Documents
-
- Download
- Propositions
- open access
In Collections
This item can be found in the following collections:
Single-Molecule Probes in Organic Field-Effect Transistors
The goal of this thesis is to study charge transport phenomena in organic materials. This is done optically by means of single-moleculespectroscopy in a field-effect transistor based on a molecular crystal.We present (in Chapter 2) a fundamental requirement for single-moleculespectroscopy concerning the energy levels of the guest molecule withrespect to the ones of the host molecule. Following this constraint, westudy (in Chapters 3 and 4) the photophysics of a new system forhigh-resolution spectroscopy at cryogenic temperatures, which consistsof dibenzoterrylene molecules inserted in a crystal of anthracene. Wethen characterise (in Chapter 5) the electrical properties of theanthracene field-effect transistor with 'conventional' methods. In Chapter 6, wefinally use the influence of an electric field on the spectroscopicproperties of fluorescent molecules to investigate locally the chargecarrier transport phenomena in a crystal of anthracene.The...
Show moreThe goal of this thesis is to study charge transport phenomena in organic materials. This is done optically by means of single-moleculespectroscopy in a field-effect transistor based on a molecular crystal.We present (in Chapter 2) a fundamental requirement for single-moleculespectroscopy concerning the energy levels of the guest molecule withrespect to the ones of the host molecule. Following this constraint, westudy (in Chapters 3 and 4) the photophysics of a new system forhigh-resolution spectroscopy at cryogenic temperatures, which consistsof dibenzoterrylene molecules inserted in a crystal of anthracene. Wethen characterise (in Chapter 5) the electrical properties of theanthracene field-effect transistor with 'conventional' methods. In Chapter 6, wefinally use the influence of an electric field on the spectroscopicproperties of fluorescent molecules to investigate locally the chargecarrier transport phenomena in a crystal of anthracene.The goal of this thesis is to study charge transport phenomena inorganic materials. This is done optically by means of single-moleculespectroscopy in a field-effect transistor based on a molecular crystal.We present (in Chapter 2) a fundamental requirement for single-moleculespectroscopy concerning the energy levels of the guest molecule withrespect to the ones of the host molecule. Following this constraint, westudy (in Chapters 3 and 4) the photophysics of a new system forhigh-resolution spectroscopy at cryogenic temperatures, which consistsof dibenzoterrylene molecules inserted in a crystal of anthracene. Wethen characterise (in Chapter 5) the electrical properties of theanthracene field-effect transistor with 'conventional' methods. In Chapter 6, wefinally use the influence of an electric field on the spectroscopicproperties of fluorescent molecules to investigate locally the chargecarrier transport phenomena in a crystal of anthracene.The goal of this thesis is to study charge transport phenomena inorganic materials. This is done optically by means of single-moleculespectroscopy in a field-effect transistor based on a molecular crystal.We present (in Chapter 2) a fundamental requirement for single-moleculespectroscopy concerning the energy levels of the guest molecule withrespect to the ones of the host molecule. Following this constraint, westudy (in Chapters 3 and 4) the photophysics of a new system forhigh-resolution spectroscopy at cryogenic temperatures, which consistsof dibenzoterrylene molecules inserted in a crystal of anthracene. Wethen characterise (in Chapter 5) the electrical properties of theanthracene field-effect transistor with 'conventional' methods. In Chapter 6, wefinally use the influence of an electric field on the spectroscopicproperties of fluorescent molecules to investigate locally the chargecarrier transport phenomena in a crystal of anthracene.
Show less- All authors
- Nicolet, A.A.L.
- Supervisor
- Orrit, M.A.G.J.
- Qualification
- Doctor (dr.)
- Awarding Institution
- Faculty of Science, Leiden University
- Date
- 2007-10-04
- Title of host publication
- Casimir PhD Series
- ISBN (print)
- 9789085930358
Publication Series
- Name
- 2007-12
Juridical information
- Court
- LEI Universiteit Leiden