

The shadow side of positive organizational change: practitioners' experience navigating dialectical tensions in appreciative inquiry Haji, S.T.

Citation

Haji, S. T. (2024, April 23). The shadow side of positive organizational change: practitioners' experience navigating dialectical tensions in appreciative inquiry. Retrieved from https://hdl.handle.net/1887/3748009

Version: Publisher's Version

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3748009

Note: To cite this publication please use the final published version (if applicable).

CHAPTER 3: METHODOLOGY AND METHODS

3.1 Introduction

This chapter explains my methods for participant selection, including purposive sampling, gaining access to participants, and obtaining participant consent. Next, my data collection method is explored, including the rationale for interviews, preparing for interviews, and conducting interviews. The following section explains the data analysis strategy for this study, including a five-step process. The chapter concludes with my role as a researcher and ethical considerations.

3.2 Participant Selection

The ideal study participants are individuals who have the requisite experience to answer research questions (Magnusson & Marecek, 2015). AI practitioners are particularly well suited for this study because they have direct experience that qualifies them to answer questions about using AI in organizational change initiatives. Cooperrider and Srivastva (1999) originally conceived the role of the AI practitioner as "an active agent, an invested participant whose work might well become a powerful source of change in the way people see and enact their worlds" (in Cooperrider et al. 2005 p. 360). AI practitioners are ideal participants because they create the context, environment, and structure to foster positive discourse by embodying AI principles and the execution of AI methodology (Cooperrider et al., 2005). Practitioners also face the dilemma of maintaining AI's integrity and honoring AI participants' experiences, which may give rise to dialectical tensions.

3.2.1 Purposeful Sampling

Purposeful sampling is an appropriate strategy to identify participants who can provide information-rich data relative to the questions under study (Creswell, 2007; Yin, 2016; Palinkas, Horwitz, Green, Wisdom, Duan, & Hoagwood (2015). Purposeful sampling is used in qualitative research to select individuals who can "purposefully inform an understanding of the research problem and central phenomenon in the study (p. 125). Homogenous and snowball sampling work well to identify study participants with the requisite experience in using AI in organizational change efforts (Palinkas et al., 2015; Creswell, 2007; Lindlof & Taylor, 2002). In the case of this study, homogenous sampling looks for participants with similar experiences (Patton, 2002), and snowball sampling requests referrals from participants identified through homogenous sampling (Lindlof and Taylor, 2002).

Given this, I sought participants via the Taos Institute network of practitioners. The Taos Institute's community of AI practitioners was an ideal source for homogenous and snowball sampling. Taos is recognized as the epicenter of AI in North America, especially given that its board comprises AI methodology and research founders. Taos is also the sponsor of AI conferences and events which attract researchers and practitioners from across the globe. This community of practitioners is particularly well suited for this study given their interest, willingness, and experience using positive change processes, such as AI (Wengraf, 2001).

3.2.2 Gaining Access

I gained access to potential study participants through AI events and the extended Taos network. I attended two AI events. The first event occurred in early spring 2016. As an attendee, I received a participant contact list, which included email addresses, organizational affiliation, city, and state/province. The attendees represented six different countries and 36 different

cities/provinces. None of the attendees were local to my city and state. The second event occurred in the fall of 2018. For the second event, the contact list of attendees included participants from 4 different countries, over 25 states/provinces/regions, and 50 cities. I used the contact lists from both events to follow up with people that I had spent time with during the event. In 2016, I sent letters via email to 15 attendees, and 10 people responded. Of those respondents, all were willing to participate in the study, but due to scheduling conflicts, only eight were available. The eight study participants lived in eight different cities and states. In 2018, I emailed 12 attendees I interacted with during the event. In retrospect, I should have sent the invitations to all attendees and allowed them to accept or reject the invitation. I attribute my reluctance to being a new researcher. Of those 12, eight agreed to participate in the study.

The eight participants lived in two different countries and seven different cities. None of the participants lived in my city. In addition to the two AI events, I contacted the extended Taos Community by contacting practitioners listed on the AI Commons website. I emailed 25 practitioners listed on the site. The email aimed to determine fit by providing background information about the study's purpose and inviting them to participate (Magnusson & Marecek, 2015). Of the 25 emails sent, eight agreed to participate in the study. In addition, two referrals agreed to become study participants, bringing the total number of participants to 26 AI practitioners.

3.2.3 Participant Consent

Participants received a consent form to complete in advance of the interviews. The consent form included the following key elements: the central purpose of the study and the data collection procedures; comments about protecting the confidentiality of the respondents; a statement about any known risks associated with participation in the study; the expected benefits

to accrue to the participants in the study; and the right of participants to voluntarily withdraw from the study at any time (Creswell, 2007). In PDF format, participants returned signed copies of the consent form via email.

