The main objective of work presented in this thesis was to explore the clinical utility of the Polygenic Risk Score (PRS) based on breast cancer associated common low risk variants, which explain ... Show moreThe main objective of work presented in this thesis was to explore the clinical utility of the Polygenic Risk Score (PRS) based on breast cancer associated common low risk variants, which explain ~18% of the familial relative risk, for individual breast cancer risk prediction. It did so by generating knowledge about the PRS in the Dutch general population and in clinic-based breast cancer families, as well as in a large international population of BRCA1/2 pathogenic variant carriers. We have validated the association of the PRS with breast cancer for women in both the Dutch population and breast cancer families and showed a better risk-discrimination by adding the PRS to family-based risk prediction. Secondly, we have shown that addition of the PRS to family-based risk prediction has an impact on screening recommendations for many non-carriers and carriers of a pathogenic variant in a moderate breast cancer gene. The results will support implementation of comprehensive risk prediction in the clinic, and may help women to make more informed choices about their optimal clinical management. Show less
Background: Protein truncating variants in ATM, BRCA1, BRCA2, CHEK2, and PALB2 are associated with increased breast cancer risk, but risks associated with missense variants in these genes are... Show moreBackground: Protein truncating variants in ATM, BRCA1, BRCA2, CHEK2, and PALB2 are associated with increased breast cancer risk, but risks associated with missense variants in these genes are uncertain. Methods: We analyzed data on 59,639 breast cancer cases and 53,165 controls from studies participating in the Breast Cancer Association Consortium BRIDGES project. We sampled training (80%) and validation (20%) sets to analyze rare missense variants in ATM (1146 training variants), BRCA1 (644), BRCA2 (1425), CHEK2 (325), and PALB2 (472). We evaluated breast cancer risks according to five in silico prediction-of-deleteriousness algorithms, functional protein domain, and frequency, using logistic regression models and also mixture models in which a subset of variants was assumed to be risk-associated. Results: The most predictive in silico algorithms were Helix (BRCA1, BRCA2 and CHEK2) and CADD (ATM). Increased risks appeared restricted to functional protein domains for ATM (FAT and PIK domains) and BRCA1 (RING and BRCT domains). For ATM, BRCA1, and BRCA2, data were compatible with small subsets (approximately 7%, 2%, and 0.6%, respectively) of rare missense variants giving similar risk to those of protein truncating variants in the same gene. For CHEK2, data were more consistent with a large fraction (approximately 60%) of rare missense variants giving a lower risk (OR 1.75, 95% CI (1.47-2.08)) than CHEK2 protein truncating variants. There was little evidence for an association with risk for missense variants in PALB2. The best fitting models were well calibrated in the validation set. Conclusions: These results will inform risk prediction models and the selection of candidate variants for functional assays and could contribute to the clinical reporting of gene panel testing for breast cancer susceptibility. Show less
BACKGROUND: Although attention-deficit/hyperactivity disorder (ADHD) and eating disorders (EDs) frequently cooccur, little is known about the shared etiology. In this study, we comprehensively... Show moreBACKGROUND: Although attention-deficit/hyperactivity disorder (ADHD) and eating disorders (EDs) frequently cooccur, little is known about the shared etiology. In this study, we comprehensively investigated the genetic association between ADHD and various EDs, including anorexia nervosa (AN) and other EDs such as bulimia nervosa.METHODS: We applied different genetically informative designs to register-based information of a Swedish nationwide population (N = 3,550,118). We first examined the familial coaggregation of clinically diagnosed ADHD and EDs across multiple types of relatives. We then applied quantitative genetic modeling in full-sisters and maternal half-sisters to estimate the genetic correlations between ADHD and EDs. We further tested the associations between ADHD polygenic risk scores and ED symptoms, and between AN polygenic risk scores and ADHD symptoms, in a genotyped population-based sample (N = 13,472).RESULTS: Increased risk of all types of EDs was found in individuals with ADHD (any ED: odds ratio [OR] = 3.97, 95% confidence interval [CI] = 3.81, 4.14; AN: OR = 2.68, 95% CI = 2.15, 2.86; other EDs: OR = 4.66, 95% CI = 4.47, 4.87; bulimia nervosa: OR = 5.01, 95% CI = 4.63, 5.41) and their relatives compared with individuals without ADHD and their relatives. The magnitude of the associations decreased as the degree of relatedness decreased, suggesting shared familial liability between ADHD and EDs. Quantitative genetic models revealed stronger genetic correlation of ADHD with other EDs (.37, 95% CI = .31, .42) than with AN (.14, 95% CI = .05, .22). ADHD polygenic risk scores correlated positively with ED symptom measures overall and with the subscales Drive for Thinness and Body Dissatisfaction despite small effect sizes.CONCLUSIONS: We observed stronger genetic association with ADHD for non-AN EDs than for AN, highlighting specific genetic correlation beyond a general genetic factor across psychiatric disorders. Show less