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1.1. Cryptography

Section 1.1

Cryptography

Cryptography used to be the skill of hiding information in plain view. For thou-
sands of years people have come up with ways to encrypt their communications,
so that a sender would not have to rely on the message bearer (letter, telegraph
line or radio wave packet) to remain hidden for its contents to still be inaccessi-
ble by an eavesdropper. Hence even if the messenger was compromised, as long
as the employed method of encryption was not, no adversary would be able
to infringe on privacy – preventing, for example, the discovery of a planned
military maneuver.

A drawback was that sender and receiver had to agree on a secret method
of encryption beforehand, and make sure it did not leak to the enemy. This
task could be simplified if all secrecy in the scheme was focused in a short,
easily substituted secret key, as advocated by the 19th century Dutch cryptog-
rapher Auguste Kerckhoffs [Ker83] (an idea now known as Kerckhoffs’ princi-
ple). Nonetheless, the secret key had to be covertly distributed before encrypted
communication could take place – a system that in some contexts would defeat
its own purpose.

In particular, the rapidly expanding possibilities of 20th century telecom-
munication technologies begged for a solution to this problem. If every soldier
on the battlefield could be equipped with its own communication device, key
management would quickly become infeasible (unless they would all use the
same set of keys, as for example the German naval ships did in WWII, but that
would explode the likelihood of keys leaking). Similarly, there would simply
be no way for private users on the emerging internet to pre-share a key with
every merchant/bank/government agency with whom they wished to exchange
private data.

The solution was independently found by two groups of researchers in the
seventies.1 Public key encryption (PKE) makes use of an asymmetry in so-called
‘trapdoor one-way functions’: Mathematical functions that are easy to compute
1 While James Ellis, Clifford Cocks and Malcolm Williamson are now credited to be the first

to develop public key encryption, they were forced by their employer (the British Govern-
ment Communications Headquarters) to keep their discoveries secret until 1997 [Ell87]. In
the meantime and independently, Martin Hellman, Whitfield Diffie, Ralph Merkle, Ron
Rivest, Adi Shamir and Leonard Adleman had developed and published roughly the same
concepts by 1977 [Mer78; DH76; RSA78].
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1. Introduction

but hard to invert, unless one knows the secret trapdoor. This structure is used
to generate pairs of public and secret keys, such that anyone can use the public
key to encrypt a message, but only the holder of the corresponding secret key
can decrypt the resulting ciphertext. Communicating parties can then simply
announce their public keys in the open the moment the conversation is initiated,
since intercepting the public part of the key does not help an eavesdropper to
decrypt.

There is a catch to the last remark; if an adversary can intercept a public
key and prevent it from reaching the other party (the one who intends to use it
for encryption, i.e. the ‘sender’), he can attempt a ‘man-in-the-middle’ attack.
In such an attack the adversary impersonates the sender by substituting his
own public key for the original before passing it on to the receiver, so that all
encrypted messages become transparent to him. If he pretends to be B to A and
A to B, he can relay and inspect an entire conversation without the participants
noticing.

Thus, for public key encryption to work in practice, some kind of authentica-
tion mechanism is required. While the notion of message authentication codes
(MACs) had been around for some time, these again require sender and receiver
to share a key beforehand. Instead, Diffie and Hellman proposed the notion of
a Digital Signature Scheme (DSS) [DH76], which can protect the integrity of
a message and tie it to a specific public key both at once. Indeed, signature
schemes follow an asymmetric key pattern similar to PKE: A public key can be
used to verify a signature, while no one except the holder of the corresponding
secret key is able to sign messages. Of course this only defers the issue to prov-
ing authenticity of a party’s DSS public key, but now a trusted institute (called
a Certificate Authority) can use their signature to authenticate a list of users
and their public keys. Different CA’s can verify each other, and a few roots in
this so-called ‘web of trust’ may for example have their public keys hardwired
in an internet browser.

PKE and signatures solved the problem of secure communication over an in-
secure channel. In the current information age however, external eavesdroppers
are not the only adversaries who threaten the security of complex interactions.
Sometimes sensitive data will have to be protected even against parties who
are authorized to participate in the interaction.

An example of a modern cryptographic task is the following: ‘let several
banks run a money laundering detection procedure on their collective transaction
data, each of them learning nothing more than the outcome of the procedure’. A
naive protocol for money laundering detection would have the banks transfer

4



1.1. Cryptography

their transaction data to each other so that each of them could compute the
protocol locally, but this would violate the privacy of their clients. Instead,
the rich field of multi-party computation provides cryptographic solutions for
problems like the above, allowing for a distributed computation of which only
the outcome is revealed, so that the different parties cannot learn each others’
inputs.

Another example – which will feature prominently in this thesis – of cryp-
tography that protects against dishonest insiders, is the concept of a zero-
knowledge proof. Introduced by Shafi Goldwasser, Silvio Micali and Charles
Rackoff [GMR85] in 1985, a zero-knowledge proof is an interactive protocol
designed to let a prover that holds a witness w to some statement x in an NP-
relation, convince a verifier of the truth of x. The challenge (and the reason
for the name ‘zero-knowledge’) is to do so while revealing nothing (zero knowl-
edge) except for the fact that x is true (in particular, the witness should not
be revealed). In 1991 [GMW91] it was shown that every NP-language admits a
zero-knowledge proof system.

Fig. 1.1. Antigone and Broteas in a cave. Broteas proves to Antigone that he has the key to
the temple – without showing her the key – by following the procedure of a zero-knowledge
proof.

Figure 1.1 depicts a famous way of explaining the concept of a zero-knowledge
proof. Broteas would like to prove to Antigone that he possesses the secret key
to a temple inside a cave, without showing her the key itself. A good strategy
is for Broteas to demonstrate his possession of the key by using it to solve some
challenge that could otherwise not be solved. They come up with the following
procedure: Antigone looks away while Broteas enters the cave through either

5



1. Introduction

one of the entrances (A or B). Antigone then shouts at Broteas which of the
sides he should emerge from (chosen at random). If it happens to be the side
that Broteas entered, then he does not need to use his key. But, if she wants
him to emerge from the opposite entrance, then Broteas has to use his key
to move through the temple in order to get to the other side. Should he not
possess the key after all, then he will not be able to emerge from the correct
side and hence get caught. By repeating the process n times, the probability
that a cheating Broteas is not caught becomes 2−n.

It may not be immediately clear why Antigone has to look away when
Broteas enters the cave, or why she doesn’t just ask him to walk from A to B,
demonstrating his possession of the key beyond any doubt. The zero-knowledge
property actually forces us to leave some room for cheating. To prove that no
additional information is leaked, the procedure is set up in such a way that
the participants can choose to simulate (fake) it without any outside observer
noticing. In our example, Antigone and Broteas may collude by agreeing on a
fixed order of A-B-challenges prior to execution, so that Broteas can always en-
ter from the right direction. That way, just having a transcript of the procedure
(say, the notes of an observer standing with Antigone) cannot possibly leak any
information on the key, since it may just as well have been produced without
the involvement of any key whatsoever! The nice thing is that Antigone, by the
fact that she knows she did not collude with Broteas (and only she can know!),
still has good reason to be convinced of Broteas’ possession of the key.

In a more formal setting, when proving zero-knowledge for actual crypto-
graphic protocols, we have to show the existence of an efficient simulator that
can – without knowing the key – create accepting transcripts (a list of exchanged
messages that lead to the verifier accepting a statement) that are indistinguish-
able from real executions (where the prover does use its key/witness to produce
its messages).

As we have seen, modern cryptography gives us the tools to specify exact
requirements for privacy, correctness, integrity and authenticity against any
adversarial party in any interaction. In the next section we show how these
requirements are formalized in rigorous security notions, and how we may at-
tempt to mathematically prove them for any candidate scheme. Cryptography
has thus evolved from the skill of hiding information in plain view to the science
of secure communication in the broadest sense.

6



1.1. Cryptography

1.1.1 Provable security

A mathematical statement is an assertion about well-defined, unambiguous
concepts. So whenever we want to apply the rigorous tools of mathematics
to cryptography, we first have to decide how to model the different parties
and their interactions (both honest and dishonest) that will take place in an
application of our scheme. It is important to realize that a formal security proof
can only support our confidence in a scheme’s practical security if the model
adequately represents the context and security requirements of the application.

One aspect to determine is the power of the adversary, the so-called attack
model. Do we allow the adversary to choose the instance (e.g. ciphertext, iden-
tity of whose signature to forge) himself, or does it have to break the scheme on
any given target? Does it have unlimited computational resources, or perhaps a
bounded memory? Can it access some example broken instances different from
its target, to learn from? If yes, does it get to choose which example instances?

The more power and freedom we grant the adversary in our attack-model,
the stronger will be the claims of security that we derive. On the downside, such
claims will also be harder to prove, and they might be overkill for applications
where malicious parties are constrained by the context (e.g. it only pays off to
inconspicuously alter the amount on your own savings account).

As an example, consider the case of an encryption scheme. At first glance, we
simply desire that an adversary should not be able to decrypt a given ciphertext,
i.e. figure out the corresponding encrypted plaintext. However, not being able
to decrypt does not imply that the adversary is unable to extract any useful
information from a ciphertext. In an encrypted voting system he might not
be able to determine for which particular candidate a vote is cast, but still
distinguish between votes for candidates from different political parties and
thus influence the election outcome by discarding votes of a certain kind.

In other contexts, an attacker might be able to influence what messages are
sent over an encrypted channel and hence obtain some knowledge on the rela-
tion between plaintexts and ciphertexts that can help him decrypt. A famous
example comes from WWII, where the US knew from a partially decrypted ci-
phertext that Japan was planning an attack against ‘AF’, and suspected this to
be an encryption of ‘Midway Island’. By leaking a fake message about Midway
Island, they observed the Japanese immediately reporting about AF again and
thus confirmed their suspicion and were able to deflect the attack by sending
reinforcements.

