AimsTo evaluate the effect of the ESC/EAS 2019 dyslipidaemia guidelines on patient management of lipid-lowering therapyin patients with acute coronary syndrome (ACS), through a survey designed to... Show moreAimsTo evaluate the effect of the ESC/EAS 2019 dyslipidaemia guidelines on patient management of lipid-lowering therapyin patients with acute coronary syndrome (ACS), through a survey designed to compare post-ACS patient management in 2022 with that in 2018.MethodsOnline questionnaires focused on lipid profile and medications were used to gather data from 2650 ACS patients in 6 European countries, treated between March–June 2022 (ACS EuroPath IV survey). These data were compared with data collected from 2650 patients who participated in the ACS EuroPath I survey (conducted in 2018).ResultsLipid testing was performed in 90% of patients and was done sooner after admission in 2022 versus 2018 (mean 1.4 vs 1.7 days). Increased testing for non-HDL-C, lipoprotein(a), and ApoB was observed over time. At discharge, most patients (≥90%) were receiving lipid-lowering therapy. Prescribing patterns differed, with a higher proportion of patients receiving statin plus ezetimibe combination therapy in 2022 versus 2018 (34% vs 13%). LDL-C levels were lower in 2022 versus 2018 at admission and at 1st, 2nd and 3rd post-discharge follow-up points. More patients achieved low-density lipoprotein cholesterol (LDL-C) goals in 2022 versus 2018 at the first follow-up (average 14 vs 16 weeks since discharge; <70 mg/dL [1.8 mmol/L]: 34% vs 20%; <55 mg/dL [1.4 mmol/L]: 18% vs 10%) and at subsequent follow-up points.ConclusionLDL-C goal achievement has improved since the release of the 2019 guidelines, but lipid management in post-ACS patients remains suboptimal. Show less
Brown adipocytes within brown adipose tissue (BAT) and beige adipocytes within white adipose tissue dissipate nutritional energy as heat. Studies in mice have shown that activation of thermogenesis... Show moreBrown adipocytes within brown adipose tissue (BAT) and beige adipocytes within white adipose tissue dissipate nutritional energy as heat. Studies in mice have shown that activation of thermogenesis in brown and beige adipocytes enhances the lipolytic processing of triglyceride-rich lipoproteins (TRLs) in plasma to supply these adipocytes with fatty acids for oxidation. This process results in formation of TRL remnants that are removed from the circulation through binding of apolipoprotein E (ApoE) on their surface to the LDL receptor (LDLR) on hepatocytes, followed by internalization. Concomitantly, lipolytic processing of circulating TRLs leads to generation of excess surface phospholipids that are transferred to nascent HDLs, increasing their capacity for reverse cholesterol transport. Activation of thermogenic adipocytes thus lowers circulating triglycerides and non-HDL-cholesterol, while it increases HDL-cholesterol. The combined effect is protection from atherosclerosis development, which becomes evident in humanized mouse models with an intact ApoE-LDLR clearance pathway only, and is additive to the effects of classical lipid-lowering drugs including statins and proprotein convertase subtilisin/kexin type 9 inhibitors. A large recent study revealed that the presence of metabolically active BAT in humans is associated with lower triglycerides, higher HDL-cholesterol and lower risk of cardiovascular diseases. This narrative review aims to provide leads for further exploration of thermogenic adipose tissue as a therapeutic target. To this end, we describe the latest knowledge on the role of BAT in lipoprotein metabolism and address, for example, the discovery of the beta(2)-adrenergic receptor as the dominant adrenergic receptor in human thermogenic adipocytes. Show less
Aims: Fibroblast growth factor (FGF) 21, a key regulator of energy metabolism, is currently evaluated in humans for treatment of type 2 diabetes and non-alcoholic steatohepatitis. However, the... Show moreAims: Fibroblast growth factor (FGF) 21, a key regulator of energy metabolism, is currently evaluated in humans for treatment of type 2 diabetes and non-alcoholic steatohepatitis. However, the effects of FGF21 on cardiovascular benefit, particularly on lipoprotein metabolism in relation to atherogenesis, remain elusive. Methods and results: Here, the role of FGF21 in lipoprotein metabolism in relation to atherosclerosis development was investigated by pharmacological administration of a half-life extended recombinant FGF21 protein to hypercholesterolaemic APOE*3-Leiden.CETP mice, a well-established model mimicking atherosclerosis initiation and development in humans. FGF21 reduced plasma total cholesterol, explained by a reduction in non-HDL-cholesterol. Mechanistically, FGF21 promoted brown adipose tissue (BAT) activation and white adipose tissue (WAT) browning, thereby enhancing the selective uptake of fatty acids from triglyceride-rich lipoproteins into BAT and into browned WAT, consequently accelerating the clearance of the cholesterol-enriched remnants by the liver. In addition, FGF21 reduced body fat, ameliorated glucose tolerance and markedly reduced hepatic steatosis, related to up-regulated hepatic expression of genes involved in fatty acid oxidation and increased hepatic VLDL-triglyceride secretion. Ultimately, FGF21 largely decreased atherosclerotic lesion area, which was mainly explained by the reduction in non-HDL-cholesterol as shown by linear regression analysis, decreased lesion severity, and increased atherosclerotic plaque stability index. Conclusion: FGF21 improves hypercholesterolaemia by accelerating triglyceride-rich lipoprotein turnover as a result of activating BAT and browning of WAT, thereby reducing atherosclerotic lesion severity and increasing atherosclerotic lesion stability index. We have thus provided additional support for the clinical use of FGF21 in the treatment of atherosclerotic cardiovascular disease. Show less
Elevated low-density lipoprotein cholesterol (LDL-C) is a principally modifiable cause of atherosclerotic cardiovascular disease; accordingly, recent European and US multisociety dyslipidaemia... Show moreElevated low-density lipoprotein cholesterol (LDL-C) is a principally modifiable cause of atherosclerotic cardiovascular disease; accordingly, recent European and US multisociety dyslipidaemia guidelines emphasise the importance of lowering LDL-C to reduce cardiovascular risk. This review provides perspectives on established and emerging agents that reduce LDL-C to help providers synthesize the abundance of new evidence related to prevention of cardiovascular disease. We provide hypothetical cases of patients with different cardiovascular risk factors and medical histories to illustrate application of current lipid-lowering guidelines in various clinical settings. As a core focus of preventive therapy, both European and US lipid management guidelines emphasise the importance of identifying patients at very high cardiovascular risk and treating to achieve LDL-C levels as low as possible, with European guidelines setting a goal of <1.4 mmol/L (<55 mg/dL) in patients with very high-risk cardiovascular disease. The proprotein convertase subtilisin/kexin type 9 inhibitors are now included in the guidelines and may fulfil an important unmet need for very high-risk patients who are not able to achieve LDL-C goals with conventional agents. The recently approved bempedoic acid and other promising agents under development will add to the armamentarium of lipid-lowering drugs available for clinicians to help patients meet their treatment goals. Show less