Rapidly detecting problems in the quality of care is of utmost importance for the well-being of patients. Without proper inspection schemes, such problems can go undetected for years. Cumulative... Show moreRapidly detecting problems in the quality of care is of utmost importance for the well-being of patients. Without proper inspection schemes, such problems can go undetected for years. Cumulative sum (CUSUM) charts have proven to be useful for quality control, yet available methodology for survival outcomes is limited. The few available continuous time inspection charts usually require the researcher to specify an expected increase in the failure rate in advance, thereby requiring prior knowledge about the problem at hand. Misspecifying parameters can lead to false positive alerts and large detection delays. To solve this problem, we take a more general approach to derive the new Continuous time Generalized Rapid response CUSUM (CGR-CUSUM) chart. We find an expression for the approximate average run length (average time to detection) and illustrate the possible gain in detection speed by using the CGR-CUSUM over other commonly used monitoring schemes on a real-life data set from the Dutch Arthroplasty Register as well as in simulation studies. Besides the inspection of medical procedures, the CGR-CUSUM can also be used for other real-time inspection schemes such as industrial production lines and quality control of services. Show less
Quality improvement (QI) projects often employ statistical process control (SPC) charts to monitor process or outcome measures as part of ongoing feedback, to inform successive Plan-Do-Study-Act... Show moreQuality improvement (QI) projects often employ statistical process control (SPC) charts to monitor process or outcome measures as part of ongoing feedback, to inform successive Plan-Do-Study-Act cycles and refine the intervention (formative evaluation). SPC charts can also be used to draw inferences on effectiveness and generalisability of improvement efforts (summative evaluation), but only if appropriately designed and meeting specific methodological requirements for generalisability. Inadequate design decreases the validity of results, which not only reduces the chance of publication but could also result in patient harm and wasted resources if incorrect conclusions are drawn. This paper aims to bring together much of what has been written in various tutorials, to suggest a process for using SPC in QI projects. We highlight four critical decision points that are often missed, how these are inter-related and how they affect the inferences that can be drawn regarding effectiveness of the intervention: (1) the need for a stable baseline to enable drawing inferences on effectiveness; (2) choice of outcome measures to assess effectiveness, safety and intervention fidelity; (3) design features to improve the quality of QI projects; (4) choice of SPC analysis aligned with the type of outcome, and reporting on the potential influence of other interventions or secular trends. These decision points should be explicitly reported for readers to interpret and judge the results, and can be seen as supplementing the Standards for Quality Improvement Reporting Excellence guidelines. Thinking in advance about both formative and summative evaluation will inform more deliberate choices and strengthen the evidence produced by QI projects. Show less