We consider the propagation of electrical signals through nerve fibres. In these systems, it is well-known that the signal can only travel at appropriate speeds if the fibre is covered by a myelin... Show moreWe consider the propagation of electrical signals through nerve fibres. In these systems, it is well-known that the signal can only travel at appropriate speeds if the fibre is covered by a myelin coating. This coating admits regularly spaced gaps at the so-called nodes of Ranvier. Since the signal travels much faster through the coated regions, it appears to hop between the nodes of Ranvier. However, many mathematical models that describe this propagation do not take into account the discrete structure directly.More recently, a discrete version of the famous FitzHugh-Nagumo model has been proposed to capture this discrete behaviour. In this thesis, we consider several extensions to and generalisations of this discrete FitzHugh-Nagumo model. In particular, we study infinite-range interactions, periodic behaviour and spatial-temporal discretization. Our general aim is to establish the existence and, sometimes, non-linear stability of travelling wave solutions. Our main tools in this analysis are the spectral convergence method and exponential dichotomies. In addition, we extend some general mathematical theory to systems with infinite-range interactions. Show less
Vast, often populated, areas in dryland ecosystems face the dangers of desertification. Loosely speaking, desertification is the process in which a relatively dry region loses its vegetation -... Show moreVast, often populated, areas in dryland ecosystems face the dangers of desertification. Loosely speaking, desertification is the process in which a relatively dry region loses its vegetation - typically as an effect of climate change. As an important step in this process, the lack of resources forces the vegetation in these semi-arid areas to organise itself into large-scale spatial patterns. In this thesis, these patterns are studied using conceptual mathematical models, in which vegetation patterns present themselves as localised structures (for example pulses or fronts). These are analysed using mathematical techniques from (geometric singular) perturbation theory and via numerous numerical simulations. The study of these ecosystem models leads to new advances in both mathematics and ecology. Show less