I asked participants to complete a Study Participant Questionnaire. The questionnaire asked how long the person had practiced AI, an estimated number of interventions including elements of AI, the specific elements of AI included in their interventions, the different types of organizations involved in AI interventions, and the countries in which the person has practiced AI. I compiled data from the Study Participant Questionnaire into a Study Participant Profile (Table 2). The 26 study participants had more than 388 combined years of experience practicing AI, with a median and mean of 15 years. Nearly a quarter of participants have 20 or more years of experience. The least amount of experience of a given participant was seven years. Study participants have led over 2,400 AI interventions in nearly 40 countries on six continents. Of the 26 practitioners, 23 had practiced AI in non-profit organizations, 21 had practiced in academia, and 20 had led AI interventions in the public sector. In addition, 15 of the 26 participants had practiced AI in religious organizations; 13 had worked in health; 12 had led interventions in information technology and the international sector; 11 had used AI in manufacturing; and eight had facilitated AI initiatives in the banking industry. In short, the participants represent an extensive arrangement of experiences with AI practices. Table 2 describes this detail and provides context for the analysis of findings in subsequent chapters.

Table 2
Study Participant Profile

Pseudonym	Years	# of AI	Types of Organizations	# of Countries
	practicing	Interventions		
	AI			
Cecily	19	100+	Academia, Information	6

Juanita	20+	30+	Technology, Health, Manufacturing, Not-for-profit, Religious, Public Sector, International (NGO) Academia, Health, Manufacturing,	3
			Not-for-profit, Religious, Public Sector	
Jasmine	20	250	Academia, Banking, Information Technology, Not-for-profit, Religious, Public sector, International (NGO)	8
Lori	18	100+	Academia, Health, Manufacturing, Not-for-profit, Religious, Public Sector, International (NGOO	3
Leanne	19	20+	Academia, Health, Not-for-profit, Professional and Civic Associations, Communities of Practice	1
Nate	19	50	Banking, Manufacturing, Not-for- profit, Religious, Oil & Gas, Cruise Lines, Education, Consumer Products	4
Rayelle	13	50+	Banking, Information Technology, Telecommunications, Not-for- profit, Public Sector	1
Wynonna	16	400+	Academia, Information Technology, Health, Manufacturing, Not-for-profit, Religious, Public sector, International (NGO)	4
Constance	13	7	Manufacturing, Not-for-profit, Public Sector, Associations	1
Sharon	9	100+	Academia, Banking, Health, Not- for-profit, Religious, Public Sector, International	6
Travis	12	100+	Academia, Health, Not-for-profit, Religious, Public Sector, International, Education	6
Sonita	22	100+	Academia, Banking, Information Technology, Health, Manufacturing, Not-for-profit, Religious, Public Sector, International	10
Ralph	14	30	Academia, Manufacturing, Not- for-profit	2
Melanie	8	30+	Academia, Information	1

			Technology, Not-for-profit, Public	
			Sector	
Vivian	10	15+	Academia, Public Sector, Criminal	3
			Justice	
Thomas	20	100+	Academia, Banking, Information	4
			Technology, Health,	
			Telecommunications, Not-for-	
			profit, Public Sector, International,	
			Social enterprise sustainability	
Carla	16	100+	Academia, Banking, Information	3
			Technology, Telecommunications,	
			Not-for-profit, Religious, Public	
			Sector, International, Non-pharma,	
			Business Entrepreneurs	
George	8	50+	Academia, Information	1
			Technology, Telecommunications,	
			Not-for-profit, Religious, Public	
			Sector, Utilities	
Cassie	20+	Unknown	Healthcare, Not-for-profit, Small	1
			business	
Lynette	7	50-100	Academia, Manufacturing, Not-	1
			for-profit, Religious, Public Sector,	
			and Professional associations	
Reagan	15	100+	Academia, Banking, Information	3
			Technology, Health,	
			Manufacturing, Not-for-profit,	
			Religious, Public Sector,	
			International, Research	
Sienna	18	40+	Information Technology,	1
			Religious, Healthcare	
Renata	10	100+	Academia, Health, Not-for-profit,	3
			Public Sector, International,	
			Insurance	
Lita	7	200+	Academia, Manufacturing, Not-	1
			for-profit, Religious, Public Sector	
Sinead	25+	200+	Academia, Information	13
			Technology, Manufacturing, Not-	
			for-profit, Religious, Public Sector,	
			International, Retail	
Karima	10	50	Academia, Health, International	3

3.3 Interviewing as a Data Collection Method

The research questions for this study sought knowledge about experiences of using AI in organizational change. The interview is a suitable data collection method to solicit experiences, perspectives, and worldviews. Interviews facilitate knowledge creation through questions and answers co-authored by the interviewer and interviewee (Kvale & Brinkmann, 2009; Lindlof & Taylor, 2009). Interviews also enable the researcher to collect data "about things or processes that cannot be observed effectively by other means" (Lindlof & Taylor, 2009, p. 174). A semi-structured interview allowed for an in-depth exploration of participants' experiences and situations, relied on open-ended questions, met the objective of obtaining detailed responses to research questions, and allowed for the emergence of participants' perspectives and interpretation of meanings (Charmaz, 2014; Kvale & Brinkmann, 2009; Lindlof & Taylor, 2009; Patton, 2002). In addition, a semi-structured interview approach aligned with the methodological commitments of the study in that the interviewer and interviewee were actively constructing meaning together in a deductive way (Silverman, 2014).

