The redox-conversion reaction of metal-disulfide and metal-thiolate complexes are important, as they may shed light on electron-transfer reactions that often occur in Nature. Despite their... Show moreThe redox-conversion reaction of metal-disulfide and metal-thiolate complexes are important, as they may shed light on electron-transfer reactions that often occur in Nature. Despite their importance, very few examples have been reported. In addition to that, there is a limited understanding of how the coordination environment of the metal ion affects this reaction. In this thesis, our investigation was set based on the ligand-field theory to determine its correlation with the redox-conversion reactions in cobalt-based systems. Our experiments revealed that using an exogenous ligand with a strong ligand-field character may induce the redox conversion from cobalt(II)-disulfide complexes to cobalt(III)-thiolate complexes. Using this knowledge, the possibility of the redox-conversion reaction was also extended from cobalt(II)-diselenide to cobalt(III)-selenolate complexes.Finally, we have come up with several conclusions about the redox-conversion reactions of the cobalt(II)-dichalcogenide complexes. It was revealed that the conversion is affected by the ligand-field strength of the dichalcogenide ligand. The smaller ligand-field strength can be counterbalanced with the introduction of the strong auxiliary ligand. Lastly, the cleanliness of the conversion depends on the magnitude of the overall ligand-field splitting energy of the complex. Show less
In the last decade, the redox interconversion between metal thiolate and disulfide compounds has been extensively investigated for copper, but not for other transition metal ions. In this... Show moreIn the last decade, the redox interconversion between metal thiolate and disulfide compounds has been extensively investigated for copper, but not for other transition metal ions. In this thesis, our investigations are described of the possibility to extend the metal thiolate/disulfide redox interconversion reactions to cobalt or iron compounds. A number of cobalt(II) disulfide and cobalt(III) thiolate compounds of different ligands and different anions are reported in this thesis. It was revealed that the anion of cobalt(II) salts, the structure of disulfide ligands, and the type of solvent influence the formation of either cobalt(II) disulfide or cobalt(III) thiolate compounds. However, a consistent trend cannot be provided to predict which of the species is generated. An important conclusion of this work is that the cobalt(II) disulfide to cobalt(III) thiolate interconversion reaction might be related to the ligand field strength of the ligand, and the binding strength and ligand field strength of the anions and solvent used. Apart from the cobalt compounds, two iron(II) disulfide compounds were reported in this thesis as well. However, so far we were not able to trigger the conversion of these compounds to their respective iron(III) thiolate compounds. Show less
Ording-Wenker, E.C.M.; Siegler, M.A.; Bouwman, E. 2015
The research described in this thesis is focused on the modeling of different aspects of biomimetic redox reactions between copper ions and sulfur-containing compounds.