7



1. Introduction

To model such and other circumstances that are potentially beneficial to
the adversary, we define security in terms of abstract games. In a cryptographic
game, an adversary goes through a series of computations and interactions
with a challenger before producing an output. The adversary wins the game
if its output satisfies a certain predicate. We usually say that a scheme satis-
fies a given security notion if any adversary (from the class considered in the
attack-model) can win the corresponding game with at most a negligible suc-
cess probability (respectively a negligible advantage – the difference between
the success probability of the adversary and a random guess – in case of games
where guessing the right outcome is feasible). Figure 1.1.1 depicts the game for
the strongest security notion for public-key encryption: Indistinguiability un-
der Chosen-Message Attack (IND-CCA). In some cases we intentionally move

GAME IND-CCA
1: (pk, sk) ← Gen
2: m0,m1 ← ADecrypt(pk)

3: b
$← {0, 1}

4: c∗ ← Enc(pk,mb)
5: b′ ← ADecrypt(c∗)
6: return b′ == b

Decrypt(c ̸= c∗)
7: m := Dec(sk, c)
8: return m

Fig. 1.2. Definition of the cryptographic game IND-CCA for a public-key encryption scheme
(Gen, Enc, Dec) using pseudocode. The adversary A has access to a decryption oracle, specified
in lines 7-8. The challenge ciphertext c∗ is not allowed as an input to the decryption oracle.

away from reality by letting the parties in our model interact with an idealized
version of a certain cryptographic primitive. A primitive is a low-level algorithm
like a signature scheme or a hash function, that can be used as a building block
for high-level cryptographic protocols. In the idealized version we consider the
primitive to be given as an oracle, i.e. as a black-box outside the control of any
party. Parties are given only query access, meaning that they can ask for an
output to a corresponding input of their choice, at unit cost per query. The
functionality implemented by the oracle is an ideal version that would be im-
possible to implement in practice, with properties that the real-world primitive
seeks to approximate.

The reason for this abstraction is simply that it allows some constructions
to be proven secure that would otherwise (in a model with the normal, non-
idealized primitive, also known as the ‘plain model’) lack a formal justification.
These constructions are often more simple (efficient) and elegant compared to
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the schemes that are provably secure in the plain model. On the downside, the
gap between the real world and the idealized model leaves open the possibility
that a scheme proven secure in the latter can actually be broken in practice.
However, in spite of this apparent weakness of the method, we actually have
enormous evidence of its soundness in specific cases.

Consider the case of an idealized hash function, where the corresponding
model is known as the Random-Oracle Model (ROM) [BR93]. The ‘Random
Oracle’ implements a perfectly random function, i.e. for every input an output
is freshly sampled from a uniform distribution. A separation from the plain
model was indeed proven by Canetti, Goldreich and Halevi, who constructed
a protocol secure in the ROM which can nonetheless be shown insecure if the
random oracle is instantiated with any concrete hash function [CGH04]. Their
construction however is very artificial and goes against all sound practices of
constructing cryptographic protocols (i.e. a certain message triggers the pro-
tocol to output its secret key). In a ‘twenty year retrospective’[KM15], Neal
Koblitz and Alfred Menezes concluded that “no real-world protocol failures
have been found that result from the use of random oracles” and their “belief
in the random-oracle [model] is unshaken”.

Having fixed a model and a security notion, we proceed to mathematically
prove that a certain scheme satisfies the latter in the chosen model. In many
cases, these proofs are only conditional, depending on the assumed hardness
of some computational problem – for example, the computational assumption
that inverting a particular trapdoor one-way function without the trapdoor is
unsolvable for an adversary with bounded resources (time and memory). The
proof is given as a reduction; a hypothetical attacker that supposedly breaks
the security notion is turned into an algorithm that solves the computational
problem. If the assumption holds true, such an algorithm – hence attacker
against the scheme – cannot exist.

Security reductions may be seen as a roadmap for cryptanalysts, pointing
to a few clear-cut, well defined computational problems that they can try to
attack, instead of the myriad of cryptographic schemes that are based on them.
If the computational problem has resisted attack from focused effort by crypt-
analysts for many years, then we can be reasonably confident in the truth of
the assumption, and by extension (through a reduction) of the security of any
related scheme.

Occasionally a computational assumption does get broken, usually one of
the newer ones that had not yet been studied extensively. It also occurs that a
new attack forces cryptographers to increase the parameters of their schemes,
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because an assumed hard problem turns out to be not as hard as expected, but
still hard enough. In this case increasing the instance size of the problem brings
the security back to level. It is quite a unique situation when an advancement
in technology forces us to consider a whole new model of computation, opening
up a new class of adversaries for which the existing computational assumptions
may or may not hold. This is exactly the situation in which we have found
ourselves since the advent of the quantum computer.

1.1.2 The threat of quantum computing

In 1981 physicist Richard Feynman suggested that computing devices based on
the laws of quantum mechanics would be capable of outperforming any ‘clas-
sical’ computer, at least on some specific computational tasks. A fundamental
difference between a classical state (describing for example the position and
momentum of a coffee mug) and a quantum state (describing position and mo-
mentum of an electron), is that the latter may describe a superposition of many
distinct positions/momenta. Only when the actual position or momentum or
any other property of the quantum system is measured (observed) does it ‘col-
lapse’ to a single determinate value.2 Much like with waves in classical physics,
superposing (adding together) two quantum states can lead to interference pat-
terns between those states, and this interference is what a quantum computer
exploits to find a solution faster than any classical machine (for ‘suitable’ prob-
lems). On a very high level, all quantum algorithms compute some function on
a superposition of input bits – in a sense computing the function on all possible
inputs simultaneously – then manipulate the resulting quantum state in such a
way that interference (mostly) cancels out the outcomes that are not a solution,
and then measure the state to (hopefully) find a bitstring that is a solution.

Exactly what computational problems are well-suited to quantum comput-
ing is an ongoing research question. By the early nineties David Deutsch,
Richard Josza and Daniel Simon had at least proven Feynman’s general idea
correct, by giving the first explicit quantum algorithms that (under certain
constraints) perform provably better than their classical counterparts [DJ92;
Sim97]. The big blow to cryptography came in 1994, when Peter Shor published
a quantum algorithm for factoring large integers, which runs superpolynomially
2 Incidentally, this collapse to a determinate value causes certain other properties to become

indeterminate, a phenomennon known as ‘Heisenbergs Uncertainty Principle’, which for
example causes the position and momentum of an electron to never both be known for
the same time t. This feature of quantum mechanics however only distracts from the point
here.
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faster than the best known classical algorithm, potentially breaking the RSA
cryptosystem in seconds rather than millions of years [Sho94].

Interestingly, all of these theoretical results came about before any actual
quantum computer was built, and therefore the threat was not immediate. Even
today, the first quantum computers that are under development are still very
far removed from the scale (in terms of memory and processing capabilities)
required to implement Shor’s algorithm on an actual RSA instance. However,
the point remains that if large-scale quantum computers can be built at some
point in the future, cryptosystems based on factoring will become vulnerable.

The break by Shor’s algorithm affects not only RSA, but practically all of
public key cryptography in use today. Symmetric schemes suffer from a quan-
tum attack as well – via Grover’s 1996 algorithm, which gives a quadratic
speedup in unstructered search, hence a quadratic speedup in guessing the key
(if it can be verified) – but here we have an example of a security breach that
can be remedied by increasing the parameters, in this case by doubling the key
size.

In 2016, the American National Institute of Standards and Technology an-
nounced a competition for new standards in cryptography for schemes that can
withstand attacks from a quantum attacker. Indeed, while no cryptosystem
used in practice has been broken by a quantum computer to date, there are
good reasons to start thinking about more robust solutions sooner rather than
later. The development of large-scale quantum computers seems to be ‘merely’
an engineering challenge, no fundamental law of physics that rules them out has
been discovered yet. It may well take another 10, 20 or 30 years before the threat
becomes actual, but the transition to new cryptosystems has a long time span
as well. Apart from the logistical difficulty inherent in any big IT-migration,
there are some specific factors that come into play here.

Firstly, there is the issue of long term security. An adversary could obtain
some classified, encrypted data now, and break the encryption at a point in
the future far enough that quantum computers have become available, yet near
enough for the data to still be relevant. Secondly, the life cycle of products
has to be taken into account. Expensive satellites that are launched today will
ideally still be operational 30 years into the future, without the possibility of
doing any cryptographic updates in the meantime. Lastly, the new cryptosys-
tems, robust against quantum attacks, will have to rely on new computational
problems that have not been studied as extensively as e.g. factoring. It takes
many years of cryptanalysis to build trust in new computational assumptions
and cryptoschemes.
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1.1.3 Post-quantum cryptography

The study of cryptosystems that are robust against quantum attacks is known
as post-quantum cryptography. It involves more than just finding computational
problems for which no efficient quantum algorithm is known, though of course
such new problems are an essential first step.

New computational assumptions. There are currently six main branches
of computational problems that are assumed to be hard even for quantum
algorithms and that lend themselves for public-key cryptography, giving rise
to: lattice-based, isogeny-based, code-based, multi-variate, symmetric primitive
and hash-based cryptography. Their respective merits are weighed along the
vectors of efficiency – in terms of key and ciphertext/signature sizes as well as
speed of basic operations – and how mature the cryptanalysis is to which they
have been subject. See e.g. [RCB22] for an overview.