3.3.1 Preparing for the Interviews

To prepare for the interviews, I designed an interview protocol. An interview protocol was an appropriate method to guide the conversation's general flow and ensure asking the right questions to produce knowledge about the research questions (Creswell, 2009, 2007; Kvale & Brinkmann, 2009; Charmaz, 2014). The guide included opening remarks, introductory questions, transition questions, questions to solicit input relative to the research topics, and closing comments (Castillo-Montoya, 2016; Creswell, 2009; Krueger & Casey, 2009; Kvale & Brinkmann, 2009; Merriam, 2009; Rubin & Rubin, 2012). I assumed that I might not ask every

question and would adjust the guide to accommodate more in-depth descriptions and different conversational styles of study participants (Lindlof & Taylor, 2002).

In developing the interview protocol, I addressed several considerations for structuring qualitative interviews. The first primary consideration was to elicit participants' views and concerns while also addressing my concerns as a researcher. As Charmaz (2014) noted, "Both interviewer and interview participant bring their own priorities, knowledge, and concerns to the interview situation, which may not be entirely compatible" (p. 58). The second consideration related to the quality of questions regarding appropriateness, clarity, and conciseness (Kvale & Brinkmann, 2009; Lindlof & Taylor, 2002). The interview protocol included introductory questions like, "What is your history using Appreciative Inquiry in your work?" Introductory questions helped ease participants into the conversation and elicited background information on participants' history using AI. I included transition questions to shift the participant's focus toward the specific research questions. An example of a transition question was, "Have you had an opportunity to think about a time when you were practicing AI in an organization and encountered challenges?" A question related to the key research question was, "Can you describe what happened when you were practicing AI in an organization and encountered challenges?" Sub-questions were also included in the protocol to deepen the inquiry related to the research questions. Sub-questions included "what" or "how" questions, which tend to "elicit spontaneous descriptions from the subjects" (Kvale & Brinkmann, 2009). An example of a sub-question was, "What was your sense of how others around you were experiencing the situation?"

I used an interview protocol refinement (IPR) framework to ensure the interview questions aligned with the research questions, fostered inquiry-based conversation, and were jargon-free (Castillo-Montoya, 2016). For example, the IPR framework helped to identify

appropriate interview questions to solicit participant knowledge about the central research question (RQ1):

"What are experiences of dialectical tension associated with AI in organizational change efforts?"

I developed several interview questions to align with RQ1, including the following:

"Can you think of a time when you were using AI and the focus turned away from the positive?"

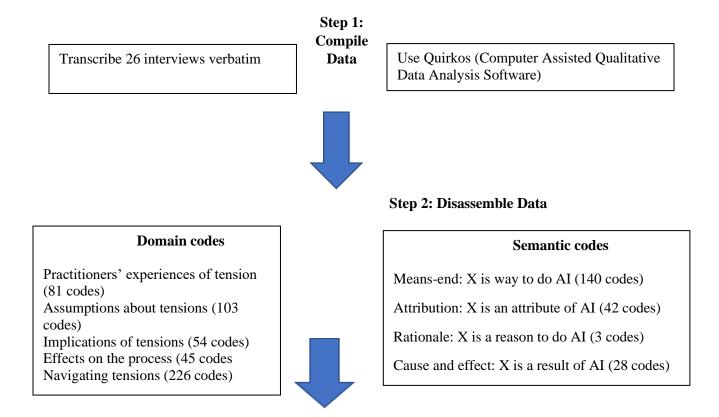
"What was the intended focus of the AI initiative?"

"In what ways did the focus shift from the original intention?"

The IPR framework helped test the interview questions for appropriateness and clarity.

3.3.2. Conducting Interviews

The study participants had three options for a one-on-one interview: face-to-face (in person), web-based video/audio conferencing, or teleconference. All twenty-six participants opted to interview via the web-based platform. The advantages of virtual interviews included accessibility without the cost of travel, scheduling flexibility across different time zones, and ease of audio and visual data capture (James & Busher, 2009; Hanna & Mwale, 2017). I selected the JoinMe platform for the first eight interviews. The JoinMe platform offered an automatic scheduling feature, toll-free access, voice-over-internet protocol (VOIP), and call recording (audio only). I selected the Zoom platform for the additional 18 interviews because Zoom offered audio and video recording and the basic service offered by JoinMe. Both web-based platforms were effective alternatives to face-to-face interviews because the platforms enabled synchronous (real-time) audio and visual interaction between the interviewer and interviewee (Hanna & Mwale, 2017). Participants were emailed instructions on how to access the web-based


conferencing platform. The JoinMe and Zoom platforms provided recorded files immediately following the interviews. The JoinMe (audio files) and the Zoom (audio and visual) files have been stored on a secure, cloud-based platform. The names of participants have been changed to pseudonyms to protect anonymity. The names of organizations have also been masked to protect confidentiality.

The first eight interviews were scheduled and conducted between July 2016 and September 2016. I conducted the second set of 18 interviews between December 2018 and July 2019. I scheduled the initial eight interviews for one hour as a courtesy to participants. However, in three cases, the interview extended beyond the hour, with the participants' permission. The most extended interview lasted 1 hour and 23 minutes. I scheduled all future interviews for at least 90 minutes. Some participants prepared several stories to share and needed minimal prompting. Others needed prompts to help them stay on track. And at least one participant had trouble thinking of examples related to the research questions. In the latter case, I shifted the conversation to elicit more background information on his use of AI, which seemed to relax him. Within a few moments, he was able to share a challenging encounter in his AI practice. The interview protocol was helpful as a guide; however, I conducted each interview differently to enrich the study participant's experience (Kvale & Brinkmann, 2009). Study participants provided 55 examples of AI-related tensions in organizational change interventions. Of the 55 examples, 36 included rich (thick) descriptions (Creswell, 2007). After conducting 26 interviews, there were no new surprises in the data, indicating a saturation point (Creswell, 2007).

