Background Dietary intake of n-3 polyunsaturated fatty acids (PUFA) may have a protective effect on the development of cardiovascular diseases, diabetes, depression and cancer, while a high intake... Show moreBackground Dietary intake of n-3 polyunsaturated fatty acids (PUFA) may have a protective effect on the development of cardiovascular diseases, diabetes, depression and cancer, while a high intake of n-6 PUFA was often reported to be associated with inflammation-related traits. The effect of PUFAs on health outcomes might be mediated by DNA methylation (DNAm). The aim of our study is to identify the impact of PUFA intake on DNAm in the Cooperative Health Research in the Region of Augsburg (KORA) FF4 cohort and the Leiden Longevity Study (LLS). Results DNA methylation levels were measured in whole blood from the population-based KORA FF4 study (N = 1354) and LLS (N = 448), using the Illumina MethylationEPIC BeadChip and Illumina HumanMethylation450 array, respectively. We assessed associations between DNAm and intake of eight and four PUFAs in KORA and LLS, respectively. Where possible, results were meta-analyzed.Below the Bonferroni correction threshold (p < 7.17 x 10(-8)), we identified two differentially methylated positions (DMPs) associated with PUFA intake in the KORA study. The DMP cg19937480, annotated to gene PRDX1, was positively associated with docosahexaenoic acid (DHA) in model 1 (beta: 2.00 x 10(-5), 95%CI: 1.28 x 10(-5)-2.73 x 10(-5), P value: 6.98 x 10(-8)), while cg05041783, annotated to gene MARK2, was positively associated with docosapentaenoic acid (DPA) in our fully adjusted model (beta: 9.80 x 10(-5), 95%CI: 6.25 x 10(-5)-1.33 x 10(-4), P value: 6.75 x 10(-8)). In the meta-analysis, we identified the CpG site (cg15951061), annotated to gene CDCA7L below Bonferroni correction (1.23 x 10(-7)) associated with eicosapentaenoic acid (EPA) intake in model 1 (beta: 2.00 x 10(-5), 95% CI: 1.27 x 10(-5)-2.73 x 10(-5), P value = 5.99 x 10(-8)) and we confirmed the association of cg19937480 with DHA in both models 1 and 2 (beta: 2.07 x 10(-5), 95% CI: 1.31 x 10(-5)-2.83 x 10(-5), P value = 1.00 x 10(-7) and beta: 2.19 x 10(-5), 95% CI: 1.41 x 10(-5)-2.97 x 10(-5), P value = 5.91 x 10(-8) respectively).Conclusions Our study identified three CpG sites associated with PUFA intake. The mechanisms of these sites remain largely unexplored, highlighting the novelty of our findings. Further research is essential to understand the links between CpG site methylation and PUFA outcomes. Show less
BackgroundChronic migraine, a highly disabling migraine subtype, affects nearly 2% of the general population. Understanding migraine chronification is vital for developing better treatment and... Show moreBackgroundChronic migraine, a highly disabling migraine subtype, affects nearly 2% of the general population. Understanding migraine chronification is vital for developing better treatment and prevention strategies. An important factor in the chronification of migraine is the overuse of acute headache medication. However, the mechanisms behind the transformation of episodic migraine to chronic migraine and vice versa have not yet been elucidated. We performed a longitudinal epigenome-wide association study to identify DNA methylation (DNAm) changes associated with treatment response in patients with chronic migraine and medication overuse as part of the Chronification and Reversibility of Migraine clinical trial. Blood was taken from patients with chronic migraine (n = 98) at baseline and after a 12-week medication withdrawal period. Treatment responders, patients with ≥ 50% reduction in monthly headache days (MHD), were compared with non-responders to identify DNAm changes associated with treatment response. Similarly, patients with ≥ 50% versus < 50% reduction in monthly migraine days (MMD) were compared.ResultsAt the epigenome-wide significant level (p < 9.42 × 10–8), a longitudinal reduction in DNAm at an intronic CpG site (cg14377273) within the HDAC4 gene was associated with MHD response following the withdrawal of acute medication. HDAC4 is highly expressed in the brain, plays a major role in synaptic plasticity, and modulates the expression and release of several neuroinflammation markers which have been implicated in migraine pathophysiology. Investigating whether baseline DNAm associated with treatment response, we identified lower baseline DNAm at a CpG site (cg15205829) within MARK3 that was significantly associated with MMD response at 12 weeks.ConclusionsOur findings of a longitudinal reduction in HDAC4 DNAm status associated with treatment response and baseline MARK3 DNAm status as an early biomarker for treatment response, provide support for a role of pathways related to chromatin structure and synaptic plasticity in headache chronification and introduce HDAC4 and MARK3 as novel therapeutic targets. Show less
Hellbach, F.; Sinke, L.; Costeira, R.; Baumeister, S.E.; Beekman, M.; Louca, P.; ... ; Linseisen, J. 2022