Provable security in a quantum world. Remember that in a security re-
duction, we start with a hypothetical adversary against the considered scheme
and turn it into an algorithm that solves an assumed-to-be-hard computa-
tional problem. Just replacing the computational problem with one of the above
(which are assumed to be hard even for quantum adversaries) is not enough to
achieve post-quantum security. We need to make sure that the adaptation from
an adversary into a solver still goes through when the adversary is a quantum
algorithm. Indeed, some techniques we use in the classical case break down
when considering quantum adversaries.

Two issues that are typical to obstruct a reduction in the quantum setting
are the following: When observing an intermediate output of the considered
quantum adversary – which may be a quantum state – a fundamental feature
of quantum mechanics called Born’s rule says that the observation potentially
alters (disturbs) the state of the adversary, making it in general hard to predict
its behavior after this point. Secondly, the no-cloning principle of quantum
information prevents us from copying the initial state of the adversary, so that
after a potential disturbance caused by an observation (called a ‘measurement’),
we cannot simply go back to the start and run it again, as is done in the common
technique of rewinding in classical reductions.

A major goal of this thesis will be to remedy these issues, either by finding
a way around them or by directly controlling the disturbance caused by a
measurement in the reduction strategy.
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The Quantum Random-Oracle Model. In 2011, [BDF+11] noted that in
the case of an idealized hash function, the classical query model does not ade-
quately reflect the capabilities of a quantum adversary. A quantum adversary
can evaluate the real-world hash function on a superposition of inputs, po-
tentially learning global information on the oracle function already in a single
query. The Deutsch-Josza algorithm for example [DJ92] shows how a single
superposition query can be exploited to extract information about the overall
structure of an oracle function. Thus, to match this extra power of quantum
algorithms in the real world, [BDF+11] proposed the Quantum Random-Oracle
Model as the correct abstraction for idealized hash functions, where parties are
given superposition query access to the random oracle.

The enhanced query access introduces three main difficulties for proving
security reductions, compared to the classical ROM.

• Efficient simulation. A random oracle is infeasible to implement in prac-
tice, due to the exponential size of the function table that describes the
oracle function (a truly random function cannot be compressed). In the
classical ROM, the reduction can however simulate the random oracle to
the adversary, by means of lazy sampling; simply picking a random output
for each incoming query, and writing down each pair to ensure that future
queries can be answered consistently.3 It is straightforward to show that
the adversary cannot distinguish this procedure from a true random oracle.
With superposition queries, standard lazy sampling breaks down because
the first query may already require the sampling of exponentially many val-
ues. The work of Zhandry [Zha12; Zha19a] offers two distinct solutions to
this problem, see Section 2.4 for further details on the latter result.

• Query Recording. A key aspect of the classical ROM is query recording, the
fact that the reduction can place itself between the adversary and the oracle
(or simulate it) in order to find out which inputs the adversary has queried
so far at any time during its execution. In the QROM, the potential distur-
bance caused by the measurement of a quantum state forces us to analyze
the potentially altered behavior of the adversary after every sneak peak we
take at its quantum queries. In general, the adversary may notice and sim-
ply choose to abort, rendering itself useless for our reduction purposes. In
Chapter 3 of this thesis we show how to control the disturbance caused by

3 The reason for wanting to simulate the oracle can be either because we need to reduce to
some hardness assumption in the plain model and thus have to get rid of the oracle, or
because we want to use the simulated oracle for query recording (next bullet).
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measurements of the adversary’s queries in certain circumstances, bounding
it by a moderate factor in the total number of queries. Another approach
– called the ‘compressed oracle framework’ – originates in [Zha19a], where
a quantum version of the lazy sampling technique is given, that allows to
keep a list of previous queries in superposition.4 Measuring this list during
execution may still cause disturbance to the adversary, which is why we
extend the framework in Chapter 4 to again control the disturbance in a
particular setting. Other works have extended the framework in different
ways [CMS19; CFHL21] and we build upon the latter to prove new results
in Chapter 5.

• (Adaptive) reprogramming. Another very useful technique in the (Q)ROM is
known as ‘reprogramming the oracle’. It allows a reduction to change some
values of the oracle function, which can be easily done when using lazy sam-
pling or by constructing an interface between the adversary and the oracle.
The challenge however is to do it undetectably, and this is more difficult in
the quantum setting. There are roughly three scenario’s to discern; where
the adversary has no, partial or full control of the reprogramming point
(i.e. the input for which we want to change the output value). In the first
case we can relate the probability of detection to the probability that we
find the reprogramming point(s) in a measurement of one of the adversary’s
queries (‘O2H lemma’ [Unr14a]). Still in the first case, another thing we can
do is choose a λ fraction of inputs and reprogram them to a single random
looking value y, from the very start of the execution. Zhandry showed in
[Zha15b] that a QROM adversary can distinguish the resulting distribution
from a random oracle with probability O(q4λ2), where q is the number of
queries made by the adversary.5 Adaptive reprogramming refers to the sec-
ond case, where the point of reprogramming is controlled partially by the
adversary (for example, it is determined by a query the adversary makes to
a different oracle) and partially random – respectively computationally in-
distinguishable from random – in the view of the adversary. Here [GHHM21]
and [ES15] give QROM bounds for distinguishing in the respective settings.
Third is the case where the adversary has full control over the reprogram-
ming point, such as when it may choose any input of the random oracle as
a basis for its forgery of a signature, and the reduction needs the forgery
to include a specific output value. The measure-and-reprogram technique,

4 See Section 2.4 for an in-depth explanation of the compressed oracle technique.
5 ‘Big-O notation’ such as O(q4λ2) can be interpreted as ‘at most roughly q4λ2, see Section

2.1.3 for a precise definition.
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introduced in Chapter 3, is the first to solve this case for the QROM, at an
O(q2n) multiplicative loss for n reprogramming points.

Since we presented the above list of technical difficulties with corresponding
solutions (albeit with some slightly worse bounds), the reader may be led to
think that every ROM proof has a corresponding QROM proof, hence there is no
fundamental difference in security between the two. Previous works [BDF+11;
ARU14; YZ21] however established a separation; there exist schemes secure in
the ROM that are demonstrably insecure in the QROM. This result strengthens
our motivation to further develop tools for QROM analysis.

The NIST competition. As mentioned in the previous section, the American
National Institute of Standards and Technology started a competition for post-
quantum cryptography in 2016. In a call for proposals, teams of cryptographers
were invited to give it their best shot at designing Key Encapsulation Mecha-
nism’s (KEM’s) and Digital Signature Schemes (DSS). Among the candidates
were several schemes that benefited from results in this thesis, in the sense that
our tools allow for a more tight (Dilithium for NIST parameters) or even any
(MQDSS) QROM analysis at all, or by removing the need for alterations to the
schemes that facilitate a security reduction (Unruh transformation for Picnic,
‘key confirmation hash’ for practically all KEM’s, i.e. the ones that use the
Fujisaki-Okamoto transform).6

In 2022, NIST selected the lattice-based signature candidates Diltihium and
Falcon as well as the hash-based signature scheme Sphincs+ to be standardized.
On the KEM side, only the lattice-based scheme Kyber was selected. Some other
candidates will continue to be studied and possibly standardized in the future,
to allow for more diversity in the underlying computational problems.

Summary and outlook: Knowledge Extraction in the QROM. In mod-
ern cryptography we aim for provable security; we define rigorous notions of
security that capture our intuition of what it means to have particular com-
plex interactions that are private, authenticated, untampered and correct (i.e.
achieve what they claim to achieve) – and then mathematically prove that cer-
tain candidate schemes (conditionally) satisfy these notions, for a given attack
model. Often the proofs come in the form of security reductions, where we take
6 There have been other QROM anlyses that do not require a key confirmation hash, but

only for the ‘implicit rejection’ variant of the FO transform. While the NIST candidates
may use implicit rejection, the advantage of an explicit rejection analysis is that it still
holds in the presence of a potential side-channel attack that can detect rejection.
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a hypothetical adversary that breaks a scheme, and turn it into an algorithm
that solves some assumed-to-be-hard computational problem. Here we want to
treat adversaries as a black-box as much as possible, because the less assump-
tions we make on how they attack our schemes, the more general will be the
security claims we make based on reductions involving those adversaries. The
random-oracle model however helps us break open these boxes just a little bit,
by externalizing the evaluation of the (idealized) hash function, in giving the
adversary only query access to a random oracle. This in turn will help us deduce
what knowledge the adversary must necessarily posses whenever it succeeds in
some particular objective.

For example, in the Fujisaki-Okamoto transform ([FO99], Section 4.6), an
adversary cannot (up to negligible probability) query a valid ciphertext to the
decryption oracle without first having queried the corresponding plaintext to
the random oracle, allowing the reduction to extract its knowledge of the plain-
text via query recording. In zero-knowledge proofs, the existence of a ‘knowledge
extractor’ that can extract a witness from any successful prover is required for
the ‘proof-of-knowledge’ property (which intuitively says that no prover can
succeed without knowing a witness). Such an extractor does not contradict the
zero-knowledge property because we give it more power than a normal verifier;
in the random-oracle model this power consists of being allowed to observe the
adversary’s queries.

Interestingly, in the quantum world, taking a look inside the adversary’s
mind unavoidably alters its computation process. Whether this hurts our re-
duction goals – and if so by how much – is the common theme in the research
questions of this thesis.
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Section 1.2

Outline and contributions of this thesis

In this dissertation, we will introduce new techniques that facilitate security
reductions in the quantum random-oracle model. We present them alongside
a number of applications, obtaining rigorous relations between the security of
post-quantum cryptosystems and the hardness of certain computational prob-
lems. The main chapters are based on the following papers:

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.
“Security of the Fiat-Shamir Transformation in the Quantum
Random-Oracle Model”. In: Advances in Cryptology – CRYPTO
2019. Ed. by Alexandra Boldyreva and Daniele Micciancio. Cham:
Springer International Publishing, 2019, pp. 356–383.