3.4 Data Analysis Strategy

This section describes the strategy that I followed to analyze the data. A thematic analysis (TA) strategy (Yin, 2016; Castleberry & Nolen, 2018) aligned with the goals of this study to solicit experiences from study participants, interpret those experiences, and produce useful knowledge. The TA strategy provided a multi-step process for data analysis (Yin, 2016) that included compiling the data, disassembling the data, reassembling the data, interpreting the data, and drawing conclusions (Figure 4). I describe each step of the process in further detail in the following sections.

Figure 4: Thematic Analysis (TA) Strategy

Step 3: Reassemble Data

Taxonomic Coding (Example): Naming the shadow is a way to do AI				
Vulnerability Shadow (114 codes) Authority Shadow (86 codes)				
Doubt Shadow (50 codes)	Inequity Shadow (15 codes)			

Step 4: Interpret and Further Reduce the Data

Shadow Codes Underlying Tensions		Refined Shadow
		Interpretations
Authority	Hierarchical-collaborative	Leadership Shadow
-	Leadership	_
Vulnerability/Inequity	Free expression-limited	Voice Shadow
	expression	
Doubt	Future-present later evolved to	Temporal Shadow
	Short-Term Orientation (STO)-	
	Long-Term Orientation (LTO)	

3.4.1 Compiling the Data

The first step of the TA strategy was to compile study participant interview data into a usable form (Castleberry & Nolen, 2018; Yin, 2016). I compiled the interview data collected via audio and video files into written transcripts. The transcribed interviews totaled 575 single-spaced pages of data. I transcribed 25 of the 26 interviews. I sent one interview out to a professional transcription service. I decided the advantage of staying close to the data outweighed the convenience of having the transcription done by someone else (Lindlof & Taylor, 2002; Kvale & Brinkmann, 2009). I employed a transcription protocol to capture the actual words spoken, verbatim, by the interviewer and interviewee, with no "clean up" or polishing of speech (Cibils, 2019; Kvale & Brinkmann, 2009). Transcripts included notations of laughter or nodding to provide added dimension but did not include notations of other gestures (Kvale & Brinkmann, 2009).

I used Quirkos, a Computer Assisted Qualitative Data Analysis Software (CAQDAS), to assist in data storage, retrieval, and coding. I selected Quirkos based on ease of use and the capability to organize coding into hierarchies and clusters (Saldaña, 2016). The Quirkos software

was compatible with Microsoft Word, allowing me to easily upload transcripts and download summary reports.

3.4.2 Disassembling the Data

The next step in the TA process was to take the data apart to create meaningful groupings (Castleberry & Nolen, 2018; Yin, 2016) in preparation for disassembling the data. I read and reread the transcripts multiple times to get a sense of the data (Castleberry & Nolen, 2018). I revisited my research questions, philosophical assumptions, and ontological and epistemological perspectives to confirm the type of knowledge to be generated by the study (Saldaña, 2016). Next, I determined that coding was appropriate for disassembling the data. Charmaz (2014) defines coding as "categorizing segments of data with a short name that simultaneously summarizes and accounts for each piece of data" (p.111). Codes enhanced my ability as a researcher to "explicate how people enact or respond to events, what meanings they hold, and how and why these actions and meanings evolved" (Charmaz, 2014, p. 113).

I utilized domain and semantic relationship coding strategies to discover and categorize knowledge collected from study participants (Saldaña, 2016; Spradley, 1979). A domain coding strategy facilitated data disassembly into categories (Spradley, 1979; McCurdy, Spradley, & Shandy, 2005). The domain categories aligned with my research questions regarding practitioners' experiences, assumptions about tensions, implications of tensions, effects of tension on the process, and navigation strategies. For example, I identified navigating strategies as a domain name, navigating strategies (Table 3).

Table 3

Domain Coding Example

Domain	Examples from data
Navigating	Reframing tension (54)
dialectical	Acknowledge the tension (42)

tensions (226	Leadership coaching/development (29)
codes)	Rely on the AI process (26)
	Create a safe space for positive engagement (11)
	Focus on concrete next steps (9)
	Find common ground (9)
	Teach new skills (8)
	Diagnose the tension (7)
	Diagnose inequities (7)
	Honor cultural norms (5)
	Facilitator owns the tension (5)
	Enact policy change (3)
	Tension deferred (3)
	View tension through core values lens (2)
	Emphasize voluntary participation in the process (2)
	Expand dualistic thinking (2)
	Address emotions (1)
	Hold up the mirror (1)

I also used semantic relationship coding to disassemble the data (Saldaña, 2016; Spradley, 1979). I chose four semantic relationships that I believed would help me to analyze the data with a fresh perspective: means-end (X is a way to do AI); attribution (X is an attribute of AI); rationale (X is a reason for doing AI); and cause and effect (X is a result of AI). I read the transcripts multiple times to identify examples of the different semantic relationships. When examples were found, they were assigned a code that matched the name of the semantic relationship (Table 4). For example, an excerpt from a transcript read, "If I am going to do this again, I've got to be willing to push back, to name the shadows." I coded the excerpt as a meansend semantic relationship: naming the shadows is a way to do AI.