Purpose Examining epigenetic patterns is a crucial step in identifying molecular changes of disease pathophysiology, with DNA methylation as the most accessible epigenetic measure. Diet is... Show morePurpose Examining epigenetic patterns is a crucial step in identifying molecular changes of disease pathophysiology, with DNA methylation as the most accessible epigenetic measure. Diet is suggested to affect metabolism and health via epigenetic modifications. Thus, our aim was to explore the association between food consumption and DNA methylation. Methods Epigenome-wide association studies were conducted in three cohorts: KORA FF4, TwinsUK, and Leiden Longevity Study, and 37 dietary exposures were evaluated. Food group definition was harmonized across the three cohorts. DNA methylation was measured using Infinium MethylationEPIC BeadChip in KORA and Infinium HumanMethylation450 BeadChip in the Leiden study and the TwinsUK study. Overall, data from 2293 middle-aged men and women were included. A fixed-effects meta-analysis pooled study-specific estimates. The significance threshold was set at 0.05 for false-discovery rate-adjusted p values per food group. Results We identified significant associations between the methylation level of CpG sites and the consumption of onions and garlic (2), nuts and seeds (18), milk (1), cream (11), plant oils (4), butter (13), and alcoholic beverages (27). The signals targeted genes of metabolic health relevance, for example, GLI1, RPTOR, and DIO1, among others. Conclusion This EWAS is unique with its focus on food groups that are part of a Western diet. Significant findings were mostly related to food groups with a high-fat content. Show less
Andel, M.M. van; Groenink, M.; Berg, M.P. van den; Timmermans, J.; Scholte, A.J.H.A.; Mulder, B.J.M.; ... ; Waard, V. de 2021
Background Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the Fibrillin-1 gene (FBN1). Here, we undertook the first epigenome-wide association study (EWAS) in patients... Show moreBackground Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the Fibrillin-1 gene (FBN1). Here, we undertook the first epigenome-wide association study (EWAS) in patients with MFS aiming at identifying DNA methylation loci associated with MFS phenotypes that may shed light on the disease process. Methods The Illumina 450 k DNA-methylation array was used on stored peripheral whole-blood samples of 190 patients with MFS originally included in the COMPARE trial. An unbiased genome-wide approach was used, and methylation of CpG-sites across the entire genome was evaluated. Additionally, we investigated CpG-sites across the FBN1-locus (15q21.1) more closely, since this is the gene defective in MFS. Differentially Methylated Positions (DMPs) and Differentially Methylated Regions (DMRs) were identified through regression analysis. Associations between methylation levels and aortic diameters and presence or absence of 21 clinical features of MFS at baseline were analyzed. Moreover, associations between aortic diameter change, and the occurrence of clinical events (death any cause, type-A or -B dissection/rupture, or aortic surgery) and methylation levels were analyzed. Results We identified 28 DMPs that are significantly associated with aortic diameters in patients with MFS. Seven of these DMPs (25%) could be allocated to a gene that was previously associated with cardiovascular diseases (HDAC4, IGF2BP3, CASZ1, SDK1, PCDHGA1, DIO3, PTPRN2). Moreover, we identified seven DMPs that were significantly associated with aortic diameter change and five DMP's that associated with clinical events. No significant associations at p < 10(-8) or p < 10(-6) were found with any of the non-cardiovascular phenotypic MFS features. Investigating DMRs, clusters were seen mostly on X- and Y, and chromosome 18-22. The remaining DMRs indicated involvement of a large family of protocadherins on chromosome 5, which were not reported in MFS before. Conclusion This EWAS in patients with MFS has identified a number of methylation loci significantly associated with aortic diameters, aortic dilatation rate and aortic events. Our findings add to the slowly growing literature on the regulation of gene expression in MFS patients. Show less
Epigenetic programming is essential for lineage differentiation, embryogenesis and placentation in early pregnancy. In epigenetic association studies, DNA methylation is often examined in DNA... Show moreEpigenetic programming is essential for lineage differentiation, embryogenesis and placentation in early pregnancy. In epigenetic association studies, DNA methylation is often examined in DNA derived from white blood cells, although its validity to other tissues of interest remains questionable. Therefore, we investigated the tissue specificity of epigenome-wide DNA methylation in newborn and placental tissues. Umbilical cord white blood cells (UC-WBC, n = 25), umbilical cord blood mononuclear cells (UC-MNC, n = 10), human umbilical vein endothelial cells (HUVEC, n = 25) and placental tissue (n = 25) were obtained from 36 uncomplicated pregnancies. Genome-wide DNA methylation was measured by the Illumina HumanMethylation450K BeadChip. Using UC-WBC as a reference tissue, we identified 3595 HUVEC tissue-specific differentially methylated regions (tDMRs) and 11,938 placental tDMRs. Functional enrichment analysis showed that HUVEC and placental tDMRs were involved in embryogenesis, vascular development and regulation of gene expression. No tDMRs were identified in UC-MNC. In conclusion, the extensive amount of genome-wide HUVEC and placental tDMRs underlines the relevance of tissue-specific approaches in future epigenetic association studies, or the use of validated representative tissues for a certain disease of interest, if available. To this purpose, we herewith provide a relevant dataset of paired, tissue-specific, genome-wide methylation measurements in newborn tissues. Show less
