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Chapter 4

On the decisional
Diffie–Hellman problem for
class group actions on
oriented elliptic curves

This chapter consists of a paper written together with Wouter Castryck, Frederik Ver-
cauteren, and Benjamin Wesolowski. It has been published as

Wouter Castryck, Marc Houben, Frederik Vercauteren, and Benjamin Wesolowski.
On the decisional Diffie-Hellman problem for class group actions on oriented elliptic
curves. Res. Number Theory, 8(4):Paper No. 99, 18, 2022. https://doi.org/10.

1007/s40993-022-00399-6.

All authors of this paper contributed equally to the work.

Compared to the published version, we have fixed a few minor typographical and
mathematical errors. We also improved the complexity estimate of the second step
in Algorithm 1 based on a suggestion by Marco Streng. Additionally, we more con-
cretely specified the input size in the complexity statements of Section 4.5, following
a suggestion by Chloe Martindale. The numbering (of e.g. theorems and definitions)
in the published version is different.
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Abstract

We show how the Weil pairing can be used to evaluate the assigned characters of an imaginary

quadratic order O in an unknown ideal class [a] ∈ Cl(O) that connects two given O-oriented

elliptic curves (E, ι) and (E′, ι′) = [a](E, ι). When specialized to ordinary elliptic curves over

finite fields, our method is conceptually simpler and often somewhat faster than a recent

approach due to Castryck, Sotáková and Vercauteren, who rely on the Tate pairing instead.

The main implication of our work is that it breaks the decisional Diffie–Hellman problem for

practically all oriented elliptic curves that are acted upon by an even-order class group. It

can also be used to better handle the worst cases in Wesolowski’s recent reduction from the

vectorization problem for oriented elliptic curves to the endomorphism ring problem, leading

to a method that always works in sub-exponential time.
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On the DDH problem for class group actions

4.1 Introduction

This paper is primarily concerned with the Decisional Diffie–Hellman problem
(DDH) for ideal class groups acting on oriented elliptic curves through isogenies. In
order to state this problem precisely, we fix an order O in an imaginary quadratic
number field K along with an algebraically closed field k. A (primitive) O-orientation
on an elliptic curve E over k is an injective ring homomorphism ι : O ↪→ End(E) that
cannot be extended to a superorder O′ ⊋ O in K. The set

EℓℓO(k) = { (E, ι) |E an elliptic curve over k and ι an O-orientation on E }/ ∼=,

if non-empty, comes equipped with a free action

Cl(O)× EℓℓO(k) −→ EℓℓO(k) : ([a], (E, ι)) 7−→ [a](E, ι) (4.1)

by the ideal class group of O, see Section 4.2 for details (including what it means for
two O-oriented elliptic curves (E, ι) and (E′, ι′) to be isomorphic). Now assume that
a party, say Eve, has unlimited access to samples from EℓℓO(k)3 that are consistently
of either of the following two forms:(

[a](E, ι), [b](E, ι), [a][b](E, ι)
)

[a], [b]
$← Cl(O),(

[a](E, ι), [b](E, ι), [c](E, ι)
)

[a], [b], [c]
$← Cl(O),

for some fixed and publicly known (E, ι). Then Eve successfully solves DDH if she can
guess, with non-negligible advantage, from which of these two distributions her triples
were sampled.

The hardness of the decisional Diffie–Hellman problem is a natural security foun-
dation for cryptographic constructions based on ideal class group actions, which can
be traced back to the works of Couveignes [11] and Rostovtsev–Stolbunov [24, 28] and
which have attracted much attention lately, in the context of post-quantum cryptog-
raphy. Here, one lets k be an algebraic closure of a finite field, in which case all curves
in EℓℓO(k) can be defined over a common finite subfield F ⊆ k. While the initial focus
was on ordinary elliptic curves, whose orientations ι are just ring isomorphisms, most
of the latest work is concerned with supersingular elliptic curves, whose endomorphism
rings are orders in a quaternion algebra and therefore leave room for a wide range of
orientations. Here, we highlight supersingular elliptic curves defined over a finite prime
field Fp, which are naturally oriented by an order in Q(

√
−p). The corresponding ideal

class group actions underpin CSIDH [6] and spin-offs such as [1, 15, 2, 20], and tend to
yield more practical cryptosystems than in the ordinary case. More generally oriented
supersingular elliptic curves made their first cryptographic appearance in the OSIDH
protocol due to Colò and Kohel [10]. To date, this protocol remains largely theoretical,
but it has attracted a good amount of recent interest, see e.g. [13, 22, 31].

Our paper revisits the recent work [8], which presents an efficient solution to DDH
for essentially all ordinary elliptic curves over finite fields whose endomorphism ring
has an even class number. In more detail, as soon as there exists a non-trivial assigned
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Introduction

character χ : Cl(O)→ {±1} of sufficiently small modulusm, the attack from [8] allows
Eve to compute χ([a]) merely from the knowledge of (E, ι) and (E′, ι′) = [a](E, ι), i.e.,
without knowing [a] itself. This indeed suffices to break DDH, since it allows her to
check whether χ([c]) = χ([a])χ([b]), which is true for [c] = [a][b], but for uniformly
random [c] it fails with probability 1/2.

Unfortunately, the method from [8] is specific to ordinary curves: the attack pro-
ceeds by extending the base field and navigating to the floors of the m-isogeny volca-
noes1 of (E, ι) and (E, ι′), with the goal of enforcing non-trivial cyclic rational m∞-
torsion, and then recovering the character value using two Tate pairing computations.
Beyond ordinary curves, it is generally impossible to turn the rational m∞-torsion
cyclic using an isogeny walk, so this strategy fails. For supersingular elliptic curves
over Fp with p ≡ 1 mod 4 equipped with their natural Z[

√
−p]-orientation, where it

suffices to consider the assigned character of modulus m = 4, an ad-hoc fix was given
in [8, Thm. 10], but it is unclear how this fix would generalize.

Contribution

We give an alternative method for computing assigned character values χ([a]) purely
from (E, ι) and (E′, ι′) = [a](E, ι), using the Weil pairing rather than the Tate pair-
ing. Our approach deals with arbitrary orientations and works over arbitrary fields.
Moreover, it simplifies and often speeds up the attack from [8] in the case of ordinary
elliptic curves over finite fields, as it avoids the need for navigating through isogeny
volcanoes. It also naturally incorporates the previously ad-hoc case of supersingular
elliptic curves over prime fields.

The main result is easy enough to be stated right away; we recall that for an odd
prime divisor m | Disc(O), the assigned character of modulus m is defined as

χm : Cl(O)→ {±1} : [a] 7→
(
N(a)

m

)
(4.2)

where it is assumed that [a] is represented by an ideal a of norm coprime to m (see
our conventions further down) and

( ·
m

)
is the Legendre symbol.