[DFM20] Jelle Don, Serge Fehr, and Christian Majenz. “The Measure-and-
Reprogram Technique 2.0: Multi-round Fiat-Shamir and More”.
In: Advances in Cryptology – CRYPTO 2020. Ed. by Daniele Mic-
ciancio and Thomas Ristenpart. Cham: Springer International
Publishing, 2020, pp. 602–631.

[DFMS22a] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.
“Online-Extractability in the Quantum Random-Oracle Model”.
In: Advances in Cryptology – EUROCRYPT 2022. Ed. by Orr
Dunkelman and Stefan Dziembowski. Cham: Springer Interna-
tional Publishing, 2022, pp. 677–706.

[DFMS22b] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.
“Efficient NIZKs and Signatures from Commit-and-Open Proto-
cols in the QROM”. In: Advances in Cryptology – CRYPTO 2022.
Ed. by Yevgeniy Dodis and Thomas Shrimpton. Cham: Springer
Nature Switzerland, 2022, pp. 729–757.

In the course of his PhD, the author has additionally co-authored the fol-
lowing papers, which are not included in this thesis:

[DFH22] Jelle Don, Serge Fehr, and Yu-Hsuan Huang. “Adaptive Versus
Static Multi-oracle Algorithms, and Quantum Security of a Split-
Key PRF”. In: Theory of Cryptography. Ed. by Eike Kiltz and
Vinod Vaikuntanathan. Cham: Springer Nature Switzerland, 2022,
pp. 33–51. isbn: 978-3-031-22318-1.
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[BBD+23] Manuel Barbosa, Gilles Barthe, Christian Doczkal, Jelle Don,
Serge Fehr, Benjamin Grégoire, Yu-Hsuan Huang, Andreas Hüls-
ing, Yi Lee, and Xiaodi Wu. “Fixing and Mechanizing the Security
Proof of Fiat-Shamir with Aborts and Dilithium”. In: Advances
in Cryptology – CRYPTO 2023. Ed. by Helena Handschuh and
Anna Lysyanskaya. Cham: Springer Nature Switzerland, 2023,
pp. 358–389. isbn: 978-3-031-38554-4.

[DFHS23] Jelle Don, Serge Fehr, Yu-Hsuan Huang, and Patrick Struck.
On the (In)Security of the BUFF Transform. Cryptology ePrint
Archive, Paper 2023/1634. 2023. url: https://eprint.iacr.
org/2023/1634.

Preliminaries Chapter 2 introduces some concepts that will return through-
out the thesis. We outline our notation and definitions from the literature that
will play a role in our security definitions. The chapter ends with an introduc-
tion to an important tool for QROM analysis known as the compressed oracle
technique [Zha19a].

Security of the Fiat-Shamir Transformation in the QROM Chapter 3
is based on [DFMS19] and [DFM20]. In this chapter we establish the first post-
quantum security proof of the Fiat-Shamir transformation – both the standard
and multi-round versions – thereby enabling a QROM security reduction for
a large class of post-quantum signature schemes [ABCP22; Beu20; BGKM23;
BKV19; BMPS20; CDG+17; CHH+21; CHR+20; BSK+21; DKR+21; GPS22;
TDJ+22].

The Fiat-Shamir transformation [FS87] is a generic method to turn any
public-coin honest-verifier-zero-knowledge interactive proof system Π for an
NP-relation R into a non-interactive proof system FS[Π], or into a signature
scheme FSSIG[Π] (depending on the variant of the transformation). For three-
round protocols, well-known as Σ-protocols (see Figure 1.2), FS[Π] is obtained
by specifying the challenge c as c := H(x, a) instead of having it chosen by
the verifier. Here H is a cryptographic hash function, which we will eventually
model as a random oracle. The signature scheme FSSIG[Π] is obtained by addi-
tionally including the to-be-signed message m in the hash, and letting pk := x
and sk := w for some randomly chosen (x,w) ∈ R.

The goal of a security proof for the Fiat-Shamir transformation is to show
that it preserves security against malicious provers. The two relevant security
notions are soundness (no prover can convince the verifier on an instance x
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that is not true, i.e. for which no witness w s.t. (x,w) ∈ R exists) and proof
of knowledge (no prover can convince the verifier on an instance x without
knowing a witness w s.t. (x,w) ∈ R). It suffices to show that any prover AFS

in the non-interactive scheme that convinces the verifier VFS with probability
ϵ can be turned into a prover AΠ that convinces the interactive verifier VΠ

with probability polynomially related to ϵ; if no such provers exist against the
interactive scheme, the reduction ensures they cannot exist against the non-
interactive scheme either.

Fig. 1.3. Schematic representation of a Σ-protocol. The name derives from the shape of the
interaction (we can either think of a Σ or of a ‘zig-zag’ movement combined with a Merlin-
Arthur protocol).

Classically, different security proofs have been given in the random oracle-
model [FS87; PS96; FKMV12]. The simplest reduction (for the three-round
version) works by picking one of the adversary’s queries xi||ai to the random
oracle at random, forwarding ai to VΠ(xi) and programming the returned chal-
lenge c into the oracle reply. Since the adversary will have to use one of its q
queries for the forgery, with probabilty ϵ/q the adversary’s final output z will be
valid with respect to (xi, ai, c), and will thus be accepted by VΠ(xi). The same
argument works for multi-round protocols, except that now multiple queries
have to be reprogrammed.

The main obstacle to a similar reduction in the QROM is that observing
one of the adversary’s queries potentially disturbs its state, making it in general
hard to predict the adversary’s behaviour during the rest of its execution. The
post-measurement state may have only negligible overlap with the original, if it
consisted of a superposition over exponentially many query inputs. Due to the
importance of the FS transform in cryptographic applications, prior works had
already studied it in the QROM, but they either claimed an impossibility result
in a very constrained setting (e.g. where the reduction is not allowed to measure
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a query) [DFG13] or posited a crucial step in the analysis as an open question
[Unr17].7 Dominique Unruh [Unr15b] introduced an alternative transform that
manages to side-step the difficulties in the QROM analysis of the FS transform,
while achieving the same goal of removing interaction. This ‘Unruh transform’
is unfortunately much less efficient in terms of proof/signature size, although
we somewhat improve this situation with a new analysis in Chapter 5.

In Chapter 3 we solve the problem by introducing the ‘measure-and-repro-
gram’ technique, which allows for an almost one-to-one emulation of the clas-
sical reduction strategy. The two differences are the following: First, once the
reduction has picked a random query, it measures that query in the computa-
tional basis. The outcome of the measurement is forwarded to the interactive
verifier, as in the classical case. Secondly, when the reduction received a chal-
lenge from the verifier and is ready to program it into the oracle, it flips a
coin to decide on reprogramming now or at the next query. In the analysis we
are then able to bound the disturbance caused by the measurement and this –
slightly odd – way of reprogramming, achieving an ϵ/(2q+1)2 success probabil-
ity for the reduction. The concurrent and independent work [LZ19a] presented a
QROM reduction for the FS transform as well (based on the compressed-oracle
technique), but their reduction incurs an O(q9) loss.

We extend our technique to multi-round Fiat-Shamir (for 2n+1-round in-
teractive protocols where the verifier sends n uniformly random challenges).
Here we achieve a O(q2n) loss, and show that this is tight in the general case.

Finally, we introduce the notion of quantum computational unique responses
and show that it is sufficient for (Unruh-)rewinding, allowing special-sound
Σ-protocols to be proven secure as a proof of knowledge against quantum ad-
versaries in the plain model. Prior to our work, Unruh rewinding required the
stricter notion of ’perfect unique responses’, which is not satisfied by typical
protocols in the post-quantum setting. We use the new notion to include a com-
plete security reduction for signature schemes Picnic [CDG+17] and MQDSS
[CHR+20], as well as Dilithium [BDK+21] under a plausible assumption.

Online Extractability Where the previous chapter enabled extraction of a
query input at the expense of some (polynomial) disturbance, and extraction of
the witness in the interactive protocol Π depended on rewinding, in Chapter 4
(based on [DFMS22a]) we show that such drawbacks are not always necessary.
In certain contexts – for example when the first message of Π consists of a
7 Or restricted to the special case of statistically sound Σ-protocols and preservation of only

soundness, not proof-of-knowledge [Unr17].
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hash based commitment that we model as a random oracle – at least in the
classical case, online extraction [Fis05] is possible. ‘Online’ in this case means
straight-line (no rewinding) and on-the-fly (during protocol execution and with-
out disturbing it). Rewinding often causes a reduction loss (because we need
the adversary to succeed twice) and evidently a disturbance in the adversary’s
state causes a loss as well. If possible, online extraction is thus the preferred
option.

Building upon the compressed oracle framework [Zha19a], in this chapter
we introduce a statistically indistinguishable simulator for a quantum random
oracle, with both a query and an extraction interface. We show the following
generic result: Consider an arbitrary quantum query algorithm A in the QROM,
which announces during its execution some classical value t that is supposed to
be equal to f(x,H(x)) for some x. Here, f is an arbitrary fixed function, subject
to that it must tie t sufficiently to x and H(x), e.g., there must not be too many
y’s with f(x, y) = t; a canonical example is the function f(x, y) = y so that t
is supposed to be t = H(x). In general, it is helpful to think of t = f(x,H(x))
as a commitment to x. We then show that x can be efficiently online-extracted
with almost certainty, by querying t to the extraction interface of our simulator,
obtaining a ‘guess’ x̂. Whenever A outputs x with f(x,H(x)) = t at some later
point, x̂ = x holds except with negligible probability, while x̂ = ∅ (some special
symbol) indicates that A will not be able to output such an x.

