Objectives Four-dimensional flow CMR allows for a comprehensive assessment of the blood flow kinetic energy of the ventricles of the heart. In comparison to standard two-dimensional image... Show moreObjectives Four-dimensional flow CMR allows for a comprehensive assessment of the blood flow kinetic energy of the ventricles of the heart. In comparison to standard two-dimensional image acquisition, 4D flow CMR is felt to offer superior reproducibility, which is important when repeated examinations may be required. The objective was to evaluate the inter-observer and intra-observer reproducibility of blood flow kinetic energy assessment using 4D flow of the left ventricle in 20 healthy volunteers across two centres in the United Kingdom and the Netherlands. Data description This dataset contains 4D flow CMR blood flow kinetic energy data for 20 healthy volunteers with no known cardiovascular disease. Presented is kinetic energy data for the entire cardiac cycle (global), the systolic and diastolic components, in addition to blood flow kinetic energy for both early and late diastolic filling. This data is available for reuse and would be valuable in supporting other research, such as allowing for larger sample sizes with more statistical power for further analysis of these variables. Show less
Minderhoud, S.C.S.; Velde, N. van der; Wentzel, J.J.; Geest, R.J. van der; Attrach, M.; Wielopolski, P.A.; ... ; Hirsch, A. 2020
Background Cardiovascular magnetic resonance (CMR) phase contrast (PC) flow measurements suffer from phase offset errors. Background subtraction based on stationary phantom measurements can most... Show moreBackground Cardiovascular magnetic resonance (CMR) phase contrast (PC) flow measurements suffer from phase offset errors. Background subtraction based on stationary phantom measurements can most reliably be used to overcome this inaccuracy. Stationary tissue correction is an alternative and does not require additional phantom scanning. The aim of this study was 1) to compare measurements with and without stationary tissue correction to phantom corrected measurements on different GE Healthcare CMR scanners using different software packages and 2) to evaluate the clinical implications of these methods. Methods CMR PC imaging of both the aortic and pulmonary artery flow was performed in patients on three different 1.5 T CMR scanners (GE Healthcare) using identical scan parameters. Uncorrected, first, second and third order stationary tissue corrected flow measurement were compared to phantom corrected flow measurements, our reference method, using Medis QFlow, Circle cvi42 and MASS software. The optimal (optimized) stationary tissue order was determined per scanner and software program. Velocity offsets, net flow, clinically significant difference (deviation > 10% net flow), and regurgitation severity were assessed. Results Data from 175 patients (28 (17-38) years) were included, of which 84% had congenital heart disease. First, second and third order and optimized stationary tissue correction did not improve the velocity offsets and net flow measurements. Uncorrected measurements resulted in the least clinically significant differences in net flow compared to phantom corrected data. Optimized stationary tissue correction per scanner and software program resulted in net flow differences (> 10%) in 19% (MASS) and 30% (Circle cvi42) of all measurements compared to 18% (MASS) and 23% (Circle cvi42) with no correction. Compared to phantom correction, regurgitation reclassification was the least common using uncorrected data. One CMR scanner performed worse and significant net flow differences of > 10% were present both with and without stationary tissue correction in more than 30% of all measurements. Conclusion Phase offset errors had a significant impact on net flow quantification, regurgitation assessment and varied greatly between CMR scanners. Background phase correction using stationary tissue correction worsened accuracy compared to no correction on three GE Healthcare CMR scanners. Therefore, careful assessment of phase offset errors at each individual scanner is essential to determine whether routine use of phantom correction is necessary. Show less
Minderhoud, S.C.S.; Velde, N. van der; Wentzel, J.J.; Geest, R.J. van der; Attrach, M.; Wielopolski, P.A.; ... ; Hirsch, A. 2020