Table 4
Semantic Relationships Coding Example

Means-End Semantic Relationship	Examples
X is a way to do AI (103 codes)	Preparing leaders (25)
	Meeting people where they are (15)
	Blended methodologies (14)
	Covert (not naming AI) (13)
	Naming the shadows (12)

Persistence (6)
Relationship building (5)
Trust building (4)
Training (3)
Overt (naming AI) (2)
Coaching (2)
Storytelling (1)
Put people first (1)

3.4.3 Reassembling Data

I reassembled the data by combining domain codes and identifying themes (Castleberry & Nolen, 2018; Yin, 2016). I used a taxonomic coding strategy to reduce the data by showing patterns in the data (Castleberry & Nolen, 2018). A taxonomy defines hierarchical lists of domain data with a shared attribute (McCurdy et al., 2005). For example, *naming the shadows* emerged as a means-end semantic relationship from the transcripts. Looking across the data, I saw patterns that seemed linked to unnamed organizational shadows. I created four preliminary codes for each of the potential shadows: the shadow of authority, the shadow of doubt, the shadow of vulnerability, and the shadow of inequity. Next, I coded short phrases to describe the shadow. For example, I assigned 86 codes to the shadow of authority, including telling versus engaging, blocking (participation), and management knowing best (Table 5).

Table 5

Taxonomic Analysis: Acknowledging the Shadow

Shadow Description	Codes
Shadow of Authority (86)	Telling versus engaging (11)
	Blocking (11)
	Management knows best (10)
	Perceived loss of control (8)
	Taking charge (6)
	Them not us (6)
	Handle it (6)
	Leaders drive change (4)
	Profit motivation (4)
	Unilateral decision-making (4)

Censoring (3) Blaming (3) Favoritism (3) Dismantling (3) One-off versus ongoing (2) Regression (2)

Next, I reviewed all 26 transcripts again to identify data that fit one or more shadow codes. Data included phrases and longer descriptions. There were over 100 codes assigned to the shadow of vulnerability, close to 90 for the shadow of authority, 50 for the shadow of doubt, and 15 for the shadow of inequity.

3.4.4 Interpreting and Further Reducing the Data

The fourth step of the TA strategy was to interpret the relational meaning between all coded data (Yin, 2016). At this stage, I needed to look beyond taxonomies and domains to think more broadly about what was happening within and across participants' experiences and not just restate codes and themes as interpretations (Castleberry & Nolen, 2018). I revisited the research questions to ensure my interpretations stayed close to the study's goals. I also reviewed my central research question, reminding me to focus my interpretations on dialectical tensions associated with AI in organizational change efforts. Three tensions emerged from the data: hierarchical-collaborative leadership, free expression-limited expression, and short-term orientation (STO)-long-term orientation (LTO). Further analysis helped to clarify and refine my interpretation of hierarchical-collaborative leadership tension through the lens of a leadership shadow, free expression-limited expression tension through the lens of a voice shadow, and STO-LTO from the perspective of a temporal shadow.

I developed an argumentative outline to facilitate the construction of claims. For example, as I considered the tension of hierarchical-collaborative leadership, I developed

argumentative claims to answer the central research questions (RQ1 and RQ2, and sub-questions. I repeated the process with free expression-limited expression and STO-LTO. The arguments became the foundation for the claims presented in the findings.

My interpretations of the data aimed to meet the five goals of good qualitative interpretation, identified by Yin (2016) and outlined by Castleberry & Nolen (2018):

First, the interpretation should be complete. Readers should be able to see the beginning, middle, and end of how the interpretations were drawn. Second, the interpretations should be fair in that other researchers should reach the same interpretation if given the same data. Third, the interpretations should also be accurate and representative of the raw data. Fourth, in the context of current literature, good studies will add value to our understanding of the topic. Fifth, the data methods and subsequent interpretations should be credible and gain respect from colleagues. (p.812)

As I developed interpretations, I referred to Yin's (2016) goals as a guide. For example, I tested my interpretation of shadows with one study participant to assess the credibility of my interpretation. The study participant was receptive to shadows and cited examples of when shadows surfaced in his AI work.

As the interpretation process evolved, free expression-limited expression, hierarchical-collaborative leadership, and STO-LTO tensions were central to answering the research questions. Yin (2016) also posited that data analysis should lead to one or more conclusions about the broader significance of the study (Yin, 2016). Conclusions may call for new research, challenge conventional social stereotypes, introduce new concepts, theories, or discoveries, generalize conclusions to a broader set of situations, or pose a call to action (Yin, 2016). I will present conclusions about this study in later chapters.

3.5 Data Validation

To test the strength of the findings, I used a data validation methodology that involved taking raw data from the initial research back to individuals or groups with similar backgrounds and expertise who would recognize the findings as true and accurate (Lindlof & Taylor, 2002). I chose Interpretive Focus Groups (IFGs) as my primary data validation method because it allowed me to engage more participants in one setting. IFGs emerged out of feminist research (Leavy, 2007) to extend the analysis of existing and the co-creation of new data as participants examine raw data chunks and share their interpretations of what they see (Favero & Heath, 2012; Hesse-Biber & Leavy, 2007; Redman-MacLaren, Mills & Tommbe, 2014). My secondary method for data validation was individual interviews for anyone interested in participating in the process but unable to attend a scheduled IFG session.