At the core of our result is a new commutator bound, that quantifies the
potential disturbance caused by swapping an extraction measurement of the
compressed oracle with a random-oracle query from the adversary. If the above
relation is tight enough, the disturbance is negligible, and we can thus freely
add extraction queries by inserting them at the end of the adverary’s run and
then swapping them up to any point after t was put on the table. Thus, under
the right circumstances, online extraction is possible in the QROM as well.

As a not unimportant side-effect, the abstraction of our simulator, with
its extraction interface and properties formulated in classical terms, cryptog-
raphers with no background in quantum information theory can argue about
such examples as the above (in the QROM!) using only classical reasoning.

Our first main application is to so-called ‘commit-and-open protocols’. C&O
protocols form a subclass of Σ-protocols, were the first message a is a set of
commitments, and the challenge determines what subset of these the prover has
to open in the third message. We first introduce a generalized notion of special
soundness that captures the intuition that a witness can be computed from valid
responses to ‘sufficiently many’ challenges, and then use our technique to incon-
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spiciously open all the adversary’s commitments, which must contain sufficient
valid responses if the adversary has a good chance of convincing the verifier.
We thus obtain a tight bound for the proof of knowledge property of C&O
schemes, i.e. our knowledge extractor succeeds with probability proportional to
the advantage of a malicious prover over the trivial cheating probability (up to
a negligible additive error that we show to be tight with an attack).

The second main application is to the Fujisaki-Okamoto transform [FO99],
which underlies many KEM’s in the NIST post-quantum competition. We give
the first complete post-quantum security proof of the textbook (i.e. without
any adjustments that facilitate the proof) FO tranform. Most of the prior post-
quantum security proofs had to adjust the transformation to facilitate the proof
(like [HHK17]); those security proofs either consider a FO variant that employs
an implicit-rejection routine, i.e., where the decapsulation algorithm outputs
a pseudo-random key upon an invalid ciphertext rather than a rejection mes-
sage, or have to resort to an additional “key confirmation” hash [TU16] that is
appended to the ciphertex, thus increasing the ciphertext size. The unmodified
FO transformation was analyzed in [Zha19a] and [KKPP20]; however, as we
explain in detail in Section 4.6.3, the given post-quantum security proofs are
incomplete, both having the same gap.

Beyond its theoretical relevance of showing that no adjustment is necessary
to admit a post-quantum security proof, the security of the original unmodified
FO transformation with explicit rejection in particular ensures that the conser-
vative variant with implicit rejection remains secure even when the decapsula-
tion algorithm is not implemented carefully enough and admits a side-channel
attack that reveals information on whether the submitted ciphertext is valid or
not.

The core idea of our proof for the textbook FO transformation is to use the
extractability of the RO-simulator to handle the decryption queries. Indeed,
letting f(x, y) be the encryption Encpk(x; y) of the message x under the ran-
domness y, a “commitment” t = f(x,H(x)) is then the encryption of x under
the derandomized scheme, and so the extraction interface recovers x.

Efficient NIZK’s and Signatures from Commit-and-Open Protocols
Finally, in Chapter 5 we again show online extractability for commit-and-open
protocols, but now of the Fiat-Shamir transformed non-interactive version of
them. While the techniques from Chapter 3 and 4 could be combined to obtain
a security reduction for such protocols, this strategy would not result in online
extraction due to the disturbance caused by the measurement in the measure-
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and-reprogram technique, inflicting a (2q+1)2 multiplicative loss for the success
probability of the reduction.

André Chailloux was the first to aim for online extractability of the Fiat-
Shamir transformation in the QROM for this class of protocols. Indeed, the
Fiat-Shamir transformation of C&O Σ-protocols are known to be online ex-
tractable in the classical ROM (see e.g. discussion in [Fis05]). In a first at-
tempt [Cha19], Chailloux tried to lift the argument to the quantum setting by
means of Zhandry’s compressed-oracle technique [Zha19a], which offers a pow-
erful approach for re-establishing ROM results in the QROM, that has been
successful in many instances. Unfortunately, this first attempt contained a sub-
tle flaw, which turned out to be unfixable, and despite changing the technical
approach, the latest version [Cha21] of this work still contains a gap in the
proof, which is put as an assumption.

The situation is complicated because the adversary queries the random or-
acle to determine both its first message y = H(m) (consisting of a set of hash-
based commitments) and the corresponding challenge (computed as H(x||y)),
and may use these queries to search for a suitable commitment-challenge pair
that allows it to pass verification without actually knowing the witness.

To tackle the problem, we build upon and slightly extend the [CFHL21]
framework for the compressed oracle. [CFHL21] introduced the notion of ‘quan-
tum transition capacity’ of two ‘database properties’ P,P′, a measure of how
much more likely we are to find the recorded queries of the compressed ora-
cle to satisfy a property P′ after each query by the adversary, if the database
started in P. We first extend the framework by proving a revised version of
the main theorem that bounds a quantum transition capacity in terms of the
considered properties. In our security reduction we then define a database prop-
erty of exactly the case described above, where the queries to the oracle allow
the adversary to find a commitment-challenge pair that help him forge a proof
without knowing a witness. We are then able to show that quantum transition
capacity from the empty to this special database is small, i.e. for a bounded
query algorithm the described situation can be achieved only with negligible
probability.

Our security reduction is tight: Whenever a prover outputs a valid proof,
the online-extractor succeeds, except with a small probability accounting for
collision and preimage attacks on the involved hash functions. Our result also
applies to a variant of the Fiat-Shamir transformation where a digital signature
scheme (DSS) is constructed. It thereby, for the first time, enables a multiplica-
tively tight security reduction for, e.g., DSS based on the MPC-in-the-head
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paradigm [IKOS07a], like Picnic [CDG+17], Banquet [BSK+21] and Rainier
[DKR+21], in the QROM.

When a Σ-protocol does not have the mentioned C&O structure, a non-
interactive proof of knowledge with online extractability in the QROM can be
obtained using the Unruh transformation [Unr15b]. For technical reasons, the
Unruh transformation requires the hash function to be length preserving, which
may result in large commitments, and thus large NIZKs and digital signature
schemes. We revisit this transformation and show, by a rather direct application
of our main result above, that the online extractability of the Unruh transform
still holds when using a compressing hash function. The crucial observation is
that the Unruh transformation can be viewed as the composition of a pre-Unruh
transformation, which makes use of hash-based commitments and results in a
C&O protocol, and the Fiat-Shamir transformation. By applying our security
reduction, we obtain the tight online extractability without requiring the hash
function to be length preserving.

In real-world constructions based on C&O protocols, like e.g., the Picnic
digital signature scheme, commitments and their openings are responsible for a
significant fraction of the signature/proof size. For certain parameters, this cost
can be reduced by using a collective commitment mechanism based on Merkle
trees. This was observed in passing, e.g. in [Fis05], and is exploited in the most
recent versions of Picnic. We formalize Merkle-tree-based C&O protocols and
extend our main result to NIZKs constructed from them (see Theorem 5.23).
Applications of this result include a security reduction of Picnic 3 [KZ20], the
newest version of the Picnic digital signature scheme, that is significantly tighter
than existing ones: An adversary against the Picnic 3 signature scheme in the
QROM with success probability ε can now be used to break the underlying hard
problem with probability ε, up to some additive error terms, while previous
reductions yielded at most ε5/q10, where q is the number of random oracle
queries.
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Section 2.1

Mathematical preliminaries

2.1.1 Basic notation and probabilities

Let Z,R,R+,C denote the set of integers, real numbers, non-negative real num-
bers and complex numbers respectively. For a set S, |S| is the cardinality of
that set. [1, n] is a shorthand for {i ∈ Z : 1 ≤ i ≤ n}. We write := to assign
the right-hand side to the left-hand side. a $← A indicates that an element a is
selected uniformly at random from a set A, whereas a ← A means that it is
produced by the algorithm A (probabilistically or not). In the case of interac-
tive algorithms, we let ⟨A,V(x)⟩ denote the outcome of an interaction between
A and V when the latter is run on input x.

When considering the probability Pr[E] of some event E or the expectation
E[X] of a random variable X, we often leave the underlying probability space
implicit. Usually, it is well defined by means of a probabilistic algorithm or
experiment, which is often clear from the context. Sometimes we make the
probability space a bit more explicit and e.g. write PrH [E] (respectively EH [X])
to emphasize that the probability space includes the random choice of the
function H, as opposed to contexts where H is fixed, or Pra←A if the probability
is (also) over a produced by A.

The Chernoff bound says that for any random variable X and any δ > 0 we
have

Pr [X > (1 + δ) · E [X]] <

�
eδ

(1 + δ)1+δ

�E[X]

,

allowing us to bound the probability that X deviates too much from its expected
value. For convex functions f : C → R with C ⊂ R a convex set, such as
f : C → R; x 7→ x2, we may invoke Jensen’s inequality:

f

�P
aixiP
ai

�
≤
P

aif(xi)P
ai

∀n ∈ N, x1, . . . , xn ∈ C, a1, . . . , an ≥ 0.

2.1.2 Quantum computing

The state of a quantum system is described by a unit vector |ψ⟩ (called a ‘ket’
vector) in a Hilbert space H over C, for quantum computing purposes of finite
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dimension d. Elements from the dual space H∗ of linear functionals H → C
are denoted by ‘bra’ vectors ⟨ϕ|.8 For every vector |χ⟩ ∈ H there is a unique
vector ⟨χ| ∈ H∗ such that ⟨χ|ψ⟩ := ⟨χ||ψ⟩ = (|χ⟩, |ψ⟩), where (·, ·) is the inner
product on the Hilbert space. If we fix an orthonormal basis {|ei⟩}i∈I of H, we
can express a ket vector |ψ⟩ and the corresponding bra vector ⟨ψ| as

|ψ⟩ =




α1

α2
...
αd


 ∈ Cd and ⟨ψ| =

�
ᾱ1 ᾱ2 . . . ᾱd

�
∈
�

Cd
�∗

with the αi being the vector coefficients of |ψ⟩ with respect to this basis, also
known as its amplitudes. Given the properties above, the inner product is then
pinned down to

(|ψ⟩, |ϕ⟩) =
X

i

ᾱiβi

(where |ψ⟩ is as above and the βi are the coefficients of |ϕ⟩). The inner product
induces a norm:

∥|ψ⟩∥2 :=
p
⟨ψ|ψ⟩ (2-norm).