Background Epigenetic mechanisms have been suggested to play a role in the development of post-traumatic stress disorder (PTSD). Here, blood-derived DNA methylation data (HumanMethylation450... Show moreBackground Epigenetic mechanisms have been suggested to play a role in the development of post-traumatic stress disorder (PTSD). Here, blood-derived DNA methylation data (HumanMethylation450 BeadChip) collected prior to and following combat exposure in three cohorts of male military members were analyzed to assess whether DNA methylation profiles are associated with the development of PTSD. A total of 123 PTSD cases and 143 trauma-exposed controls were included in the analyses. The Psychiatric Genomics Consortium (PGC) PTSD EWAS QC pipeline was used on all cohorts, and results were combined using a sample size weighted meta-analysis in a two-stage design. In stage one, we jointly analyzed data of two new cohorts (N = 126 and 78) for gene discovery, and sought to replicate significant findings in a third, previously published cohort (N = 62) to assess the robustness of our results. In stage 2, we aimed at maximizing power for gene discovery by combining all three cohorts in a meta-analysis. Results Stage 1 analyses identified four CpG sites in which, conditional on pre-deployment DNA methylation, post-deployment DNA methylation was significantly associated with PTSD status after epigenome-wide adjustment for multiple comparisons. The most significant (intergenic) CpG cg05656210 (p = 1.0 x 10(-08)) was located on 5q31 and significantly replicated in the third cohort. In addition, 19 differentially methylated regions (DMRs) were identified, but failed replication. Stage 2 analyses identified three epigenome-wide significant CpGs, the intergenic CpG cg05656210 and two additional CpGs located in MAD1L1 (cg12169700) and HEXDC (cg20756026). Interestingly, cg12169700 had an underlying single nucleotide polymorphism (SNP) which was located within the same LD block as a recently identified PTSD-associated SNP in MAD1L1. Stage 2 analyses further identified 12 significant differential methylated regions (DMRs), 1 of which was located in MAD1L1 and 4 were situated in the human leukocyte antigen (HLA) region. Conclusions This study suggests that the development of combat-related PTSD is associated with distinct methylation patterns in several genomic positions and regions. Our most prominent findings suggest the involvement of the immune system through the HLA region and HEXDC, and MAD1L1 which was previously associated with PTSD. Show less
Rooij, J. van; Mandaviya, P.R.; Claringbould, A.; Felix, J.F.; Dongen, J. van; Jansen, R.; ... ; BIOS Consortium 2019
BackgroundA large number of analysis strategies are available for DNA methylation (DNAm) array and RNA-seq datasets, but it is unclear which strategies are best to use. We compare commonly used... Show moreBackgroundA large number of analysis strategies are available for DNA methylation (DNAm) array and RNA-seq datasets, but it is unclear which strategies are best to use. We compare commonly used strategies and report how they influence results in large cohort studies.ResultsWe tested the associations of DNAm and RNA expression with age, BMI, and smoking in four different cohorts (n =similar to 2900). By comparing strategies against the base model on the number and percentage of replicated CpGs for DNAm analyses or genes for RNA-seq analyses in a leave-one-out cohort replication approach, we find the choice of the normalization method and statistical test does not strongly influence the results for DNAm array data. However, adjusting for cell counts or hidden confounders substantially decreases the number of replicated CpGs for age and increases the number of replicated CpGs for BMI and smoking. For RNA-seq data, the choice of the normalization method, gene expression inclusion threshold, and statistical test does not strongly influence the results. Including five principal components or excluding correction of technical covariates or cell counts decreases the number of replicated genes.ConclusionsResults were not influenced by the normalization method or statistical test. However, the correction method for cell counts, technical covariates, principal components, and/or hidden confounders does influence the results. Show less