Theorem 4.1.1 Let O be an imaginary quadratic order and let (E, ι), (E′, ι′) be
O-oriented elliptic curves connected by an ideal class [a] ∈ Cl(O). Let m | Disc(O)
be an odd prime divisor different from char k and consider the assigned character
χm : Cl(O) → {±1} of modulus m. Then O admits a generator σ (i.e. O = Z[σ]) of
norm coprime to m, and for any such σ there exist points P ∈ E[m], P ′ ∈ E′[m] such
that ι(σ)(P ) is not a multiple of P , and likewise for P ′. Moreover

χm([a]) =
( a
m

)
with a = logem(P,ι(σ)(P )) em(P ′, ι′(σ)(P ′)), regardless of the choice of such σ, P, P ′.

1Or rather 2-isogeny volcanoes in case m ∈ {4, 8}.
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On the DDH problem for class group actions

The condition that σ be a generator of O can be relaxed to σ ∈ O\(Z+mO). A proof
of Theorem 4.1.1, along with its adaptations covering assigned characters with even
modulus, can be found in Section 4.3. Since these results apply to arbitrary fields,
they may be of independent theoretical interest.

Applications and implications

From a cryptographic viewpoint, the most important consequence is that DDH should
be considered broken by classical computers for essentially all elliptic curves over finite
fields that are oriented by an imaginary quadratic order O with even class number;
see Section 4.4 for a more in-depth discussion.

As a more surprising application, we prove in Section 4.5 that the new method
allows to significantly improve reductions between computational problems underly-
ing isogeny-based cryptography. On one hand, we have the problem of computing
endomorphism rings of supersingular elliptic curves. It is of foundational importance
to the field, as its presumed hardness is necessary for the security of essentially all
isogeny-based cryptosystems [17, 7, 16]. Oriented versions of this Endomorphism
Ring Problem were introduced in [31]. On the other hand, many cryptosystems
relate directly to the presumably hard inversion problem for the action of the class
group Cl(O) on oriented supersingular curves: the Vectorization Problem. It
was proved in [31] that the vectorization problem reduces to the endomorphism ring
problem in polynomial time in the length of the instance and in #(Cl(O)[2]). Unfortu-
nately, the dependence on #(Cl(O)[2]) means that the reduction is, in the worst case,
exponential in the size of the input, since #(Cl(O)[2]) could be as large as D1/ log logD,
where D = |Disc(O)|. We improve this result, by proving in Section 4.5 that there is
a reduction from the vectorization problem to the endomorphism ring problem that,
in the worst case, is sub-exponential in the length of the input.

Conventions

Throughout, all ideal classes [a] ∈ Cl(O) are assumed to be represented by an ideal
a of norm coprime to pDisc(O), where p = max{1, char k}. Such a representative
always exists, see e.g. [12, Cor. 7.17]. For an O-oriented elliptic curve (E, ι) and a
point P ∈ E, we will sometimes write σ(P ) instead of ι(σ)(P ) if ι is clear from the
context. Likewise, for [a] ∈ Cl(O) we will sometimes write [a]E for the first component
of [a](E, ι).

Paper organization

Section 4.2 provides background: it gives the full list of assigned characters of an
imaginary quadratic order and it recalls how its ideal class group acts on oriented
elliptic curves. Our main Section 4.3 contains a proof of Theorem 4.1.1, as well as
statements and proofs for the even-modulus counterparts. Section 4.4 discusses the
algorithmic aspects of these results, along with their implications for the decisional
Diffie–Hellman problem. Finally, in Section 4.5 we present our improved reduction
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from the vectorization problem for oriented elliptic curves to the endomorphism ring
problem.

4.2 Background

4.2.1 Assigned characters

The following is a very brief summary of the relevant parts of [12, I.§3 & II.§7], to
which we refer for more details. From genus theory, we know that each order O in
an imaginary quadratic field comes equipped with an explicit list of group homomor-
phisms Cl(O) → {±1}, called the assigned characters, whose joint kernel is Cl(O)2.
Writing

Disc(O) = −2fd = −2fmf1
1 m

f2
2 · · ·mfr

r

for distinct odd prime numbers m1, . . . ,mr and exponents f ≥ 0, f1, . . . , fr ≥ 1, this
list consists of

χm1
, . . . , χmr

if f = 0,
χm1

, . . . , χmr
, δ if f = 2 and d ≡ 1 mod 4,

χm1
, . . . , χmr

if f = 2 and d ≡ 3 mod 4,
χm1 , . . . , χmr , δϵ if f = 3 and d ≡ 1 mod 4,
χm1 , . . . , χmr , ϵ if f = 3 and d ≡ 3 mod 4,
χm1

, . . . , χmr
, δ if f = 4,

χm1
, . . . , χmr

, δ, ϵ if f ≥ 5.

Here χmi is defined as in (4.2) and

δ : Cl(O)→ {±1} : [a] 7→ (−1)
N(a)−1

2 , ϵ : Cl(O)→ {±1} : [a] 7→ (−1)
N(a)2−1

8 .

Observe that δϵ can be described in one go as

δϵ : Cl(O)→ {±1} : [a] 7→ (−1)
(N(a)+2)2−9

8 .

We write µ ∈ {r, r + 1, r + 2} for the total number of assigned characters.2

Because the joint kernel is Cl(O)2, any character of Cl(O) whose order divides 2
can be written as a product of pairwise distinct assigned characters. As it turns out,
there is a unique non-trivial combination that produces the trivial character:

χf1 mod 2
m1

χf2 mod 2
m2

· · ·χfr mod 2
mr

δ
d+1
2 mod 2ϵf mod 2 = 1. (4.3)

Therefore, by combining assigned characters we obtain 2µ−1 distinct characters. Nec-
essarily, this quantity equals the cardinality of Cl(O)/Cl(O)2 ∼= Cl(O)[2].

2Note that two different assigned characters may define the same map Cl(O) → {±1}. Thus,
formally, the definition of an assigned character should include its symbol (e.g. χm1 ) as appearing in
the list above.
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On the DDH problem for class group actions

Example 4.2.1 For a prime number p ≡ 1 mod 4, the ring Z[
√
−p] has two assigned

characters: δ and χp. By (4.3) these are in fact equal to each other, and non-trivial.
If p ≡ 3 mod 4 then Z[

√
−p] has only one assigned character, namely χp, and it is

trivial. 9

We often make reference to the modulus m of an assigned character χ, which is an
important complexity parameter for our attack. This is simply defined to be mi if χ = χmi

,
4 if χ = δ,
8 if χ = ϵ, δϵ.

Note that χ([a]) = χ([a′]) as soon as N(a) ≡ N(a′) mod m. Typicallym is the smallest
positive integer with this property, but not always (e.g., as in the case of mi = p in
both examples above).