3.5.1 Member Recruitment

I considered the AI Practitioner community ideal for IFG member recruitment since they likely had the requisite knowledge and expertise to validate the findings (Hesse-Biber & Leavy, 2007). I sent an email to Dr. Lindsey Godwin, Academic Director of the David L. Cooperrider Center for Appreciative Inquiry at Champlain College in Burlington, Vermont, USA, informing her that I was interested in inviting alums of the AI certification program to participate in focus groups to test my findings. I explained the purpose of my study is to understand the experiences of practitioners who have used AI for organizational change, and during the process, the focus on the positive shifted in some way. Further, I included the aim to interpret shifts experienced by practitioners and what happened. As a token of appreciation, I offered volunteers a \$10.00 e-gift card to Starbucks (coffee). I also included three optional dates to participate in the study. The

email to AI certificate alums and the broader AI practitioner community. I sent a similar email request to Dawn Dole, Executive Director of the Taos Institute. The mission of the Taos Institute is to explore, develop, and disseminate ideas and practices that promote creative, appreciative, and collaborative processes in families, communities, and organizations worldwide. Dole is also the Knowledge Manager of the Appreciative Inquiry Commons, a virtual space for people interested in AI to share resources and connect with the global AI community. Dole forwarded my email request to 750 people affiliated with the Taos Institute, not all of whom were AI practitioners. Godwin and Dole agreed to send the email request three times over three weeks.

As people expressed interest in joining a focus group, I followed up the same day with an email or telephone call to thank them for their interest and to confirm their preference for one of the scheduled sessions. The following email to participants included a Zoom link for their scheduled IFG session and a request to read, sign, and return a consent form and background questionnaire. Both forms followed the same format I used to collect data from the original 26 study participants. I requested participants return the completed forms to me via email or postal mail before their scheduled IFG session. I also included the data chunks as discussion prompts for the IFG. I selected six excerpts of raw data that represented the significant findings associated with free expression-limited expression, hierarchical-collaborative leadership, STO-LTO, and the role of positivity in AI. In my invitation letter, I explained that the session aimed to solicit their thoughts about what is happening in the excerpts and how the examples compare or contrast with their own experiences using AI. Further, I invited participants to reflect on how they have navigated tensions in their AI practice.

A total of 15 volunteers confirmed their participation in one of the three scheduled IFG sessions. The participants represented an international demographic of AI practitioners having

more than 250 years of cumulative experience (Table 6). Of the 15 volunteers, I slotted six in the first group, four in the second group, and five in the third group. However, due to scheduling conflicts, one participant in the first group requested to be moved to the second session. And two volunteers in the third group dropped out at the last minute. Two people could not attend one of the three IFG sessions but were available to participate in individual interviews to provide their interpretations of the data excerpts. Adding the two individual interviews brought the number of participants to 15.

Table 6Data Validation Participant Profile

Pseudonym	Years	# of AI	Types of Organizations	# of Countries
	practicing AI	Interventions		
Lorenzo	13	15	Academia, public sector,	1
			international, tourism	
Adrienne	10	1	Not-for-profit	1
Grace	15	35	Academia, health, not-for-	1
			profit, public sector	
Jackson	17	50+	Not-for-profit, schools	2
Julia	27	100+	Academia, banking,	13
			information technology,	
			health, manufacturing,	
			telecommunications, not-for-	
			profit, religious, public	
			sector, international	
Julian	26	150	Academia, banking,	19
			information technology,	
			health, manufacturing,	
			telecommunications, not-for-	
			profit, religious, public	
			sector, international	
Jacob	27	100+	Academia, not-for-profit,	7
			public sector, international	
Donald	16	100+	Academia, banking, health,	7
			manufacturing,	
			telecommunications, not-for-	
			profit, public sector,	
			international, military,	
			fashion, consumer goods,	

			agri-business, media, transportation	
Nancy	7	500	Academia, information technology, health, Telecommunications, not-for-profit, religious, public sector, international, counseling	3
Iris	25	10	Academia, health, manufacturing, not-for- profit, religious, public sector	1
Sebastian	He completed the consent form but not the questionnaire	N/A	N/A	N/A
Joy	22	100+	Academia, banking, information technology, health, manufacturing, not-for-profit, religious, public sector, international	6
Jade	18	50	Academia, information technology, manufacturing, not-for-profit, public sector, financial planning, start-ups	1
Cedric	17	100+	Academia, information technology, health, not-for-profit, religious, public sector, international,	5
Tracy	12	200+	Academia, banking, information technology, manufacturing, not-forprofit, religious, public sector, international, energy, economic development, management consulting	11

3.5.2 IFG Moderation

I was the lead moderator for the three focus groups. The role of the moderator is to guide the IFG conversation while ensuring that participants can speak freely (Hesse-Biber & Leavy,

2007). Dr. Renee Heath, my academic advisor, was also in attendance. Dr. Heath's role was to take note of comments and themes emerging from the session. I began each session by welcoming participants. I also reminded participants about the recording of the call. In addition, I informed participants about the transcription service add-on feature (Otter a.i.). Next, I invited participants to introduce themselves by stating their names and geographic location. I then provided a brief overview of the study and thanked participants for returning the signed consent agreement. I also reminded participants about their voluntary participation, letting them know they could withdraw from the study anytime. I asked for a verbal acknowledgment to confirm their understanding. I stated that I might use quotes to support the data; however, I would remove any identifiable details to maintain their confidentiality. I finished the introduction by asking each person to consent to maintain the confidentiality of their fellow participants.