The 2-norm is also called the Euclidean norm, and we sometimes drop the
subscript 2 if it is clear from the context which norm we use. In the case of unit

vectors, we have by definition 1 = ∥|ψ⟩∥22 =
�p

⟨ψ|ψ⟩
�2

=
P

i |αi|2, hence the
squared moduli of a state’s amplitudes must sum to 1.

If d = 2, the quantum system is called a ‘qubit’ (quantum bit), and the
canonical basis is often written as {|0⟩, |1⟩} and referred to as the computational
basis. Each of the two basis states then represents the bit taking the classical
value 0 or 1. An arbitrary qubit state |ψ⟩ = α0|0⟩ + α1|1⟩ however can be
any linear combination of the basis states, and we say that the qubit is in a
superposition of 0 and 1 if both coefficients α0 and α1 are non-zero.

Given two systems (e.g. two electrons) with respective state spaces H1 and
H2, one can consider the joint system (the electrons considered as a pair) which
then has state space H12 := H1 ⊗H2. In quantum computing, we distinguish
between different quantum (sub-)systems by labelling them as registers. For a
register A consisting of n qubits, the dimension of the system is d = 2n. The
state |ϕ⟩A of this register is an element of

N
iHi (with i ∈ [1, n] and Hi the

8 Bra’s and ket’s where introduced by Paul Dirac in 1939, and are therefore known as ‘Dirac
notation’.
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respective state spaces of the individual qubits) and is (in general) a sum of
product states

P
j |ϕj1⟩ ⊗ |ϕj2⟩ ⊗ . . .⊗ |ϕjn⟩. We call it ‘entangled’ if it cannot

be written as a single product state. In an n qubit system, the computational
basis generalizes to {Nn

i=1 |0⟩,
Nn−1

i=1 |0⟩⊗ |1⟩, . . . ,Nn
i=0 |1⟩}, more conveniently

written as

{|0⟩, |1⟩, . . . , |N − 1⟩} (computational basis for system of n qubits)

where N := 2n. The state |ϕ⟩A of the above register A can thus be written as

|ϕ⟩A = α0|0⟩+ α1|1⟩+ . . .+ αN−1|N − 1⟩

and hence be in a superposition over 2n distinct classical values, e.g. strings of
classical bits or integers.

Next we consider the space L(H) of linear maps H → H, also called op-
erators on H. Three types of operators are of particular interest for quantum
computing: Unitaries, measurement operators and density operators.

A unitary is an operator U ∈ U(H) ⊆ L(H) that satisfies U †U = UU † = 1,
where U † is the adjoint of U , the unique operator that satisfies (U |ψ⟩, |ϕ⟩) =
(|ψ⟩, U †|ϕ⟩), and 1 is the identity map. Quantum algorithms act on a quantum
system by doing physical operations (usually one out of a fixed set of gates)
whose effect is described by applying a unitary U to the state of the system.
As can be seen from the equation above, U † reverses that operation (gate).

As the system evolves through these deterministic and reversible operations
in the form of gates described by unitaries, to produce a classical outcome the
quantum algorithm will eventually have to perform a measurement, which has a
probabilistic outcome and is non-reversible. A measurement on a state space HA

is described by a finite set of measurement operators M := {Mi}i∈I , where each
i ∈ I is a possible measurement outcome, with the constraint that

P
iM

†M =
1. The set of all such measurements on the state space HA for a given index
set I is denoted by MeasI(HA). If the state prior to the measurement is given
by |ψ⟩, the probability of finding outcome i ∈ I is

⟨ψ|M †
i Mi|ψ⟩ = ∥Mi|ψ⟩∥22 (Born’s rule).

Importantly, the measurement alters the state, so that if i was indeed the
outcome then the post-measurement state will be equal to

|ψ′⟩ = Mi|ψ⟩q
⟨ψ|M †

i Mi|ψ⟩
(post-measurement state).
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We say that the state |ψ⟩ has collapsed to |ψ′⟩.
If the measurement operators consist of orthogonal projectors9 (i.e Mi =

M †
i = M2

i ) then we say that the measurement is projective. Examples of pro-
jective measurements that we often use in this thesis are measurements in a
certain basis. For example, the measurement of a single qubit in the compu-
tational basis consists of the projectors {|0⟩⟨0|, |1⟩⟨1|}.10 Another important
example is the Hadamard basis:

{|+⟩ := 1√
2
(|0⟩+ |1⟩), |−⟩ := 1√

2
(|0⟩ − |1⟩)} (Hadamard basis),

where the name derives from the Hadamard operator, a unitary operator that
relates the Hadamard and the computational bases as follows:

H|0⟩ = |+⟩ H|1⟩ = |−⟩ H|+⟩ = |0⟩ H|−⟩ = |1⟩.

For n qubit systems, the Hadamard basis can be generalized in two ways.
One is via Walsh-Hadamard transformation H⊗n, which simply applies the
Hadamard operator H qubit-wise. Applying H⊗n to each of the (generalized)
computational basis states gives us the Walsh-Hadamard basis. The other way
is via the Quantum Fourier Transformation, leading to

{|k̂⟩}k∈{0,...,N−1} |k̂⟩ := UQFT |k⟩ =
1√
N

N−1X

j=0

ωkj
N |j⟩ (Fourier basis)

where again N := 2n and ωN ∈ C s.t. ωN
N = 1 is an N -th root of unity.

While a general quantum algorithm can perform a measurement at any time
during its execution, with the help of some additional (ancilla) qubits it can
always (without loss of generality) replace such measurements with unitaries
and only do the actual measurement at the end of its execution, or as soon
as it has to produce some classical output. This phenomenon is known as the
Deferred Measurement Principle (and also as ‘purifying’ the algorithm), and is
essentially a consequence of Naimark’s Dilation Theorem. We state it here as
formulated in [Feh22]:

Theorem 2.1 (Naimark’s Dilation Theorem).
Let M = {Mi}i∈I ∈ MeasI(HA), and let {|i⟩}i∈I be an orthonormal basis of
9 Since we only use orthogonal projectors in this thesis, we will often refer to them simply

as ‘projectors’.
10 In Dirac notation, |ψ⟩⟨ϕ| denotes the outer product between |ψ⟩ and |ϕ⟩.
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HB = C|I|. Then there exists an isometry V ∈ L(HA,HAB) such that for every
|ϕ⟩ ∈ S(HA) and i ∈ I we have

Mi|ϕ⟩ ⊗ |i⟩ = (IA ⊗ |i⟩⟨i|)V |ϕ⟩.

By basic properties of isometries, V can be chosen as V = UV◦ for V◦ =
HA → HAB, |ϕ⟩ 7→ |ϕ⟩|0⟩ and U ∈ U(HAB). Thus, instead of performing the
measurement M, we may first append a number of ancilla qubits equal to
⌈log |M|⌉, each of them initialized at |0⟩, apply U to the joint system and then
measure B. But now any action by the algorithm on the A register commutes
with the measurement of B, because they act on separate systems. Hence we
may perform the measurement at the very end of the algorithm’s execution, and
assume any quantum algorithm to be unitary up until its final measurement,
without loss of generality.

So far we have been writing all quantum states as pure states; unit vectors
in a finite dimensional Hilbert space. This formalism suffices as long as the
states we consider are fully determined. In some cases however, we may want
to consider a probabalistic mixture of states, for example when we consider a
state that has been measured but the measurement outcome was not recorded.
We call such states mixed states, and they are described by the density operator
formalism. A density operator ρ ∈ L(H) satisfies

• tr(ρ) = 1 (Trace one)
• ρ ≥ 0 (Positive semi-definite).

The density operator corresponding to the pure state |ψ⟩ ∈ H is given by
|ψ⟩⟨ψ| ∈ L(H). In general, a mixed state (density operator) ρ can be any
convex combination of pure states.

In cryptography we often consider how well an adversary is able to distin-
guish between two games, or how well he is able to detect a measurement on
its state. The Schatten-1 or trace norm, ∥A∥1 = tr

�√
A†A

�
is important in this

context, because the related trace distance equals the probability that anyone
using the optimal strategy (i.e. the optimal measurement) is able to distinguish
two considered states. For density matrices ρ and σ, it is defined as

δ(ρ,σ) :=
1

2
∥ρ− σ∥1 =

1

2
Tr

�q
(ρ− σ)†(ρ− σ)

�
(Trace distance).

If both ρ and σ are actually pure states, the definition simplifies to

δ(|ψ⟩⟨ψ|, |ϕ⟩⟨ϕ|) =
p

1− |⟨ψ|ϕ⟩|2 (Trace distance for pure states).
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where |⟨ψ|ϕ⟩|2 is called the ‘overlap’ between |ψ⟩ and |ϕ⟩.
By equation (9.110) in [NC11] and a short calculation, any norm-1 vectors

|φ⟩ and |ψ⟩ satsify
δ(|φ⟩⟨φ|, |ψ⟩⟨ψ|) ≤ ∥|φ⟩ − |ψ⟩∥2 . (1)

For probability distributions p and q, we write δ(p, q) for the total variational
distance; this is justified as ∥ρ0 − ρ1∥1 = δ(p0, q1) for ρi =

P
x pi(x)|x⟩⟨x|,

i = 0, 1.
For further background on quantum computing and its formalism, we refer

the reader to [NC11].