4.2.2 Class group action

We now recall how the ideal class group of O acts on EℓℓO(k). This is part of the
theory of complex multiplication, which is classical for k = C, while for k an algebraic
closure of a finite field this was elaborated in [30, §3.9-12]; see also [22] for the specifics
of the supersingular case. For arbitrary k, we refer to Milne’s course notes [21, §7].

If ι is an O-orientation on an elliptic curve E over k, then we can linearly extend it
to a map K ↪→ End0(E), where End0(E) = End(E)⊗Z Q denotes the endomorphism
algebra. To each isogeny φ : E → E′ we can naturally attach an embedding

ιQ : K ↪→ End0(E′) : σ 7→ 1

degφ
φ ◦ ι(σ) ◦ φ̂,

whose restriction to the preimage O′ of End(E′) is an orientation that is called the
induced orientation, denoted by φ∗ι. We are primarily interested in isogenies φ for
which O′ = O, in which case φ is said to be horizontal with respect to ι. Two O-
oriented elliptic curves (E, ι), (E′, ι′) are called isomorphic, denoted (E, ι) ∼= (E′, ι′),
if there exists an isomorphism φ : E → E′ such that ι′ = φ∗ι.

The default way to construct a horizontal isogeny is by considering an invertible
ideal a ⊆ O of norm coprime to max{1, char k} and attaching to it the finite subgroup

E[a] =
⋂
α∈a

ker ι(α).

Then the separable degree-N(a) isogeny φa : E → E′ with kernel E[a] is horizontal.
In particular E′ comes naturally equipped with an O-orientation ι′ = φa∗ι. The pair
(E′, ι′) is well-defined up to isomorphism and only depends on the class of a inside
Cl(O); we write [a](E, ι) := (E′, ι′). This defines the map (4.1), which turns out to be
a free group action.
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Evaluating characters using the Weil pairing

Remark 4.2.2 In general the action is not transitive, where one subtlety is reflected
in [22, Prop. 3.3]; see also the example in [22, §3.1] and the proof of [26, Thm. 4.5].
This has no consequences for the current paper, since we are working in a single orbit,
namely that of the starting curve (E, ι). ♢

4.3 Evaluating characters using the Weil pairing

In this section we prove Theorem 4.1.1 and discuss its analogues for the assigned
characters δ, ϵ, δϵ. In all cases it is assumed that p = max{1, char k} is coprime to
the modulus of the character under consideration. If p is an odd prime then χp, if it
appears in the list of assigned characters, can be computed from the other characters
using the relation (4.3); see for instance Example 4.2.1 where we had χp = δ. If p = 2
then the same conclusion holds for δ, ϵ or δϵ, because in even characteristic at most
one of these three characters can appear in the list of assigned characters.3

4.3.1 Preliminaries

Lemma 4.3.1 Let O be an imaginary quadratic order and let m be an odd prime
number. Then O = Z[σ] for some σ ∈ O of norm coprime to m.

Proof. Let τ ∈ O be a generator of O, suppose of norm divisible by m. Then for any
k ∈ Z,

N(τ + k) = N(τ) + k(tr(τ) + k) ≡ k(tr(τ) + k) mod m.

Since m ≥ 3 we can thus always find k ∈ Z such that m ∤ N(τ + k).

Lemma 4.3.2 Let O be an imaginary quadratic order of even discriminant. Then
O = Z[σ] for some σ ∈ O of odd norm.

Proof. Let τ ∈ O be a purely imaginary generator of O, e.g. τ =
√

Disc(O)/4, where
Disc(O) is the discriminant of O. Then N(τ + 1) = N(τ) + tr(τ) + 1 = N(τ) + 1,
hence we can take σ = τ or σ = τ + 1.

Lemma 4.3.3 Let O be an imaginary quadratic order, let (E, ι) be an O-oriented
elliptic curve over k, let m ̸= char k be a prime number, and let σ ∈ O be a generator.
Then there exists a P ∈ E[m] such that ι(σ)(P ) is not a multiple of P .

Proof. The endomorphism ι(σ) of E induces an Fm-linear map E[m] → E[m]. Sup-
pose to the contrary that every P ∈ E[m] is an eigenvector. This can only happen if
the map has the full m-torsion E[m] as an eigenspace. Thus there exists λ ∈ Z such

3If (E, ι) is an O-oriented elliptic curve over an algebraically closed field k with char k = 2, then
25 ∤ Disc(O). Indeed, if we would have 25 | Disc(O) then E is necessarily supersingular, hence it
concerns y2 + y = x3, the unique supersingular elliptic curve in characteristic 2. Its endomorphism
ring is isomorphic to the ring of Hurwitz quaternions H, and it is easy to check that every embedding
O ↪→ H can be extended to an embedding O′ ↪→ H with Disc(O′) = Disc(O)/4. See [22, Prop. 3.2]
for a generalization of this observation.
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that E[m] ⊆ ker(ι(σ − λ)). It then follows that ιQ((σ − λ)/m) ∈ End(E), and hence
that σ−λ ∈ mO by the fact that ι is a primitive embedding, i.e. it cannot be extended
to a strict superorder of O. Since Z+mO ⊊ O this contradicts the assumption that
σ generates O.

4.3.2 Evaluating the characters χm

We now prove Theorem 4.1.1.

Proof of Theorem 4.1.1. The existence of σ, P, P ′ follows from Lemma 4.3.1 combined
with Lemma 4.3.3. The endomorphism ι(σ) of E induces an Fm-linear map E[m] →
E[m]. Sincem | Disc(O) = tr(σ)2−4N(σ) andm ∤ N(σ), its characteristic polynomial
has a nonzero double root, say α ∈ F×m. Consequently, we can extend to a basis P0, P
of E[m] for which the matrix of σ is in upper-triangular form

(
α β
0 α

)
for some β ∈ F×m.

With respect to this basis any Q ∈ E[m] that is not an eigenvector of σ is of the form
Q = λP0 + µP where µ ̸= 0. We see that

em(Q, σ(Q)) = em(λP0 + µP, (αλ+ βµ)P0 + αµP ) = em(P, βP0)
µ2

= em(P, σ(P ))µ
2

,

showing that em(P, σ(P )) is independent of the choice of P , up to raising to powers
that are nonzero squares modulo m. Then, of course, the same conclusion applies to
em(P ′, σ(P ′)).

