where the antigen is presented in the context of host-cell membranes (Chapter 2). In this thesis, antibody glycomics signatures of SARS-CoV-2 infection and vaccination have been explored using an established liquid chromatography – mass spectrometry-based method relying on affinity-isolation and proteolytic digestion of both total and anti-S IgG. In Chapter 3, the glycosylation of SARS-CoV-2 anti-S IgG antibodies were found to be vastly skewed relative to total IgG and to change in a highly dynamic fashion. Moreover, IgG glycosylation was shown to be an early severity marker and showed patient stratification potential, with predicting power for intensive care admission within a hospitalized patient population. Early detection of a pro-inflammatory glycosylation pattern may provide a broader intervention window and decrease the number of ICU-admissions. Furthermore, anti-S IgG1 glycosylation levels obtained with LC-MS show promise to supplement clinical parameters and biomarkers of inflammation, that have together been used for the severity score calculation of hospitalized COVID-19 patients. Similarly to SARS-CoV-2 infection, antibodies generated against the spike protein upon BNT162b2 mRNA vaccination also induced a transient afucosylated anti-S IgG1 response in antigen naïve individuals, albeit to a lower extent than in severely ill patients, exemplifying the influence of the type of immunization on antibody glycosylation (Chapter 4). Upon vaccination, the observed initial, mild afucosylated response was additionally accompanied by low fucosyltransferase (FUT8) expression in antigen-specific plasma cells. Furthermore, the observed initial anti-S IgG afucosylation signature may aided mounting a stronger immune response, as indicated by its correlation with antibody amounts following the second vaccination dose. Given the impact of glycosylation on antibody function, deciphering theunderlying regulatory mechanisms influencing IgG glycosylation will be of great importance to better understand the inflammatory potential, vaccine efficacy and protective capacity of vaccine- or pathogen-induced IgG in both body fluids and tissues in the future.In Chapter 5 and 6, the reaction steps of a previously developed linkage-specific sialic acid derivatization workflow were studied in more detail. Key players in such reactions are catalyst, of which novel types with different physico-chemical properties were introduced in Chapter 5. In Chapter 6, prior lactone formation was found to be a prerequisite for subsequent amidation of α2,3-linked sialic acids, which proceeds via direct aminolysis of the C2 lactone. Together, these new insights will be beneficial for the rational optimization of high-throughput (MALDI-)MS-based glycomics and glycoproteomics workflows relying on linkage-specific sialic acid derivatization. Show less
The surface of eukaryotic cells contains a very dense layer of oligosaccharides called glycans that are linked to protein and lipid carriers and play an important role in cell-cell and cell... Show moreThe surface of eukaryotic cells contains a very dense layer of oligosaccharides called glycans that are linked to protein and lipid carriers and play an important role in cell-cell and cell-extracellular matrix interactions. Cancer-induced changes in glycosylation have an impact on the function of major glycoproteins in the human colon, therefore studies focused on colorectal cancer (CRC)-specific glycosylation signatures can provide novel insights into onset and progression of this disease. The major focus of this thesis was to investigate mucin type O-glycosylation signatures of CRC. For this purpose, a protocol for in-depth analysis of N- and O-glycans obtained from cell lines was developed (Chapter 2) using nanoscale porous graphitized carbon liquid chromatography coupled to mass spectrometry (PGC-nano-LC-MS). In Chapter 3 additional conditions were optimized in the MS methodology by using polar protic dopant (methanol and isopropanol) enriched nitrogen gas to increase sensitivity on the MS and tandem MS level. In Chapter 4 we applied the methodology developed in Chapter 2 to the analysis of O-glycosylation signatures of 26 different CRC cell lines. This analysis resulted in the characterization of more than 150 O-glycan structures and increased our understanding of glycan expression in the analyzed cell lines. To gain further understanding in the mechanisms underlying glycomic changes with colon cell differentiation, we explored changes in the cell line glycome and proteome upon spontaneous and butyrate-stimulated differentiation in in vitro cell culture (Chapter 5). By performing an integrative approach, we generated hypotheses about glycosylation signatures of specific cell adhesion proteins, which may play an important role in cancer progression. The localization of glycans on the cell surface and their role in biological processes are important in cancer pathogenesis, making them potential candidates for glycan targeting immunotherapy. Therefore, we further optimized the methodology to enable comprehensive analysis of N- and O-glycans from specific regions of formalin-fixed, paraffin-embedded tissues using laser capture microdissections and applied it for the analysis of selected regions of CRC tissues and their patient-matched colon mucosa controls (Chapter 6). We identified specific tumor-associated carbohydrate antigens (TACAs) that show expression only in the tumor samples, with no or limited expression in the normal colon mucosa. Since TACAs are present in high abundance on the surface of cancer cells which are linked to many different proteins, these are very promising targets for the development of tumor-specific immunotherapy. Show less