I called attention to the data excerpts included in their email invitation. I explained that the excerpts were from AI practitioners participating in my research. I paused to allow everyone a moment to read the excerpts projected on the Zoom screen. I explained the intention of using the excerpts as prompts and that we may or may not discuss all six excerpts. Once everyone had indicated they were ready to begin the discussion, I invited them to offer their reflections about any tensions they noticed and their thoughts about how the data compares or contrasts to their experiences navigating tensions in AI. I informed the group that anyone could start the conversation focusing on any excerpt, meaning proceeding linearly from excerpt one to excerpt two was unnecessary. I emphasized the intention to have a free-flowing conversation that allowed everyone to speak while honoring one voice at a time.

In the first two IFGs, which included five members each, we noticed that participants initially wanted to know more about the conditions leading up to the tension. We encouraged

them to focus on whether the excerpts presented were realistic and if they had experienced similar situations in their AI practice. In the first and second sessions, two people stated they had not experienced the scenarios depicted in the excerpts. However, we noticed that once one group member acknowledged that they had personally experienced some, if not all, of the excerpts, the group began to recall their own stories of anomalies. In the third group, which had three members, the conversation developed quickly as one of the members stated upfront that their experiences resonated with all the excerpts. In each of the three sessions, we paused at different intervals to allow Dr. Heath to mirror the themes she heard from the group discussion. We projected the themes on the screen. We asked participants to confirm whether the notes accurately described the discussion up to that point. In all three sessions, participants unanimously confirmed the accuracy of the themes captured in the notes.

3.5.3 Thematic Analysis

I read and re-read the 71 pages of transcribed notes from the IFG sessions and individual interviews. I used Microsoft Word to cut and paste the 63 stories participants shared into themes consistent with my initial findings (Table 7). The themes included topics identified in my initial data collection regarding leadership buy-in for AI's collaborative leadership approach, the expression and limited expression of painful narratives, the role of AI principles, strategies for navigating tension, and understanding/misunderstanding of positivity in AI. In addition, new data emerged regarding philosophy versus methodology, invited versus mandatory, generativity versus positivity, leadership authenticity, story fatigue, the third voice, and the expression of paradox in AI, such as the notion of staying with what isn't to elevate what is or the frustrated dream.

Table 7

Themes from interpretive stories

Themes	Number of stories
Leadership buy-in for AI	17
Expression of painful narratives	11
The embodiment of AI principles—not just the positive	9
Navigating free expression-limited expression tension	9
Navigating hierarchical-collaborative tension	7
Navigating tension by reframing tension as complementary dialectics	7

3.6 My Role as Researcher

The final section of this chapter positions my role as a researcher within the context of a constructionist, interpretive research paradigm. I examine my role at different junctures in the research process. Lastly, I discuss the ethical considerations of my role as a researcher.

I entered the doctoral program through my relationship with the Taos Institute. When I embarked on my research journey, I questioned whether I had the knowledge and expertise to write about a positive organizational change methodology, such as AI. I earned my M.S. in Organization Development (OD) from The American University in Washington, D.C., in 1989. I practiced OD as an internal consultant in the telecommunications industry from 1989 to 1992 before launching my private OD practice in late 1992. Although I had used elements of AI methodology in my professional practice for over a decade, I was not certified as an AI practitioner. I used the methodology enough times to form impressions about AI's strengths and weaknesses. I spent the first year of my studies reading and learning about social constructionist theory and AI scholarship. As I learned more, I anticipated this research would influence how I viewed myself as a change agent and researcher. I hoped that my research would inform my practice and that the lessons I learned about the practice of AI and positive change would inform scholarship. Coming into the study, I knew I was not a neutral or objective party. As Charmaz

(2014) noted, "We are part of the world we study, the data we collect, and the analyses we produce" (p.17). I committed to staying aware of my active role in constructing each study phase to mitigate potential bias.

My role as a researcher involved gaining access to study participants. Identifying research participants involved gaining access to a community of AI professionals. My first exposure to the community occurred at an AI gathering of practitioners. I was a relative stranger to the community of practitioners. My goals for attending the event were to learn more about AI and the AI community of practitioners and to network with potential research participants. I observed a tight-knit community that had deep experience using AI. I also experienced a sense of welcome. After the first evening, I lost the feeling of being an interloper. I also made several connections with attendees I thought would be ideal candidates for my research. I refrained from asking people to participate in the study during the event. I did not want anyone to feel compelled to agree because of "face-to-face" pressure. I chose, instead, to follow up with my "warm" a couple of weeks after the event. I was pleasantly surprised at the willingness of seasoned AI practitioners to participate in my research. I sensed a commitment on their part to advance knowledge about AI. As such, I felt responsible for doing good research that would contribute to the field.