Recall our convention from the introduction, namely that we assume that the
norm of a, which equals the degree of the corresponding isogeny φ = φa : E → E′,
is coprime to m. In particular, P0 ̸∈ kerφ. By definition of the class group action,
ι′ = φ∗ι satisfies

ι′(σ)(φ(P )) =

(
1

degφ
φι(σ)φ̂

)
(φ(P )) = φ(ι(σ)(P )) = βφ(P0) + αφ(P ),

showing that φ(P ) is not an eigenvector for ι′(σ) acting on ([a]E)[m]. So we see that
em(φ(P ), ι′(σ)(φ(P ))) is obtained from em(P ′, ι′(σ)(P ′)) by raising it to a nonzero
square mod m. To conclude, we observe that

em(φ(P ), ι′(σ)(φ(P ))) = em(φ(P ), φ(ι(σ)(P ))) = em(P, ι(σ)(P ))degφ.

4.3.3 Evaluating δ, ϵ or δϵ

We now present the analogues of Theorem 4.1.1 for the even-modulus characters δ, ϵ
and δϵ. We first focus on δ, which, as we saw in Section 4.2.1, is an assigned character
if and only if we can write Disc(O) = −4 · d for some d ≡ 0, 1 mod 4.

Proposition 4.3.4 Assume char k ̸= 2. Let O be an imaginary quadratic order of
discriminant −4 · d where d ≡ 0, 1 mod 4, and let (E, ι), (E′, ι′) be O-oriented elliptic
curves over k connected by an ideal class [a] ∈ Cl(O). Then O admits an odd-norm
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generator σ, and for any such σ there exist points P ∈ E[4], P ′ ∈ E′[4] such that
ι(σ)(2P ) ̸= 2P and ι′(σ)(2P ′) ̸= 2P ′. Moreover

δ([a]) = (−1)
a−1
2 ,

with a = loge4(P,ι(σ)(P )) e4(P
′, ι′(σ)(P ′)), for any such choice of σ, P, P ′.

Proof. The existence of σ, P, P ′ follows from Lemma 4.3.2 and Lemma 4.3.3. Note that
the assumption on the discriminant of O shows that the character δ indeed exists, and
that this implies that N(σ) ≡ 1 mod 4 (since the principal ideal class [(σ)] lies in
the kernel of δ). By upper-triangularizing the action of σ on E[2] as in the proof of
Theorem 4.1.1, we see that there exists a P0 ∈ E[4] such that the matrix Mσ of σ
acting on E[4] with respect to the basis P0, P is of the form

Mσ ≡
(
1 1
0 1

)
mod 2.

Since N(σ) ≡ 1 mod 4 this means thatMσ is of the form either
(
α β
0 α

)
or
(
α β
2 −α

)
, with

α, β odd. Any Q with the property that σ(2Q) ̸= 2Q is of the form λP0 + µP where
µ is odd. If Mσ is of the first form we get

e4(Q, σ(Q)) = e4(λP0 + µP, (αλ+ βµ)P0 + αµP ) = e4(P, βP0)
µ2

= e4(P, σ(P ))
µ2

.

If Mσ is of the second form we again get

e4(Q, σ(Q)) = e4(λP0 + µP, (αλ+ βµ)P0 + (2λ− αµ)P )
= e4(P, βP0)

µ2

e4(P, P0)
2(λαµ−λ2) = e4(P, σ(P ))

µ2

where the last equality uses that λ, µ, α are odd. From µ2 ≡ 1 mod 4 it follows that
e4(P, σ(P )) does not depend on the choice of P . Then, of course, the same is true for
e4(P

′, σ(P ′)).
By our convention we assume that the norm of a, and hence the degree of the

corresponding isogeny φ = φa : E → E′, is odd. In particular, 2P0 ̸∈ kerφ and

ι′(σ)(φ(2P )) =

(
1

degφ
φι(σ)φ̂

)
(φ(2P )) = φ(ι(σ)(2P )) = φ(2P0) + φ(2P )

is different from φ(2P ). Thus we find that e4(P
′, σ(P ′)) equals

e4(φ(P ), ι
′(σ)(φ(P ))) = e4(φ(P ), φ(ι(σ)(P ))) = e4(P, ι(σ)(P ))

degφ,

which concludes the proof.

Next, we discuss the modulus-8 characters ϵ and δϵ. Note that by Section 4.2.1,
we have that ϵ is an assigned character if and only if either 25 | Disc(O) or Disc(O) =
−23 · d with d ≡ 3 mod 4. Similarly, δϵ is an assigned character if and only if either
25 | Disc(O) or Disc(O) = −23 · d with d ≡ 1 mod 4.
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Proposition 4.3.5 Assume char k ̸= 2, let O be an imaginary quadratic order of
discriminant Disc(O) ≡ −2fd with d odd and f ≥ 3, and consider O-oriented elliptic
curves (E, ι), (E′, ι′) over k connected by an ideal class [a] ∈ Cl(O). Assume that ϵ,
resp. δϵ, appears among the assigned characters of O. Then O admits an odd-norm
generator σ, and for any such σ there exist points P ∈ E[8], P ′ ∈ E′[8] such that
ι(σ)(4P ) ̸= 4P and ι′(σ)(4P ′) ̸= 4P ′. Moreover ϵ([a]), resp. δϵ([a]), can be computed
as

ϵ([a]) = (−1)
a2−1

8 , resp. δϵ([a]) = (−1)
(a+2)2−9

8 ,

with
a = loge8(P,ι(σ)(P )) e8(P

′, ι′(σ)(P ′)),

and for any such choice of σ, P, P ′.

Proof. As in the previous proof, the existence of σ, P, P ′ follows from Lemma 4.3.2
and Lemma 4.3.3. The main difference with the foregoing proofs is that if Q ∈ E[8]
is another point satisfying σ(4Q) ̸= 4Q, then e8(Q, σ(Q)) relates more subtly to
e8(P, σ(P )). Namely, we will argue that

e8(Q, σ(Q)) ∈
{
e8(P, σ(P )), e8(P, σ(P ))

N(σ)
}
, (4.4)

and then of course the same again applies to e8(P
′, σ(P ′)). This will then lead to the

conclusion that

e8(P
′, σ(P ′)) ∈

{
e8(P, σ(P ))

degφ, e8(P, σ(P ))
N(σ) degφ

}
,

which is indeed sufficient, since the principal ideal class [(σ)] has trivial character
values. More explicitly, if ϵ exists then we must have N(σ) mod 8 ∈ {1, 7}, while if δϵ
exists then we have N(σ) mod 8 ∈ {1, 3}.

In order to prove (4.4), note that, since N(σ) ≡ 1 mod 2,

tr(σ)2 + 4 ≡ tr(σ)2 − 4 ·N(σ) = Disc(O) ≡ 0 mod 8,

so that tr(σ) ≡ 2 mod 4. It follows that the characteristic polynomial of σ modulo 4
is X2+2X +N(σ), hence we can extend to a basis P0, P of E[8] such that the matrix
of ι(σ) acting on E[8] is of the form

Mσ ≡



(
α β

0 α

)
mod 4 if N(σ) ≡ 1 mod 4,(

α β

2 α

)
mod 4 if N(σ) ≡ 3 mod 4,
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with α, β odd. It follows that

M2
σ ≡



(
1 2

0 1

)
mod 4 if N(σ) ≡ 1 mod 4,(

3 2

0 3

)
mod 4 if N(σ) ≡ 3 mod 4.