2.1.3 Oracle algorithms and the QROM

A quantum algorithm is typically formalized by means of a quantum circuit,
where the computational complexity is then given by the number of gates in
the circuit. In this thesis, we mainly consider the query complexity of (quan-
tum) oracle algorithms, which make queries to an external resource, referred to
as an oracle. A quantum oracle algorithm A is formally specified by an initial
state |ϕ0⟩ and a sequence of unitaries A1, . . . , Aq of unitaries, with the under-
standing that executing the algorithm means that AqO . . .OA1 is applied to
|ϕ0⟩, possibly followed by a measurement if the output is classical. Here the
operation O represents the oracle calls. In this thesis, we exclusively consider
oracles that implement a classical (possibly randomized or stateful) function f .
We then distinguish between classical and quantum queries to O. In the latter,
O is formally defined as the unitary O|x⟩|y⟩ = |x⟩|y ⊕ f(x)⟩. In the former,
the registers to which O is applied are first measured in the computational ba-
sis, before O is applied as above. We consider such an oracle algorithm efficient
(also called ‘bounded’) if |0⟩ := |00 . . . 0⟩, and the Ai’s are specified by quantum
circuits with a polynomial number of gates.

The above naturally extends to oracle algorithms that make oracle calls to
several oracles, where it is possibile to dinstinguish fixed and adaptively chosen
query order. Our recent work [DFH22] however shows that this distinction is not
very relevant, as the adaptive case can be simulated by a fixed-order algorithm
with only a multiplicative blow-up of n to each of the individual number of
queries per oracle, if there are n distinct oracles.

The (quantum) random-oracle model. In the random-oracle model, a cryp-
tographic hash function, which is used as a building block in the construction of
a cryptographic scheme, is abstracted away by a random-oracle, which imple-
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ments a uniformly random function to which parties have no other access than
via querying the random-oracle. Formally, this means that algorithms in the
random-oracle model, and in particular the adversary, will be modelled as ora-
cle algorithms with oracle access to a uniformly random function H : X → Y .
For concreteness, we restrict here to Y = {0, 1}n; on the other hand, we do not
further specify the domain X except that we assume it to have an efficiently
computable order, so one may well think of X as X = {1, . . . ,M} for some
positive M ∈ Z or as bit strings of bounded size. In terms of notation, we will
write either H or OH to denote the oracle.

In the classical random-oracle model (ROM), the attacker makes classical
queries to OH . In a quantum setting it is natural to give the attacker quantum
query access to OH , since the original hash function is an offline primitive that
the attacker could easily evaluate on a superposition of inputs, as was argued
in [BDF+11].

While there are artificial examples that show the existence of cryptographic
schemes that are proven secure in the ROM but insecure in practice, the com-
mon belief is that such a failure of the random-oracle methodology does not
occur in natural schemes. See Section 1.1.1 for a more in-depth discussion of
this point.
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Section 2.2

Zero-knowledge proof systems

A zero-knowledge proof system is a protocol between a prover and a verifier,
where the prover may prove membership of statements x with respect to a
certain language L, in such a way that the verifier learns exactly x ∈ L and
nothing more. For an NP-relation11 we may consider zero-knowledge proofs of
knowledge, where the verifier beyond learning x ∈ L is also convinced of the
fact that the prover knows a witness w. Many results in this thesis consider a
certain class of such protocols, called Σ-protocols.

2.2.1 Σ-protocols

Definition 2.2 (Σ-protocol). A Σ-protocol Σ = (P,V) for a relation R ⊆
X ×W is a three-round two-party interactive protocol of the form:

Prover P(x,w) Verifier V(x)
a−→
c←− c

$← C
z−→ Accept iff V (x, a, c, z) = 1

Here P is an efficient two-stage algorithm, and we write

(a, z)← ⟨P(x,w), c⟩
for the generation of the first message a in the first stage and the response z in
the second stage once given the challenge c, which the verifier draws uniformly
at random from the challenge set C. The verification predicate V is efficiently
computable and determines whether the verifier accepts or not.

We allow the set of instances X 12, the set of witnesses W and the relation
R to depend on a security parameter η. Similarly, the interactive algorithms
P and V may depend on η (or have η as part of their input). However in this
thesis, for ease of notation, we suppress these dependencies on η unless they
are crucial.
11 An NP-relation is an efficiently computable relation R ⊆ X ×W that defines the language

L := {x ∈ X|∃w ∈ W.R(x,w)}.
12 In chapters 4 and 5 and the definition of C&O protocols below we switch notation from

x ∈ X to inst ∈ I.
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Commit-and-Open Σ-Protocols. For the purpose of this thesis, a commit-
and-open Σ-protocol, or C&O Σ-protocol or C&O protocol for short, is a Σ-
protocol Π = (P ,V) of a special form, involving a hash function H : X → Y
that is modeled as a RO13, where we fix X := {0, 1}≤B and Y := {0, 1}n. Con-
cretely, in a C&O protocol, the transcript (a, c, z) is of the following form (see
Figure 2.1). The first message a consists of commitments y1, . . . , yℓ, computed
as yi = H(mi) for messages m1, . . . ,mℓ ∈M, and possibly an additional string
a◦14. The challenge c is picked uniformly at random from the challenge space
C ⊆ 2[ℓ], which is set to be a subset of 2[ℓ]. Finally, the response z is given by
mc = (mi)i∈c. Eventually, V accepts if and only if H(mi) = yi for all i ∈ c and
some given predicate V (inst, c,mc, a◦) is satisfied.

For the above to be meaningful, we obviously need that M ⊆ X , i.e., the bit
size of the possible mi’s are upper bounded by B. Furthermore, the parameter
n determines the hardness of finding a collision in H (in the random oracle
model), and thus the level of binding the commitments provide.

Additionally, we may consider a generalization of C&O protocols, where the
first message is parsed as a single commitment y of the ℓ messages m1, . . . ,mℓ

and where this commitment is computed by means of an arbitrary “multi-
message” commitment scheme involving H, which has the property that any
subset of m1, . . . ,mℓ can be opened without revealing the remaining mi’s. The
above component-wise hashing is then one particular instantiation, but alter-
natively one can for instance also compute y by means of a Merkle tree (see
Section 5.5.1), and then open individual mi’s by revealing the corresponding
authentication paths. Looking ahead, we stress that the concepts developed in
Section 4.5.2: the notions of S-soundness and S-soundness∗ and the probabil-
ity pStriv, do not depend on the choice of commitment scheme, and thus remain
unaffected when considering such a Merkle-tree-based C&O protocol. To em-
phasize the default choice of the commitment scheme, which is element-wise
hashing, we sometimes also speak of an ordinary C&O protocol.

Zero-knowledge. An important aspect of Σ-protocols is their zero-knowledge
property. In this thesis we only consider perfect honest verifier zero-knowledge
(HVZK):
13 One could also refer to Σ-protocols that use non-hash-based commitments, and/or are

analyzed in the standard model, as C&O protocols, but this is not the scope here.
14 Note that mi ∈ M may consist of the actual “message” (computed by the prover using the

witness w), possibly concatenated with randomness.
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VP
a◦,y = H(m)

c

mc

∀i ∈ c : H(mi) = yi ∧ V (inst, c,mc, a◦)

c ← C ⊆ 2[ℓ]

Fig. 2.1. An (ordinary) C&O Σ-protocol.

Definition 2.3 (Honest Verifier Zero-knowledge). A Σ-protocol is honest
verfier zero-knowledge (HVZK) if there exists an efficient simulator S such that
the distributions of

(a, c, z)← ⟨P(x,w),V(x)⟩ and (a, c, z)← S(x)

are the same for any (x,w) ∈ R.

We consider two variants: Special honest verifier zero-knowledge and non-abort
honest verifier zero-knowledge (naHVZK). For the former we require the simu-
lator to first sample z and c and then compute a as a function of those (on top
of the above condition on the distribution). Non-abort HVZK (Definition 2.5 in
[KLS18]) applies to protocols where in an honest run the prover may abort and
try again. The simulator may thus produce ‘abort’ transcripts as well (with the
same distribution as the honest prover), and the c produced by the simulator
is required to be uniform in C conditioned on the simulated transcript being
non-abort.

2.2.2 Soundness notions for Σ-protocols

When considering an adversary A that tries to forge a proof for some in-
stance x ∈ X , one can distinguish between an arbitrary but fixed x, and an
x that is chosen by A and output along with a. If x is fixed then the adversary
is called static, otherwise it is called adaptive. For the typical security defini-
tions for Σ-protocols this distinction between a static and an adaptive A makes
no difference (see Lemmas 2.6 and 2.8 below).

Definition 2.4. Σ is (computationally/statistically) sound if for any (quan-
tum polynomial-time/unbounded) adversary A there exists a negligible function
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µ(η) such that for any η ∈ N:

Pr [⟨A,V(x)⟩ = accept] ≤ µ(η)

for all x /∈ L; respectively, in case of an adaptive A:

Pr [x ̸∈ L ∧ v = accept : (x, v)← ⟨A,V⟩] ≤ µ(η) .

Remark 2.5. In line with Section 3.2, the description of a quantum algorithm A
is understood to include the initial state |ϕ0⟩. As such, when quantifying over all
A it is understood that this includes a quantification over all |ϕ0⟩ as well. This
stays true when considering A to be quantum polynomial-time, which means
that the unitaries Ai can be computed by polynomial-time quantum circuits,
and q is polynomial in size, but does not put any restriction on |ϕ0⟩.15 This is
in line with [Unr12, Definition 1], which explicitly spells out this quantification.

