In this thesis we use both the two-layer and the large-deviation approach to study the conservation and loss of the Gibbs property for both lattice and mean-field spin systems. Chapter 1 gives... Show moreIn this thesis we use both the two-layer and the large-deviation approach to study the conservation and loss of the Gibbs property for both lattice and mean-field spin systems. Chapter 1 gives general backgrounds on Gibbs and non-Gibbs measures and outlines the the two-layer and the large-deviation approach. Chapter 2 studies the transforms of one-dimensional lattice spin systems. We start from a Gibbs measure with infinite range interaction and consider both deterministic and stochastic transformations K. Using the two-layer approach we prove that the constrained system has a unique Gibbs measure for every choice of transformed configuration, as long as the range of K is finite. This implies that the associated transformed Gibbs measures are always Gibbs. Further, we prove that if the initial interaction is exponentially decaying, then the transformed interaction decays exponentially as well, while if the initial interaction is polynomially decaying (with an exponent large enough so that the system is in the uniqueness regime), then the transformed interaction decays polynomially as well (with a smaller power). The proofs of these results use the house-of-cards coupling argument. Chapters 3 and 4 provide new and explicitly computable examples of Gibbs-non-Gibbs transitions by using the large-deviation approach. These examples include independent Brownian motions, Ornstein-Uhlenbeck processes, and birth-death processes. Chapter 4 computes the Feng-Kurtz Hamiltonian and Lagrangian associated to the large deviations of the trajectory of the empirical distribution for independent Markov processes, and of the empirical measure for translation invariant interacting Markov processes. We treat both the case of jump processes (continuous-time Markov chains and interacting particle systems) and the case of diffusion processes. For di usion processes, the Lagrangian is a quadratic form of the deviation of the trajectory from the Kolmogorov forward equation. In all cases, the Lagrangian can be interpreted as a relative entropy (density) per unit time. Show less
Askar, S.F.; Bingen, B.O.; Swildens, J.; Ypey, D.L.; Laarse, A. van der; Atsma, D.E.; ... ; Pijnappels, D.A. 2012
Avian vocalizations function in mate attraction and territorial defence. Vocalizations can act as behavioural barriers and play an important role in speciation processes. Hybrid zones illustrate... Show moreAvian vocalizations function in mate attraction and territorial defence. Vocalizations can act as behavioural barriers and play an important role in speciation processes. Hybrid zones illustrate behavioural barriers are not always impermeable and provide a natural laboratory to examine the role of vocalizations in the causes and consequences of hybridization. This thesis examines a hybrid zone between two species of African doves: the vinaceous (Streptopelia vinacea) and ring-necked dove (S.capicola) by investigating its composition and history with molecular techniques, the mechanisms underlying the variation in dove coos and the response to hybrid signals within and outside the hybrid zone. The variation in hybrid signals and the possibility of learning which vocalizations to respond to can play an important role in facilitating further introgression between the two species. Show less