In any case we can record that

e8(P, σ
2(P ))2 = e8(P, P0)

4 = −1. (4.5)

Now, with respect to the basis P, σ(P ), the matrix of ι(σ) acting on E[8] is congruent
to ( 0 1

1 0 ) mod 2. Any other Q = λP + µσ(P ) such that σ(4Q) ̸= 4Q thus has exactly
one of λ, µ odd. We now proceed to showing (4.4). If µ is odd then we can write
σ(Q) = λ′P + µ′σ(P ) with λ′ odd, so since

e8(Q, σ(Q))N(σ) = e8(σ(Q), σ2(Q))

we may reduce to the case where λ is odd (and µ is even). For odd λ, we have

e8(Q, σ(Q)) = e8(λ
−1Q, σ(λ−1Q))λ

2

= e8(λ
−1Q, σ(λ−1Q)),

hence we may further reduce to the case where λ = 1. Now note that

e8(P + µσ(P ), σ(P ) + µσ2(P )) = e8(P, σ(P ))e8(σ(P ), σ
2(P ))µ

2

e8(P, σ
2(P ))µ

= e8(P, σ(P ))e8(P, σ(P ))
4µ2

4 N(σ)e8(P, σ
2(P ))2

µ
2

= e8(P, σ(P )) · (−1)
µ2

4 · (−1)
µ
2

= e8(P, σ(P )),

where in the third equality we used (4.5).

Remark 4.3.6 If O is an imaginary quadratic order of discriminant Disc(O) ≡ 0 mod
25, then both ϵ and δϵ and hence δ = (δϵ)ϵ exist, so that N(σ) ≡ 1 mod 8. In this case
there is a well-defined group homomorphism γ : Cl(O)→ (Z/8Z)× : [a] 7→ N(a) mod 8
through which δ, ϵ, δϵ factor. This is the only situation where one can get finer-than-
binary modular information about N(a) modulo a prime power; the above proof shows
that we can recover γ([a]) at once as

loge8(P,ι(σ)(P )) e8(P
′, ι′(σ)(P ′).

♢

Remark 4.3.7 In the statements of Theorem 4.1.1, Proposition 4.3.4 and Propo-
sition 4.3.5, the condition that σ be a generator of O can in fact be relaxed to
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σ ∈ O \ (Z + mO) if m is odd and to σ ∈ O \ (Z + 2O) if m is even, without
modifying the proofs. ♢

Wrapping up, we have given justification for Algorithm 1 below, evaluating an
assigned character χ : Cl(O) → {±1} of modulus m coprime to max{1, char k} in
an unknown ideal class [a] connecting two given O-oriented curves (E, ι) and (E′, ι′).
Here, by the field of definition of (E, ι), (E′, ι′) we mean any (e.g., the smallest) subfield
F ⊆ k over which the curves E,E′ and the endomorphisms in ι(O), ι′(O) are defined.

Algorithm 1: Evaluating an assigned character in an unknown ideal class

Input:
O-oriented curves (E, ι), (E′, ι′) in the same orbit with field of definition F
an assigned character χ of Cl(O) with modulus m coprime to max{1, charF}

Output:
χ([a]) ∈ {±1}, where [a] ∈ Cl(O) is such that (E′, ι′) = [a](E, ι)

1: Find a generator σ of O of norm coprime to m.
2: Base-change to the smallest extension F ⊇ F over which all points in E[m] are

defined; necessarily, then also all of E′[m] is defined over F .
3: Find a point P ∈ E(F) such that E[m] = ⟨P, ι(σ)(P )⟩ and compute
ζ = em(P, ι(σ)(P )).

4: Likewise, find a point P ′ ∈ E′(F) such that E′[m] = ⟨P ′, ι′(σ)(P ′)⟩ and compute
ζ ′ = em(P ′, ι′(σ)(P ′)).

5: Inside µm ⊆ F×, compute a = logζ ζ
′.

6: If m is an odd prime then recover χ([a]) as
(
a
m

)
, else recover χ([a]) as

(−1)
a−1
2 , (−1)

a2−1
8 , (−1)

(a+2)2−9
8 ,

depending on whether χ = δ, ϵ, δϵ, respectively.

4.4 Complexity and consequences for DDH

Running Algorithm 1 in practice comes with challenges that are specific to our field
of definition F . Nevertheless, before going into a more detailed analysis of our main
case of interest, namely where F is a finite field, let us add some general comments to
its six numbered steps:

1. Very easy, by following the proof of Lemma 4.3.1 or Lemma 4.3.2.

2. The degree of F/F is O(m2).4

4Indeed, by going to at most a quadratic extension, we may assume F is such that ι(O) ⊆ EndF (E).
The orientation endows E[m] with the structure of an O-module, and AutO(E[m]) ∼= (O/mO)×.
Since endomorphisms coming from O are defined over F , hence commute with Gal(F/F ), we thus
obtain a group homomorphism Gal(F/F ) → AutO(E[m]), which is injective by definition of F . The
result follows since #(O/mO)× = O(m2).
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3.–4. For m an odd prime, the proof of Theorem 4.1.1 shows that the set of m-
torsion points that are independent of their image under σ has size m2 − m.
So it suffices to try O(1) random points P ∈ E[m], compute ι(σ)(P ) and check
whether em(P, ι(σ)(P )) is a primitive mth root of unity (i.e., not 1).5

5. Pollard-ρ type algorithms allow us to compute the discrete logarithm using
O(
√
m) operations in µm.

6. Trivial.

Theorem 4.4.1 Let O = Z[σ] be an imaginary quadratic order and consider two
O-oriented elliptic curves (E, ι) and (E′, ι′) that belong to the same orbit under the
action of Cl(O), say given in Weierstrass form and connected by an unknown ideal
class [a]. Assume that E,E′, ι(O), ι′(O) are all defined over a finite field Fq. Let χ be
an assigned character of O with modulus m coprime to q. There exists a randomized
algorithm for computing χ([a]) that is expected to use

Õ(m3 log2 q) (4.6)

bit operations and O(1) calls to ι(σ), ι′(σ).

