Models of heart disease and drug responses are increasingly based on human pluripotent stem cells (hPSCs) since their ability to capture human heart (dys-)function is often better than animal... Show moreModels of heart disease and drug responses are increasingly based on human pluripotent stem cells (hPSCs) since their ability to capture human heart (dys-)function is often better than animal models. Simple monolayer cultures of hPSC-derived cardiomyocytes, however, have shortcomings. Some of these can be overcome using more complex, multi cell-type models in 3D. Here we review modalities that address this, describe efforts to tailor readouts and sensors for monitoring tissue- and cell physiology (exogenously and in situ) and discuss perspectives for implementation in industry and academia. Show less
Giacomelli, E.; Sala, L.; Ward-van Oostwaard, D.; Bellin, M. 2021
Background: Human induced pluripotent stem cells (hiPSCs) and their derivative cardiomyocytes (hiPSCCMs) have been successfully used to study the electrical phenotype of cardiac ion channel... Show moreBackground: Human induced pluripotent stem cells (hiPSCs) and their derivative cardiomyocytes (hiPSCCMs) have been successfully used to study the electrical phenotype of cardiac ion channel diseases. However, strategies to mature CMs and more comprehensive systems recapitulating the heart complexity are required to advance our ability to capture adult phenotypes. Methods: We differentiated wild-type (WT) and long QT syndrome type 1 (LQT1) hiPSCs into CMs, endothelial cells and cardiac fibroblasts. The three cell types were combined to form three-dimensional (3D) spheroids, termed "cardiac microtissues" (cMTs) and the electrophysiological properties were measured using 96-well multi-electrode arrays. Results: LQT1 cMTs displayed prolonged field potential duration compared to WT controls, thus recapitulating the typical feature of LQTS. Isoprenaline caused a positive chronotropic effect on both LQT1 and WT cMTs. The 96-well multi-electrode array format proved suitable to detect electrical changes directly in the 3D tissues. Conclusions: 3D hiPSC cMTs are a scalable tool that can be used to identify LQT electrical hallmarks and drug responses. We anticipate this tool can be adopted by pharmaceutical companies to screen cardioactive compounds. (c) 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Show less