Advanced cardiac imaging modalities play a crucial role in the diagnostic process and clinical management of patients with different cardiac diseases, including heart failure, valvular heart... Show moreAdvanced cardiac imaging modalities play a crucial role in the diagnostic process and clinical management of patients with different cardiac diseases, including heart failure, valvular heart disease, myocardial infarction and atrial fibrillation. RT3DE has made an important transition from a research tool to a clinically applicable imaging technique and has been demonstrated to provide important advantages over conventional 2D echocardiography, such as a more accurate quantification of cardiac chamber size and function and the possibility of unlimited image plane orientations for better understanding of valvular heart diseases. Contrast-enhanced echocardiography should be performed in every patient with suboptimal acoustic window, especially with RT3DE. Importantly, in patients underwent primary percutaneous coronary intervention, perfusion analysis can provide an accurate estimate of myocardial infarction size, which is crucial information for the patient management, together with more sophisticated assessment of LV mechanics. Myocardial deformation imaging has witnessed an enormous development in the last years and is now considered an accurate tool for a more sensitive assessment of LV regional and global function and for a more detailed assessment of LV mechanics and dyssynchrony. CMR represents the reference imaging modality for the quantification of LV volumes and function and for the identification of myocardial scar/fibrosis. It should be therefore considered for a comprehensive evaluation of heart failure patients, including more novel and sophisticated assessments of transvalvular flow and LV dyssynchrony. Advanced cardiac imaging modalities can be applied in heart failure patients referred for CRT to explore novel physiopathological aspects, such as the effect on LV rotation mechanics, on functional mitral regurgitation and cerebral blood flow. Show less
In this thesis we aim at automating the analysis of 3D echocardiography, mainly targeting the functional analysis of the left ventricle. Manual analysis of these data is cumbersome, time-consuming... Show moreIn this thesis we aim at automating the analysis of 3D echocardiography, mainly targeting the functional analysis of the left ventricle. Manual analysis of these data is cumbersome, time-consuming and is associated with inter-observer and inter-institutional variability. Methods for reconstruction of 3D echocardiographic images from fast rotating ultrasound transducers is presented and methods for analysis of 3D echocardiography in general, using tracking, detection and model-based segmentation techniques to ultimately fully automatically segment the left ventricle for functional analysis. We show that reliable quantification of left ventricular volume and mitral valve displacement can be achieved using the presented techniques. Show less