Proof. If we write fE(x, y) for the defining Weierstrass polynomial of E and ΨE,m(x)
for its m-division polynomial, then the field F can be constructed as (a quadratic
extension of) the splitting field of the resultant rE,m(x) = resy(fE ,ΨE,m), whose de-
gree is O(m2). The division polynomial ΨE,m(x) can be computed recursively and
the resultant rE,m(x) can be factored using Kedlaya–Umans [19]. Using fast arith-
metic, this takes a combined time of (4.6). Note that we obtain all points in E[m]
as a by-product; once we know F we can sample points from E′[m] faster. The Weil
pairings can be computed using Miller’s algorithm, taking O(logm) operations in F ,
and Pollard-ρ takes an expected O(

√
m) operations in F , so these costs are dominated

by (4.6), again assuming fast arithmetic. Finally, while the norm of the given genera-
tor σ may not be coprime to m, from the proofs of Lemma 4.3.1 and Lemma 4.3.2 we
see that we can instead work with σ + k, for some positive integer k bounded by m.
Since ι(σ + k) = ι(σ) + [k], the overhead this causes is clearly absorbed by (4.6); and
similarly for ι′(σ + k).

The effectivity of this algorithm co-depends on how easy it is to evaluate ι(σ)
and ι′(σ), which is a separate discussion that is captured by the notion of efficient
representations, see Section 4.5.1 and [32] for more details. One special but interesting
case is where ι(σ) equals πFq

, or is easily derived from it, whose cost is quasi-quadratic
in m log q. So, in this case, the overall cost remains estimated by (4.6). This matches
with the asymptotic runtime of the Tate pairing attack from [8], as estimated in [8,

5Alternatively, one may opt for a more deterministic approach by computing and analyzing a
matrix of ι(σ) acting on E[m], in which case two evaluations of ι(σ) will do. Note however that
writing down a matrix of ι(σ) comes at the cost of computing some discrete logarithms.
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§5.1].6

While the Weil pairing attack is conceptually simpler (no descent of the isogeny
volcano needed), in general one should expect the Tate pairing attack to run faster in
practice. The main reason is that there it suffices to work over a field F such that
E admits an F-rational point of order m, rather than requiring all m-torsion to be
F-rational (in turn, this is because the Tate pairing admits non-trivial self-pairing
values, in contrast with the Weil pairing). The degree of such an extension field is
bounded by O(m), rather than by O(m2). But the comparison turns in favour of
the Weil pairing as soon as E[m] ⊆ E(Fq), where no field extension is needed. Note
that, here, it makes more sense to measure the cost of a call to ι(σ), ι′(σ) by the cost
of evaluating (πFq

− 1)/ms, where s is maximal such that E[ms] ⊆ E(Fq); see [25,
Lem. 1]. For this we need s successive point divisions by m; the cost of such a division
is dominated by that of finding a root of a polynomial of degree m2, which can be
done in time

Õ(m2 log2 q), (4.7)

see [23, §2]. This now becomes the dominant cost of the attack. The asymptotic cost
of the Tate pairing also drops to (4.7) in this case, but the Weil pairing attack comes
with less overhead.

All this aside, let us re-emphasize that the Weil pairing approach works in far
greater generality: for arbitrary orientations and over any field admitting explicit
computation. A proof-of-concept implementation of the new method can be found at
https://github.com/KULeuven-COSIC/oriented_DDH. At the time of publication,
this implementation handles the case of Z[

√
−p]-oriented elliptic curves in character-

istic p ≡ 1 mod 4. We intend to extend the repository in due course, by also covering
the higher-degree group actions that were described in [9].

Consequences for DDH

If Cl(O) admits a non-trivial assigned character whose modulus m is sufficiently small,
say polynomially bounded by logDisc(O), and if it satisfies gcd(m, q) = 1, then we
can use this character to distinguish between random triples and Diffie–Hellman triples
with probability 1/2, as explained in the introduction. So, in this case, we can consider
the decisional Diffie–Hellman problem broken for O-oriented elliptic curves over Fq.
More generally, if Cl(O) admits s ≥ 1 independent such characters (meaning that one
cannot use the relation (4.3) to rewrite one of the characters in terms of the others),
then we can distinguish with probability 1− 1/2s.

A sufficient condition for the existence of such a character is that Disc(O) has at
least two small odd prime factors different from p = charFq.

7 Heuristically, we expect
that this applies to a density 1 subset of all imaginary quadratic orders when ordered

6Here and below, for simplicity, the height h ≈ valm(tr(πF )2 − 4#F) of the m-isogeny volcano of
E over F is estimated by O(1).

7In serious cryptographic applications, one can ignore the phrase “different from p = charFq”.
Indeed, if p | Disc(O) then E and E′ are necessarily supersingular, so if moreover p is small then we
can compute End(E) and End(E′) by navigating through all O(p) nodes of the supersingular isogeny
graph. As a result, one is skating on very thin ice (see Section 4.5).
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by the absolute value of their discriminant. This can be backed up using Mertens’
third theorem; or see [29, III.§6] for more dedicated tools.

As discussed in [8, §6], one can thwart the attack by restricting the class-group
action to Cl(O)2, or at least to a subgroup of Cl(O) on which all assigned characters of
small modulus have trivial evaluations. However, this may have practical consequences
in terms of key generation and key validation. Moreover, we do not rule out that the
attack can be modified to work for characters whose order is a larger power of 2, e.g., in
view of [3, 27]. Quantumly, it is known that 2r-torsion subgroups, for any small fixed
value of r, do not contribute to the hardness of the vectorization problem anyway [5].
Therefore, the cleanest way out is to follow the recommendation from [8, §6], namely
to only work with orientations by imaginary quadratic orders whose class number is
odd. There may be constructive reasons to deviate from this, e.g., as in the OSIDH
protocol [10] where one uses orders of large prime power conductor in an imaginary
quadratic field with class number one (such orders always have even class number).

Remark 4.4.2 It is interesting to view Theorem 4.4.1 against the classical decisional
Diffie–Hellman problem, namely for exponentiation in a group G = ⟨g⟩ of some
large prime order m. Note that exponentiation defines a free and transitive action
of (Z/mZ)× on the set of generators of G. The Legendre symbol

χ : (Z/mZ)× → {±1} : a 7→
( a
m

)
is the unique quadratic character, of modulus m, and if one could cook up an efficient
classical way for computing χ(a) merely from the knowledge of g and ga, then this
would break DDH in this setting. This would be a spectacular result; in general, to
the best of our knowledge, we cannot do significantly better than computing a using
Pollard-ρ and then evaluating χ at a. This should be compared to steps 5. and 6. from
Algorithm 1. In other words, one could say that classical DDH is not weakened by
the existence of χ because its modulus is large. ♢