BackgroundCardiovascular magnetic resonance (CMR) phase contrast (PC) flow measurements suffer from phase offset errors. Background subtraction based on stationary phantom measurements can most... Show moreBackgroundCardiovascular magnetic resonance (CMR) phase contrast (PC) flow measurements suffer from phase offset errors. Background subtraction based on stationary phantom measurements can most reliably be used to overcome this inaccuracy. Stationary tissue correction is an alternative and does not require additional phantom scanning. The aim of this study was 1) to compare measurements with and without stationary tissue correction to phantom corrected measurements on different GE Healthcare CMR scanners using different software packages and 2) to evaluate the clinical implications of these methods.MethodsCMR PC imaging of both the aortic and pulmonary artery flow was performed in patients on three different 1.5 T CMR scanners (GE Healthcare) using identical scan parameters. Uncorrected, first, second and third order stationary tissue corrected flow measurement were compared to phantom corrected flow measurements, our reference method, using Medis QFlow, Circle cvi42 and MASS software. The optimal (optimized) stationary tissue order was determined per scanner and software program. Velocity offsets, net flow, clinically significant difference (deviation > 10% net flow), and regurgitation severity were assessed.ResultsData from 175 patients (28 (17–38) years) were included, of which 84% had congenital heart disease. First, second and third order and optimized stationary tissue correction did not improve the velocity offsets and net flow measurements. Uncorrected measurements resulted in the least clinically significant differences in net flow compared to phantom corrected data. Optimized stationary tissue correction per scanner and software program resulted in net flow differences (> 10%) in 19% (MASS) and 30% (Circle cvi42) of all measurements compared to 18% (MASS) and 23% (Circle cvi42) with no correction. Compared to phantom correction, regurgitation reclassification was the least common using uncorrected data. One CMR scanner performed worse and significant net flow differences of > 10% were present both with and without stationary tissue correction in more than 30% of all measurements.ConclusionPhase offset errors had a significant impact on net flow quantification, regurgitation assessment and varied greatly between CMR scanners. Background phase correction using stationary tissue correction worsened accuracy compared to no correction on three GE Healthcare CMR scanners. Therefore, careful assessment of phase offset errors at each individual scanner is essential to determine whether routine use of phantom correction is necessary. Show less
BackgroundA velocity offset error in phase contrast cardiovascular magnetic resonance (CMR) imaging is a known problem in clinical assessment of flow volumes in vessels around the heart. Earlier... Show moreBackgroundA velocity offset error in phase contrast cardiovascular magnetic resonance (CMR) imaging is a known problem in clinical assessment of flow volumes in vessels around the heart. Earlier studies have shown that this offset error is clinically relevant over different systems, and cannot be removed by protocol optimization. Correction methods using phantom measurements are time consuming, and assume reproducibility of the offsets which is not the case for all systems. An alternative previously published solution is to correct the in-vivo data in post-processing, interpolating the velocity offset from stationary tissue within the field-of-view. This study aims to validate this interpolation-based offset correction in-vivo in a multi-vendor, multi-center setup.MethodsData from six 1.5T CMR systems were evaluated, with two systems from each of the three main vendors. At each system aortic and main pulmonary artery 2D flow studies were acquired during routine clinical or research examinations, with an additional phantom measurement using identical acquisition parameters. To verify the phantom acquisition, a region-of-interest (ROI) at stationary tissue in the thorax wall was placed and compared between in-vivo and phantom measurements. Interpolation-based offset correction was performed on the in-vivo data, after manually excluding regions of spatial wraparound. Correction performance of different spatial orders of interpolation planes was evaluated.ResultsA total of 126 flow measurements in 82 subjects were included. At the thorax wall the agreement between in-vivo and phantom was -0.20.6cm/s. Twenty-eight studies were excluded because of a difference at the thorax wall exceeding 0.6cm/s from the phantom scan, leaving 98. Before correction, the offset at the vessel as assessed in the phantom was -0.41.5cm/s, which resulted in a-5 +/- 16% error in cardiac output. The optimal order of the interpolation correction plane was 1st order, except for one system at which a 2nd order plane was required. Application of the interpolation-based correction revealed a remaining offset velocity of 0.1 +/- 0.5cm/s and 0 +/- 5% error in cardiac output.Conclusions p id=Par4 This study shows that interpolation-based offset correction reduces the offset with comparable efficacy as phantom measurement phase offset correction, without the time penalty imposed by phantom scans.Trial registration p id=Par5 The study was registered in The Netherlands National Trial Register (NTR) under TC 4865. Registered 19 September 2014. Retrospectively registered. Show less