Breast cancer is the most prevalent cancer in women. Early detection of this disease improves survival and therefore population screenings, based on mammography, are performed. However, the... Show moreBreast cancer is the most prevalent cancer in women. Early detection of this disease improves survival and therefore population screenings, based on mammography, are performed. However, the sensitivity of this screening modality is not optimal and new screening methods, such as blood tests, are being explored. Most of the analyses that aim for early detection focus on proteins in the bloodstream. In this study, the biomarker potential of total serum N-glycosylation analysis was explored with regard to detection of breast cancer. In an age-matched case-control setup serum protein N-glycan profiles from 145 breast cancer patients were compared to those from 171 healthy individuals. N-glycans were enzymatically released, chemically derivatized to preserve linkage-specificity of sialic acids and characterized by high resolution mass spectrometry. Logistic regression analysis was used to evaluate associations of specific N-glycan structures as well as N-glycosylation traits with breast cancer. In a case-control comparison three associations were found, namely a lower level of a two triantennary glycans and a higher level of one tetraantennary glycan in cancer patients. Of note, various other N-glycomic signatures that had previously been reported were not replicated in the current cohort. It was further evaluated whether the lack of replication of breast cancer N-glycomic signatures could be partly explained by the heterogenous character of the disease since the studies performed so far were based on cohorts that included diverging subtypes in different numbers. It was found that serum N-glycan profiles differed for the various cancer subtypes that were analyzed in this study. Show less
Pongracz, T.; Verhoeven, A.; Wuhrer, M.; Haan, N. de 2021
Sialic acids occur ubiquitously throughout vertebrate glycomes and often endcap glycans in either alpha 2,3- or alpha 2,6-linkage with diverse biological roles. Linkage-specific sialic acid... Show moreSialic acids occur ubiquitously throughout vertebrate glycomes and often endcap glycans in either alpha 2,3- or alpha 2,6-linkage with diverse biological roles. Linkage-specific sialic acid characterization is increasingly performed by mass spectrometry, aided by differential sialic acid derivatization to discriminate between linkage isomers. Typically, during the first step of such derivatization reactions, in the presence of a carboxyl group activator and a catalyst, alpha 2,3-linked sialic acids condense with the subterminal monosaccharides to form lactones, while alpha 2,6-linked sialic acids form amide or ester derivatives. In a second step, the lactones are converted into amide derivatives. Notably, the structure and role of the lactone intermediates in the reported reactions remained ambiguous, leaving it unclear to which extent the amidation of alpha 2,3-linked sialic acids depended on direct aminolysis of the lactone, rather than lactone hydrolysis and subsequent amidation. In this report, we used mass spectrometry to unravel the role of the lactone intermediate in the amidation of alpha 2,3-linked sialic acids by applying controlled reaction conditions on simple and complex glycan standards. The results unambiguously show that in common sialic acid derivatization protocols prior lactone formation is a prerequisite for the efficient, linkage-specific amidation of alpha 2,3-linked sialic acids, which proceeds predominantly via direct aminolysis. Furthermore, nuclear magnetic resonance spectroscopy confirmed that exclusively the C2 lactone intermediate is formed on a sialyllactose standard. These insights allow a more rationalized method development for linkage-specific sialic derivatization in the future. Show less
Changes in human IgG galactosylation and sialylation have been associated with several inflammatory diseases which are a major burden on the health care system. A large body of work on well... Show moreChanges in human IgG galactosylation and sialylation have been associated with several inflammatory diseases which are a major burden on the health care system. A large body of work on well-established glycomic and glycopeptidomic assays has repeatedly demonstrated inflammation-induced changes in IgG glycosylation. However, these assays are usually based on specialized analytical instrumentation which could be considered a technical barrier for uptake by some laboratories. Hence there is a growing demand for simple biochemical assays for analyzing these glycosylation changes. We have addressed this need by introducing a novel glycosidase plate-based assay for the absolute quantification of galactosylation and sialylation on IgG. IgG glycoproteins are treated with specific exoglycosidases to release the galactose and/or sialic acid residues. The released galactose monosaccharides are subsequently used in an enzymatic redox reaction that produces a fluorescence signal that is quantitative for the amount of galactosylation and, in-turn, sialylation on IgG. The glycosidase plate-based assay has the potential to be a simple, initial screening assay or an alternative assay to the usage of high-end analytical platforms such as HILIC-FLD-MSn when considering the analysis of galactosylation and sialylation on IgG. We have demonstrated this by comparing our assay to an industrial established HILIC-FLD-MSn glycomic analysis of 15 patient samples and obtained a Pearson's r correlation coefficient of 0.8208 between the two methods. Show less
Alterations in protein glycosylation in colorectal cancer (CRC) have been extensively studied using cell lines as models. However, little is known about their O-glycome and the differences in... Show moreAlterations in protein glycosylation in colorectal cancer (CRC) have been extensively studied using cell lines as models. However, little is known about their O-glycome and the differences in glycan biosynthesis in different cell types. To provide a better understanding of the variation in O-glycosylation phenotypes and their association with other molecular features, an in-depth O-glycosylation analysis of 26 different CRC cell lines was performed. The released O-glycans were analysed on porous graphitized carbon nano-liquid chromatography system coupled to a mass spectrometer via electrospray ionization (PGC-nano-LC-ESI-MS/MS) allowing isomeric separation as well as in-depth structural characterization. Associations between the observed glycan phenotypes with previously reported