4.5 Reductions to endomorphism ring computation

In this section, we prove that our main result Theorem 4.1.1 allows to significantly
improve reductions between computational problems underlying isogeny-based cryp-
tography. It was proved in [31] that two such families of problems are tightly con-
nected: there are computational reductions from action inversion problems (called
Effective O-Vectorization or Effective O-Uber) to endomorphism ring com-
putation problems (called O-EndRing and O-EndRing∗). However, these reduc-
tions are exponential in the worst case. In this section, we apply Theorem 4.1.1 to
obtain reductions that are sub-exponential in the worst case, and even polynomial in
many regimes of interest. All results in this section that start with (ERH), such as
Theorem 4.5.7, assume the extended Riemann hypothesis — precisely, the Riemann
hypothesis for Hecke L-functions.
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4.5.1 The supersingular endomorphism ring problem

In this section, we assume that the field k is an algebraic closure of a finite field of
characteristic p, and that p does not split in O, nor does it divide the conductor of O.
Then, the set EℓℓO(k) is non-empty and all curves in it are supersingular; this set is
often denoted by SSO(p) in the literature [22, Prop. 3.2]. Recall that a curve E/k is
supersingular if and only if its endomorphism ring End(E) is isomorphic to a maximal
order in the quaternion algebra

Bp,∞ =

(
−q,−p

Q

)
= Q+Qi+Qj +Qij,

with the multiplication rules i2 = −q, j2 = −p, and ji = −ij, where q is a positive
integer that depends on p.

Given a supersingular elliptic curve E over k, the endomorphism ring problem
EndRing consists in computing four endomorphisms that form a basis of End(E).
There is flexibility in how these endomorphisms can be represented, but we always
assume that it is an efficient representation. As in [32], we say that an isogeny φ :
E → E′ is given in an efficient representation if there is an algorithm to evaluate
φ(P ) for any P ∈ E(Fpr ) in time polynomial in the length of the representation of
φ and in r log(p). We also assume that an efficient representation of φ has length
Ω(log(deg(φ))).

This endomorphism ring problem is of foundational importance to isogeny-based
cryptography: it is presumed to be hard, and this hardness is necessary (and sometimes
sufficient) for the security of essentially all isogeny-based protocols [17, 7, 16]. It
does not, however, capture well the notion of orientation, which plays an important
role in many protocols. Therefore, the following oriented variants were introduced
in [31]. Computationally, an O-orientation ι is represented by a generator σ of O (i.e.,
O = Z[σ]) together with an efficient representation of the endomorphism ι(σ).

Problem 4.5.1 (O-EndRing) Given (E, ι) ∈ EℓℓO(k), find a basis of End(E).

Problem 4.5.2 (O-EndRing∗) Given an O-orientable curve E, find a basis of
End(E), and an O-orientation of E expressed in this basis.

Clearly, O-EndRing reduces to O-EndRing∗.

4.5.2 Action inversion problems

Many cryptosystems relate, directly or more subtly, to an inversion problem for the
action of Cl(O) on EℓℓO(k). In essence, given (E, ι) and (E′, ι′) in EℓℓO(k), find a class
[a] such that (E′, ι′) ∼= [a](E, ι) (or decide that it does not exist). This is called the
vectorization problem. It is too weak for many practical purposes, because knowledge
of the class [a] is not sufficient to efficiently apply its action on any other O-oriented
curve. Therefore, the following stronger problem was introduced in [31].

53



Reductions to endomorphism ring computation

Problem 4.5.3 (Effective O-Vectorization) Given three O-oriented supersin-
gular curves (E, ι), (E′, ι′), (F, ȷ) ∈ EℓℓO(k), find an O-ideal a (or decide that it does
not exist) such that (E′, ι′) ∼= [a](E, ι), and an efficient representation of φa : (F, ȷ)→
[a](F, ȷ).

The security of many cryptosystems directly reduces to this problem, such as
CSIDH [6], CSI-FiSh [1], CSURF [4], or other generalizations [9].

One can define a similar problem where no orientation is provided for E′. Then,
one cannot require (E′, ι′) ∼= [a](E, ι) anymore, but one can still ask for E′ ∼= [a]E.
The resulting Uber isogeny problem was introduced in [14].

Problem 4.5.4 (Effective O-Uber) Given two O-oriented curves (E, ι), (F, ȷ) ∈
EℓℓO(k) and an O-orientable curve E′, find an O-ideal a such that E′ ∼= [a]E, and an
efficient representation of φa : (F, ȷ)→ [a](F, ȷ).

This Effective O-Uber problem is significantly harder than the Effective
O-Vectorization problem. In fact, most isogeny-based cryptosystems reduce to an
instance of Effective O-Uber [14], even cryptosystems such as SIDH [18] which, at
first sight, do not seem to involve any orientation.

4.5.3 Action inversion reduces to endomorphism ring

Strengthening and generalizing a result of [7], it was proved in [31] that Effective
O-Vectorization reduces to O-EndRing, and that Effective O-Uber reduces to
O-EndRing∗. Both reductions are in polynomial time in the length of the instance,
and in #(Cl(O)[2]). Unfortunately, the dependence on #(Cl(O)[2]) means that the
reduction is, in the worst case, exponential in the size of the input, since #(Cl(O)[2])
could be as large as D1/ log logD, where D = |Disc(O)|. The issue is the follow-
ing: given two oriented curves (E, ι) and (E′, ι′) as in the definition of Effective
O-Vectorization, the reductions first find a class [a]2 such that (E′, ι′) ∼= [a](E, ι).
Finding [a] from [a]2 is a square root computation. There are #(Cl(O)[2]) square roots
of [a]2, but only one is the correct class [a]. In [31], one simply does an exhaustive
search. Now, thanks to Theorem 4.1.1, there is a much more efficient way to find the
correct square root, which in the worst case is sub-exponential in Disc(O). This is the
following proposition. Recall the L-notation

Lx(α) = exp
(
O
(
(log x)α(log log x)1−α

))
for sub-exponential complexities.

Proposition 4.5.5 (ERH) Given O of discriminant −D, the factorization D =∏ω(D)
i=1 ℓeii (with ℓi < ℓi+1), two O-oriented elliptic curves (E, ι), (E′, ι′) ∈ EℓℓO(k), a

basis of End(E), and an O-ideal a for which there exists an ideal class [c] such that
[a] = [c]2 and (E′, ι′) = [c](E, ι), one can find a representative for the ideal class [c] in
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probabilistic polynomial time in the length of the input and in8

min
(
2ω(D),max

i

(
ℓi | ℓi ≤ 2ω(D)−i

))
≪ min

(
LD(1/2),#(Cl(O)[2]), ℓω(D)

)
.

Here, by “probabilistic polynomial time in the length of the input”, we mean probabilis-
tic polynomial time in log p, logD, logN(a), the lengths of ι and ι′, and in the length
of the basis of End(E).

Before proving it, let us recall the following proposition from [31].

