Documents
-
- Download
- s10549-023-07102-y
- Publisher's Version
- open access
- Full text at publishers site
In Collections
This item can be found in the following collections:
Performance of a RAD51-based functional HRD test on paraffin-embedded breast cancer tissue
Purpose
BRCA-deficient breast cancers (BC) are highly sensitive to platinum-based chemotherapy and PARP inhibitors due to their deficiency in the homologous recombination (HR) pathway. However, HR deficiency (HRD) extends beyond BRCA-associated BC, highlighting the need for a sensitive method to enrich for HRD tumors in an alternative way. A promising approach is the use of functional HRD tests which evaluate the HR capability of tumor cells by measuring RAD51 protein accumulation at DNA damage sites. This study aims to evaluate the performance of a functional RAD51-based HRD test for the identification of HRD BC.
Methods
The functional HR status of 63 diagnostic formalin-fixed paraffin-embedded (FFPE) BC samples was determined by applying the RAD51-FFPE test. Samples were screened for the presence of (epi)genetic defects in HR and matching tumor samples were analyzed with the RECAP test, which requires ex vivo irradiated fresh tumor...
Show morePurpose
BRCA-deficient breast cancers (BC) are highly sensitive to platinum-based chemotherapy and PARP inhibitors due to their deficiency in the homologous recombination (HR) pathway. However, HR deficiency (HRD) extends beyond BRCA-associated BC, highlighting the need for a sensitive method to enrich for HRD tumors in an alternative way. A promising approach is the use of functional HRD tests which evaluate the HR capability of tumor cells by measuring RAD51 protein accumulation at DNA damage sites. This study aims to evaluate the performance of a functional RAD51-based HRD test for the identification of HRD BC.
Methods
The functional HR status of 63 diagnostic formalin-fixed paraffin-embedded (FFPE) BC samples was determined by applying the RAD51-FFPE test. Samples were screened for the presence of (epi)genetic defects in HR and matching tumor samples were analyzed with the RECAP test, which requires ex vivo irradiated fresh tumor tissue on the premise that the HRD status as determined by the RECAP test faithfully represented the functional HR status.
Results
The RAD51-FFPE test identified 23 (37%) of the tumors as HRD, including three tumors with pathogenic variants in BRCA1/2. The RAD51-FFPE test showed a sensitivity of 88% and a specificity of 76% in determining the HR-class as defined by the RECAP test.
Conclusion
Given its high sensitivity and compatibility with FFPE samples, the RAD51-FFPE test holds great potential to enrich for HRD tumors, including those associated with BRCA-deficiency. This potential extends to situations where DNA-based testing may be challenging or not easily accessible in routine clinical practice. This is particularly important considering the potential implications for treatment decisions and patient stratification.
Show less- All authors
- Wijk, L.M. van; Vermeulen, S.; Haar, N.T. ter; Kramer, C.J.H.; Terlouw, D.; Vrieling, H.; Cohen, D.; Vreeswijk, M.P.G.
- Date
- 2023-09-19
- Volume
- 202
- Pages
- 607 - 616