cell line transcriptome signatures were examined by canonical correlation analysis. Striking differences are observed between the O-glycomes of 26 CRC cell lines. Unsupervized principal component analysis reveals a separation between well-differentiated colon-like and undifferentiated cell lines. Colon-like cell lines are characterized by a prevalence of I-branched and sialyl Lewis x/a epitope carrying glycans, while most undifferentiated cell lines show absence of Lewis epitope expression resulting in dominance of truncated alpha 2,6-core sialylated glycans. Moreover, the expression of glycan signatures associates with the expression of glycosyltransferases that are involved in their biosynthesis, providing a deeper insight into the regulation of glycan biosynthesis in different cell types. This untargeted in-depth screening of cell line O-glycomes paves the way for future studies exploring the role of glycosylation in CRC development and drug response leading to discovery of novel targets for the development of anti-cancer antibodies. Show less
A broad-based interlaboratory study of glycosylation profiles of a reference and modified IgG antibody involving 103 reports from 76 laboratories.Glycosylation is a topic of intense current... Show moreA broad-based interlaboratory study of glycosylation profiles of a reference and modified IgG antibody involving 103 reports from 76 laboratories.Glycosylation is a topic of intense current interest in the development of biopharmaceuticals because it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submitted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide community-derived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods. Show less
The aim of this thesis is to explore the glycosylation of PSA as well as to study if alterations can be observed between patients with indolent and malignant PCa. For this purpose the powerful... Show moreThe aim of this thesis is to explore the glycosylation of PSA as well as to study if alterations can be observed between patients with indolent and malignant PCa. For this purpose the powerful analytical platform CE-ESI-MS(/MS) was explored with a special focus on the analysis of glycans and glycopeptides (Chapter 1). The first section of the thesis describes the different method developments implemented for the analysis of PSA with CE-ESI-MS. Namely, Chapter 2 describes that CE-ESI-MS enables to separate glycopeptides with differently linked sialic acids without any additional sample treatment, Chapter 3 shows that an introduction of a dopant enriched nitrogen gas improves the limit of detection (sensitivity) of glycopeptides and Chapter 4 introduces a novel labeling procedure of total plasma N-glycome with the hydrazide Girard’s reagent P. Chapter 5 describes the development of a PSA Glycomics Assay which allows the capture of intact PSA from patients’ urine followed by analysis with the optimized CE-ESI-MS platform (Chapters 2 and 3). Finally, Chapter 6 offers a general discussion about future developments, the potential of PSA glycosylation in the clinical setting, showing the relevance of our results and how these may contribute to further clinical applications towards personalized medicine. Show less
In this thesis, methods were developed, and antibody glycosylation was characterized in order to further the clinical application of antibody glycosylation analysis. New mass spectrometric... Show moreIn this thesis, methods were developed, and antibody glycosylation was characterized in order to further the clinical application of antibody glycosylation analysis. New mass spectrometric workflows were introduced in Chapters 2 and 8. Chapter 7 showed the differential characteristics of murine IgG glycosylation of different strains and highlighted the profound differences between humans and mice, with regard to IgG glycosylation. Chapters 4 and 8 showed the use of controlled human situations to study the regulatory mechanisms of IgG and IgA glycosylation. Finally, Chapters 3, 5 and 6, identified glycosidic differences with specified (patho)physiological conditions, which might be exploited for patient stratification in the future. Show less
The work presented in this thesis describes the improvement and application of on-tissue chemistry for in-situ biomolecular analysis using matrix assisted-laser desorption/ionization mass... Show moreThe work presented in this thesis describes the improvement and application of on-tissue chemistry for in-situ biomolecular analysis using matrix assisted-laser desorption/ionization mass spectrometry imaging (MALDI-MSI). We have proposed new methodologies, applying on-tissue (enzymatic) chemistry, to increase the molecular information obtained in a MALDI-MSI analysis. We have also developed an automated histology-guided MSI platform, based on state-of-the-art image processing tools, to facilitate high mass and spatial resolution MALDI-MSI while maintaining reasonable data loads and acquisition times. We have shown the importance of these methods in a clinical biomarker discovery study on myxoid liposarcoma tissues. Show less
This dissertation describes the development of glyco-bioinformatics tools that facilitate the high-throughput data processing of glycomics and glycoproteomics experiments, specifically for both... Show moreThis dissertation describes the development of glyco-bioinformatics tools that facilitate the high-throughput data processing of glycomics and glycoproteomics experiments, specifically for both MALDI-TOF-MS (Chapter 2) and LC-ESI-MS (Chapter 3). The developed methods also provide various quality control parameters that assist the researcher in curating both the measured spectra and quantified analytes, thereby providing high-quality data in a high-throughput manner.The tools that were developed within this thesis have been used to identify the influence of glycosylation on trypsin efficacy of Immunoglobulin G (Chapter 3) and two biological cohorts. Specifically, to investigate the serum N-glycosylation during and after pregnancy (Chapter 5) and to identify the differences in the N-glycosylation between maternal and fetal serum and IgG (Chapter 6). Show less