Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy which shows unparalleled therapeutic resistance due to its genetic and cellular heterogeneity, dense stromal tissue, and... Show morePancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy which shows unparalleled therapeutic resistance due to its genetic and cellular heterogeneity, dense stromal tissue, and immune-suppressive tumour microenvironment. Oncolytic virotherapy has emerged as a new treatment modality which uses tumour-specific viruses to eliminate cancerous cells. Non-human primate adenoviruses of the human adenovirus B (HAdV-B) species have demonstrated considerable lytic potential in human cancer cells as well as limited preexisting neutralizing immunity in humans. Previously, we have generated a new oncolytic derivative of the gorilla-derived HAdV-B AdV-lumc007 named ‘GoraVir’. Here, we show that GoraVir displays oncolytic efficacy in pancreatic cancer cells and pancreatic-cancer-associated fibroblasts. Moreover, it retains its lytic potential in monoculture and co-culture spheroids. In addition, we established the ubiquitously expressed complement receptor CD46 as the main entry receptor for GoraVir. Finally, a single intratumoural dose of GoraVir was shown to delay tumour growth in a BxPC-3 xenograft model at 10 days post-treatment. Collectively, these data demonstrate that the new gorilla-derived oncolytic adenovirus is a potent oncolytic vector candidate that targets both pancreatic cancer cells and tumour-adjacent stroma. Show less
Oncolytic adenovirus therapy is believed to be a promising way to treat cancer patients. To be able to target tumor cells with an oncolytic adenovirus, expression of the adenovirus receptor on the... Show moreOncolytic adenovirus therapy is believed to be a promising way to treat cancer patients. To be able to target tumor cells with an oncolytic adenovirus, expression of the adenovirus receptor on the tumor cell is essential. Different adenovirus types bind to different receptors on the cell, of which the expression can vary between tumor types. Pre-existing neutralizing immunity to human adenovirus species C type 5 (HAdV-C5) has hampered its therapeutic efficacy in clinical trials, hence several adenoviral vectors from different species are currently being developed as a means to evade pre-existing immunity. Therefore, knowledge on the expression of appropriate adenovirus receptors on tumor cells is important. This could aid in determining which tumor types would benefit most from treatment with a certain oncolytic adenovirus type. This review provides an overview of the known receptors for human adenoviruses and how their expression on tumor cells might be differentially regulated compared to healthy tissue, before and after standardized anticancer treatments. Mechanisms behind the up- or downregulation of adenovirus receptor expression are discussed, which could be used to find new targets for combination therapy to enhance the efficacy of oncolytic adenovirus therapy. Additionally, the utility of the adenovirus receptors in oncolytic virotherapy is examined, including their role in viral spread, which might even surpass their function as primary entry receptors. Finally, future directions are offered regarding the selection of adenovirus types to be used in oncolytic adenovirus therapy in the fight against cancer. Show less