Objective To visualize the encoding capability of magnetic resonance fingerprinting (MRF) dictionaries. Materials and methods High-dimensional MRF dictionaries were simulated and embedded into a... Show moreObjective To visualize the encoding capability of magnetic resonance fingerprinting (MRF) dictionaries. Materials and methods High-dimensional MRF dictionaries were simulated and embedded into a lower-dimensional space using t-distributed stochastic neighbor embedding (t-SNE). The embeddings were visualized via colors as a surrogate for location in low-dimensional space. First, we illustrate this technique on three different MRF sequences. We then compare the resulting embeddings and the color-coded dictionary maps to these obtained with a singular value decomposition (SVD) dimensionality reduction technique. We validate the t-SNE approach with measures based on existing quantitative measures of encoding capability using the Euclidean distance. Finally, we use t-SNE to visualize MRF sequences resulting from an MRF sequence optimization algorithm. Results t-SNE was able to show clear differences between the color-coded dictionary maps of three MRF sequences. SVD showed smaller differences between different sequences. These findings were confirmed by quantitative measures of encoding. t-SNE was also able to visualize differences in encoding capability between subsequent iterations of an MRF sequence optimization algorithm. Discussion This visualization approach enables comparison of the encoding capability of different MRF sequences. This technique can be used as a confirmation tool in MRF sequence optimization. Show less
The aim of this thesis was to develop fast reconstruction and acquisition techniques for MRI that can support clinical applications where time is a limiting factor. In general, fast acquisition... Show moreThe aim of this thesis was to develop fast reconstruction and acquisition techniques for MRI that can support clinical applications where time is a limiting factor. In general, fast acquisition techniques were realized by undersampling k-space, while fast reconstruction techniques were achieved by using efficient numerical algorithms. In particular, undersampled acquisitions were processed in a CS and MRF framework. Preconditioning techniques were used to accelerate CS reconstructions, and a number of challenges encountered in MRF were addressed using appropriate post-processing techniques. Show less