Proposition 4.5.6 (ERH, [31, Proposition 9]) Given (E, ι) ∈ EℓℓO(k), a basis of
End(E), and an O-ideal a, one can compute [a](E, ι) and an efficient representation
of φa : (E, ι) → [a](E, ι) in probabilistic polynomial time in the length of the input.
That is, in log |Disc(O)|, log p, logN(a), and in the length of ι and of the basis of
End(E).

Proof of Proposition 4.5.5. Let B > 0 be a bound to be tuned later. Consider the sets
of prime numbers

P1 = {ℓ | ℓ is an odd prime factor of Disc(O) and ℓ ≤ B}, and
P2 = {ℓ | ℓ is an odd prime factor of Disc(O) and ℓ > B}.

For each ℓ ∈ P1, compute χℓ([c]) in time ℓO(1) using Theorem 4.4.1 and the fact that
(E′, ι′) = [c](E, ι). Now, with [3], one can compute square roots in Cl(O) in polynomial
time, so we get an ideal a such that [a] and [c] differ by a two-torsion factor. From [3],
one also gets a basis of Cl(O)[2], so we can ensure that χℓ([a]) = χℓ([c]) for each ℓ ∈ P1.
The solution is now of the form [c] = [a][b] where [b] is in the subgroup G of Cl(O)[2]
of classes such that χℓ([b]) = 1 for all ℓ ∈ P1. Therefore, the number of remaining
candidates for the class [c] is #G ≤ 2#P2+1. These can be enumerated (from the
basis of Cl(O)[2], deduce a basis of the subgroup G) and checked for correctness in
polynomial time using Proposition 4.5.6 and the provided basis of End(E). Overall,
the running time is polynomial in log p, log |Disc(O)|, B, and 2#P2 . The running time
follows by choosing B = min

(
2ω(D),maxi

(
ℓi | ℓi ≤ 2ω(D)−i)).

Let us prove the last inequality. First, 2ω(D) ≪ #(Cl(O)[2]), so B ≪ #(Cl(O)[2]).
Second, if {ℓi | ℓi ≤ 2ω(D)−i} is empty, then 2ω(D)−1 < ℓ1 ≤ ℓω(D) so 2ω(D) ≪ ℓω(D).

If it is not empty, clearly maxi
(
ℓi | ℓi ≤ 2ω(D)−i) ≪ ℓω(D). In both cases, we deduce

B ≪ ℓω(D). Lastly, it remains to see that B ≪ LD(1/2). Suppose there exists j such

that ℓj = maxi
(
ℓi | ℓi ≤ 2ω(D)−i). We have log2(ℓj) ≤ ω(D)− j, and

log2(D) ≥
ω(D)∑
i=j+1

log2(ℓi) ≥ (ω(D)− j) log2(ℓj) ≥ log2(ℓj)
2.

8With the convention that max(∅) = +∞.
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We deduce that ℓj ≤ 2log2(D)1/2 , hence B ≪ LD(1/2). If there exists no such j, then

log2(D) ≥
ω(D)∑
i=1

log2(ℓi) ≥
ω(D)∑
i=1

(ω(D)− i) = Θ(ω(D)2),

so 2ω(D) = LD(1/2), hence B ≪ LD(1/2).

The main result of this section is the following theorem.

Theorem 4.5.7 (ERH, reduction of Effective O-Vectorization to O-EndRing)

Given an order O of discriminant −D, the factorization D =
∏ω(D)
i=1 ℓeii (with ℓi <

ℓi+1), three O-oriented elliptic curves (E, ι), (E′, ι′), (F, ȷ) ∈ EℓℓO(k), together with
bases of End(E), End(E′) and End(F ), one can compute (or assert that it does not
exist) an O-ideal c such that (E′, ι′) = [c](E, ι) and an efficient representation of
φc : (F, ȷ)→ [c](F, ȷ) in probabilistic polynomial time in the length of the input and in

min
(
2ω(D),max

i

(
ℓi | ℓi ≤ 2ω(D)−i

))
≪ min

(
LD(1/2),#(Cl(O)[2]), ℓω(D)

)
.

Here, by “probabilistic polynomial time in the length of the input”, we mean proba-
bilistic polynomial time in log p, logD, the lengths of ι, ι′, and ȷ, and in the lengths of
the bases of End(E), End(E′), and End(F ).

Remark 4.5.8 This improves the result of [31, Thm. 2] in two ways. First, the worst
case is now sub-exponential: when D is primorial, the running time of [31, Thm. 2]
could reach about D1/ log logD, while it is now always at most LD(1/2). Second,
Theorem 4.5.7 is now very efficient for a new important family of discriminants: when
almost all prime divisors of D are small, no matter how many there are. In particular,
primorial numbers (the worst case of [31, Thm. 2]) now benefit from a polynomial time
algorithm. ♢

Proof. Thanks to Proposition 4.5.5, the proof is a straightforward adaptation of the
proof of [31, Thm. 2]. Suppose we are given (E, ι), (E′, ι′) ∈ EℓℓO(k), together with
End(E) and End(E′). Consider the involution τp : EℓℓO(k) → EℓℓO(k) defined in [31,
Def. 7] as τp(E, ι) = (E(p), (ϕp)∗ῑ), where ῑ is the conjugate of ι (i.e., ῑ(α) = ι(α) for
any α ∈ O), and ϕp : E → E(p) is the Frobenius isogeny.

Then, per [31, Prop. 11], one can compute a and b such that τp(E, ι) = [a](E, ι)
and τp(E

′, ι′) = [b](E′, ι′) in polynomial time. From [31, Lem. 10], the ideal class of
c is one of the #(Cl(O)[2]) square roots of [ab]. Therefore, the ideal c can be found
by Proposition 4.5.5 within the claimed running time. Finally, compute an efficient
representation of φc : (F, ȷ)→ [c](F, ȷ) in polynomial time with Proposition 4.5.6.

Corollary 4.5.9 (ERH) Given an order O of discriminant −D, and the factorization

D =
∏ω(D)
i=1 ℓeii (with ℓi < ℓi+1), Effective O-Uber reduces to O-EndRing∗ in
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probabilistic polynomial time in the length of the instance and in

min
(
2ω(D),max

i

(
ℓi | ℓi ≤ 2ω(D)−i

))
≪ min

(
LD(1/2),#(Cl(O)[2]), ℓω(D)

)
.

Here, by “probabilistic polynomial time in the length of the instance”, we mean prob-
abilistic polynomial time in log p, logD, and in the lengths of the orientations.

Proof. Again, this is a straightforward adaptation of [31, Cor. 4]. Suppose we are given
(E, ι), (F, ȷ) ∈ EℓℓO(k) and an O-orientable elliptic curve E′. Solving O-EndRing∗,
one can find ε-bases of End(E), End(F ) and End(E′), and an O-orientation ι′ of E′.
The result follows from Theorem 4.5.7.
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