In this acute intervention study, we investigated the potential benefit of ketone supplementation in humans by studying cardiac phosphocreatine to adenosine-triphosphate ratios (PCr/ATP) and... Show moreIn this acute intervention study, we investigated the potential benefit of ketone supplementation in humans by studying cardiac phosphocreatine to adenosine-triphosphate ratios (PCr/ATP) and skeletal muscle PCr recovery using phosphorus magnetic resonance spectroscopy (P-31-MRS) before and after ingestion of a ketone ester drink. We recruited 28 healthy individuals: 12 aged 23-70 years for cardiac P-31-MRS, and 16 aged 60-75 years for skeletal muscle P-31-MRS. Baseline and post-intervention resting cardiac and dynamic skeletal muscle P-31-MRS scans were performed in one visit, where 25 g of the ketone monoester, deltaG(R), was administered after the baseline scan. Administration was timed so that post-intervention P-31-MRS would take place 30 min after deltaG(R) ingestion. The deltaG(R) ketone drink was well-tolerated by all participants. In participants who provided blood samples, post-intervention blood glucose, lactate and non-esterified fatty acid concentrations decreased significantly (-28.8%, p MUCH LESS-THAN 0.001; -28.2%, p = 0.02; and -49.1%, p MUCH LESS-THAN 0.001, respectively), while levels of the ketone body D-beta-hydroxybutyrate significantly increased from mean (standard deviation) 0.7 (0.3) to 4.0 (1.1) mmol/L after 30 min (p MUCH LESS-THAN 0.001). There were no significant changes in cardiac PCr/ATP or skeletal muscle metabolic parameters between baseline and post-intervention. Acute ketone supplementation caused mild ketosis in blood, with drops in glucose, lactate, and free fatty acids; however, such changes were not associated with changes in P-31-MRS measures in the heart or in skeletal muscle. Future work may focus on the effect of longer-term ketone supplementation on tissue energetics in groups with compromised mitochondrial function. Show less
PurposeTo explore the effect of using extremely high permittivity (epsilon(r)approximate to 1,000) materials on image quality and power requirements of spine imaging at 3 T.Theory and MethodsA... Show morePurposeTo explore the effect of using extremely high permittivity (epsilon(r)approximate to 1,000) materials on image quality and power requirements of spine imaging at 3 T.Theory and MethodsA linear array of high permittivity dielectric blocks made of lead zirconate titanate (PZT) was designed and characterized by electromagnetic simulations and experiments. Their effect on the transmit efficiency, receive sensitivity, power deposition, and diagnostic image quality was analyzed in vivo in 10 healthy volunteers.ResultsSimulation results showed that for quadrature mode excitation, the PZT blocks improve the transmit efficiency by 75% while reducing the maximum 10g average specific absorption rate (SAR(10)) by 20%. In vivo experiments in 10 healthy volunteers showed statistically significant improvements for the transmit efficiency, and image quality. Compared to active radiofrequency shimming, image quality was similar, but the required system input power was significantly lower for quadrature excitation using the PZT blocks.ConclusionFor single-channel transmit systems, using high permittivity PZT blocks offer a way to improve transmit efficiency and image quality in the spine. Results show that the effect, and therefore optimal design, is body mass index and sex specific. Magn Reson Med 79:1192-1199, 2018. (c) 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. Show less