I noticed that my confidence in conducting interviews increased over time. Although I had developed an interview protocol guide, the earlier interviews often focused too much on preliminary warm-up questions. I realized that discussing substantive experiences related to the research questions would be a better use of time. I also learned not to make assumptions about how participants were practicing AI. In one of my early interviews, I asked the study participant how she was applying the 4-D methodology. The interviewee initially seemed to be confused by

my question. At that moment, I realized I had assumed how people used AI methodology. From then on, I was more conscious of asking clarifying questions regarding how people practice AI.

Throughout the interview process, I learned to pay attention to how people talked about AI and how I talked about AI. One participant questioned my focus on "challenges" with AI, noting that the word was a negative label. The participant's reaction was not unexpected, considering AI's constructionist principle posited *words create worlds*. Instead of becoming defensive, I acknowledged my bias, which put the participant at ease. I wanted the participant to feel comfortable challenging me and my use of language, which created a more level playing field. The participant moved on and could identify several "challenging" experiences he had encountered using AI.

As a researcher, I built trust and rapport with study participants (Creswell, 2009). There were several instances where participants exposed their vulnerability relative to what they perceived as failures in their AI practice. In one example, a study participant described an AI summit that she had facilitated focused on eliminating racism. During the summit, several attendees accused the study participant, a white woman, of being a racist, as she tried to get attendees to focus on possibilities rather than on past injustices. She remembered how emotional it was for her, saying, "I would go in my room, and I would just cry, cry, cry, and just splash on water. And I would meditate and ground myself, and I would go back out." A second study participant shared her experience co-leading an AI initiative with attendees in a bitter conflict about school funding. The practitioner recalled how the attendees were rude to each other and also rude to her. She also noted how the attendees seemed to show more favoritism toward her male colleague. She reflected on her feelings and said, "It becomes a downward spiral, in my own narrative as a practitioner, feeling like a victim." In a third example, a female study

participant recalled how she experienced self-doubt about her ability to work effectively with older white males in senior leadership positions. The practitioner noted, "There's something about a woman talking about, asking into strengths, and focusing on the positives that feels like, oh, sweet girl." And, in a final example, a study participant described her support of a client seeking funding for an AI initiative. The client had also partnered with a financial consultant to work alongside the study participant. According to the study participant, the consultant had a much more traditional approach to the project and questioned the viability of AI. The study participant noted, "he would write me and copy her on these long emails as to why what I was doing wasn't working. And I got angry. I got defensive. And I would reply back with all of the evidence defending AI." In those examples, I demonstrated empathy and respect for their willingness to be open and vulnerable. I maintained rapport with participants by pausing, listening, and acknowledging their thoughts and emotions. I recalled an observation by Charmaz (2014) regarding women interviewing women:

The quality of women's responses may range widely when other people had previously silenced them about the interview topic or the topic elicits shame. Hence, participants' responses to the interview may range from illuminating, cathartic, or revelatory to uncomfortable, painful, or overwhelming. The topic, its meaning, and the circumstance of the participant's life, as well as the interviewer's skills, affect how women experience their respective interviews (Charmaz, p. 77)

My ability to stay present with participants enhanced the interview process and deepened the trust between the interviewee and interviewer. In all four examples cited above, I allowed each person to process insights from their experience. The woman accused of being a racist offered an insight that "people need to be heard and acknowledged." For the woman who experienced rudeness and gender bias, she reflected, "I need to connect with them, even if it is the most difficult connection to make." For the woman who felt diminished as a "sweet girl" for

focusing on the positive, her reflection was not to be afraid to say, "How do we engage and collaborate to figure out either how to stop wasting your time and my time and your money? Or how do we figure out how to move things forward?" And, for the woman who found herself defending AI to a critic, she reflected, "Sometimes, you have to just walk away from those situations for my own health and sanity."

As a researcher, I noticed how my biases affected my interactions with participants and the data. A bias that I was keenly aware of in the initial stages of the study was my "positivist shadow." My natural inclination to solve problems was to search for "the" answer. Hanging out in the constructionist space did not come naturally to me. As such, I realized the importance of continually challenging my thinking in a way that opened up possibilities rather than shut them down. I was constantly reminded of my role as a constructionist researcher to learn about participants' experiences in a way that knowledge and meaning were co-constructed. As I sought to understand and interpret the data, I also noticed my tendency to go "native," meaning, at times, I would find myself standing in the shoes of the practitioner versus the shoes of an academic researcher. With the help of my advisors, I worked diligently to develop a researcher's mindset as I worked with the data.

My role as a researcher was to uphold ethical practices. I followed ethical guidelines for obtaining informed consent, protecting the confidentiality of study participants by using aliases, safeguarding stored data, and being mindful of power imbalances that favor the researcher (Kvale & Brinkmann, 2009). In one of my interviews, the participant expressed concern about whether her identity and comments would appear on social media. I assured her that the information would not be made public in that way, which eased her concerns. I explained that the research was for academic purposes and not for social media platforms. I explained that I would

use pseudonyms and mask the names of client organizations. The participant agreed and proceeded with the interview.

This chapter explained the methods I employed in my research and my role as a researcher. This background is foundational to the three findings chapters that follow.