Lemma 2.6. If Σ is computationally/statistically sound for static adversaries
then it is also computationally/statistically sound for adaptive adversaries.

Proof. Let A be an adaptive Σ-protocol adversary, producing x and a in the
first stage, and z in the second stage. We then consider the following algorithms.
Ainit runs the first stage of A (using the same initial state), outputting x and a.
Let |ψx,a⟩ be the corresponding internal state at this point. Furthermore, for
any possible x and a, Ax,a is the following static Σ-protocol adversary. Its initial
state is |ψx,a⟩|a⟩ and in the first stage it simply outputs a, and in the second
stage, after having received the verifier’s challenge, it runs the second stage
of A. We then see that

Pr
�
x ̸∈ L ∧ v = accept : (x, v)← ⟨A,V⟩

�

=
X

x◦ ̸∈L
Pr

�
x = x◦ ∧ v = accept : (x, v)← ⟨A,V⟩

�

=
X

x◦ ̸∈L

X

a

Pr
�
Ainit = (x◦, a)

�
Pr

�
⟨Ax◦,a,V(x◦)⟩ = accept

�
.

Since Pr
�
⟨Ax◦,a,V(x◦)⟩ = accept

�
is bounded by a negligible function, given

that Ax,a is a (quantum polynomial-time/unbounded) static adversary, the
claim follows. ⊓⊔
15 In other words, A is then non-uniform quantum polynomial-time with quantum advice.
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We now recall the definition of a proof of knowledge, sometimes also referred
to as (witness) extractability, tailored to the case of a negligible “knowledge
error”. Informally, the requirement is that if A succeeds in proving an instance
x, then by using A as a black-box only it is possible to extract a witness for
x. In case of an arbitrary but fixed x, this property is formalized in a rather
straightforward way; however, in case of an adaptive A, the formalization is
somewhat subtle, because one can then not refer to the x for which A manages to
produce a proof. We adopt the approach (though not the precise formalization)
from [Unr17], which requires x to satisfy an arbitrary but fixed predicate.

Definition 2.7. Σ is a (computational/statistical) proof of knowledge if
there exists a quantum polynomial-time black-box ‘knowledge extractor’ K,16 a
polynomial p(η) and a constant d ≥ 0, such that for any (quantum polynomial-
time/unbounded) adversary A there exist a negligible function κ(η) such that
for any η ∈ N and any x ∈ X we have:

Pr
�
(x,w) ∈ R : w ← KA(x)

�
≥ 1

p(η)
· Pr [⟨A,V(x)⟩ = accept]d − κ(η) ;

respectively, in case of an adaptive A:

Pr
�
x ∈ X ∧ (x,w) ∈ R : (x,w)← KA�

≥ 1

p(η)
· Pr [x ∈ X ∧ v = accept : (x, v)← ⟨A,V⟩]d − κ(η)

for any subset X ⊆ X .

Also here, static security implies adaptive security.

Lemma 2.8. If Σ is a computational/statistical proof of knowledge for static
A then it is also a computational/statistical proof of knowledge for adaptive A.

Proof. Let A be an adaptive Σ-protocol adversary, producing x and a in the
first stage, and z in the second stage. We construct a black-box knowledge
extractor Kad that works for any such A. In a first step, KA

ad runs the first stage
of A using the black-box access to A (and having access to the initial state of
A). Below, we call this first stage of A as Ainit. This produces x and a, and
we write |ψx,a⟩ for the corresponding internal state. Then, it runs KAx,a

na , where
16 Black-box refers to the fact that we require K to have only oracle access to A, i.e. to provide

it with an input and answer its queries before receiving the output, without knowing its
code.
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Kna is the knowledge extractor guaranteed to exist for static adversaries, and
Ax,a is the static adversary that works as follows. It’s initial state is |ψx,a⟩|a⟩
and in the first stage it simply outputs a, and in the second stage it runs the
second stage of A on the state |ψx,a⟩. Note that having obtained x and a and
the state |ψx,a⟩ as first step of KA

ad, KAx,a

na can then be executed with black box
access to (the second stage of) A. For any subset X ⊆ X , we now see that

Pr
�
x ∈ X ∧ (x,w) ∈ R : (x,w)← KA

ad

�

=
X

x∈X

X

a

Pr
�
Ainit = (x, a)

�
Pr
h
(x,w) ∈ R : w ← KAx,a

na

i

≥
X

x∈X

X

a

Pr
�
Ainit = (x, a)

�
· 1

p(η)
· Pr

�
⟨Ax,a,V(x)⟩ = accept

�d − κ(η)

≥ 1

p(η)

�X

x∈X

X

a

Pr
�
Ainit = (x, a)

�
Pr

�
⟨Ax,a,V(x)⟩ = accept

��d

− κ(η)

=
1

p(η)
Pr

�
x ∈ X ∧ v=1 : (x, v)← ⟨Ax,a,V(x)⟩

�d − κ(η) ,

where the first inequality is because of the static proof-of-knowledge property,
and the second is Jensen’s inequality, noting that we may assume without loss
of generality that d ≥ 1. ⊓⊔

Remark 2.9. We do not necessarily require a Σ-protocol to be perfectly or sta-
tistically correct. This allows us to include protocols that use rejection sampling,
where with a constant probability, the value z would leak too much informa-
tion on the witness w and so the prover sends ⊥ instead. On the other hand,
by default we consider the soundness/knowledge error to be negligible, i.e., a
dishonest prover succeeds only with negligible probability to make the verifier
accept if x is not a valid instance or the prover has no witness for it (depending
on the considered soundness notion). Negligible soundness/knowledge error can
always be achieved by parallel repetition (see e.g. [Dam10]).

Special soundness. Many Σ-protocols satisfy a notion called special-soundness,
which is very useful for proving the proof of knowledge property. Most com-
mon are the variants 2-special-soundness and k-special-soundness (also called
k-soundness, in Chapter 3 t-soundness), but we develop a generalized definition
that we call S-soundness in Section 4.5.2). Here we include the standard def-
inition of k-soundness. Note that we only consider perfect special soundness,
while there also exist computational variants in the literature.
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Definition 2.10. Σ is k-special-sound if there exists an efficient algorithm
E(x, a, S, {zc}c∈S) that takes as input an instance x, a first message a, a subset
S ⊆ C of challenges, where S has cardinality k, and responses zc for c ∈ S, and
it outputs a witness for x if V(x, a, c, zc) for all c ∈ S.

2.2.3 The Fiat-Shamir transformation

The Fiat-Shamir transformation turns a Σ-protocol Σ into a non-interactive
proof system, denoted FS[Σ], by replacing the verifier’s random choice of c ∈ C
with c := H(x, a), where H : X ′ → C is a hash function with a domain X ′ that
contains all pairs x′ = (x, a) with x ∈ X and a produced by P . In other words,
upon input x and w, the honest FS-prover produces π = (a, z) by running the
two-stage Σ-protocol prover P but using c = H(x, a) as challenge (i.e., as input
to the second stage). In case Σ is not statistically correct, the above process of
producing π = (a, z) is repeated sufficiently many times until V (x, a,H(x, a), z)
is satisfied (or some bound is reached). In either case, we will write this as

π = (a, z)← PH
FS(x,w) .

We may write as V H
FS(x,π) the FS-verifier’s check whether V (x, a,H(x, a), z)

is satisfied or not. In the security analysis, the hash function H is modeled by
a random oracle, i.e. by oracle access to a uniformly random H : X ′ → C.

For FS[Σ] we can define security notions similar to those of Σ-protocols.
Here again, when considering an adversary A that tries to forge a proof for
some instance x ∈ X , one can distinguish between an arbitrary but fixed x,
and an x that is chosen by A and output along with π. If x is fixed then the
adversary is called static, otherwise it is called adaptive. In contrast to the case
of Σ-protocols, for the Fiat-Shamir transformation there may actually be a
difference between static and adaptive security, where the latter is the stronger
notion.

We have soundness:

Definition 2.11. FS[Σ] is (computationally/statistically) sound if for any
(quantum polynomial-time/unbounded) adversary A making q queries to the
random-oracle, there exists a negligible function µ(η) and a constant e such
that for any η ∈ N:

Pr
H

�
V H
FS(x,π) : π ← AH

�
≤ qeµ(η)

for all x /∈ L; respectively, in case of an adaptive A:

Pr
H

�
V H
FS(x,π) ∧ x /∈ L : (x,π)← AH

�
≤ qeµ(η) .
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And the proof of knowledge property:

Definition 2.12. FS[Σ] is a (computational/statistical) proof of knowl-
edge if there exists a polynomial-time black-box ‘knowledge extractor’ E, such
that for any (quantum polynomial-time/unbounded) algorithm A making q queries
to the random-oracle, a polynomial p(η), constants d, e ≥ 0, and a negligible
function µ(η) such that for any η ∈ N and any x ∈ X :

Pr
�
(x,w) ∈ R : w ← EA(x)

�
≥ 1

qep(η)
· Pr
H

�
V H
FS(x,π) : π ← AH

�d − µ(η) ;

respectively, in case of an adaptive A:

Pr
�
x ∈ X ∧ (x,w) ∈ R : (x,w)← EA�

≥ 1

qep(η)
· Pr
H

�
x ∈ X ∧ V H

FS(x,π) : (x,π)← AH
�d − µ(η)

for any subset X ⊆ X , where q is the number of queries A makes.

Remark 2.13. Note that for the soundness and proof of knowledge property of
FS[Σ], the adversary A’s success probability may unavoidably grow with the
number q of oracle queries, but we require that it grows only polynomially in
q.

Fiat-Shamir signatures Any Fiat-Shamir non-interactive proof system can
easily be transformed into a public-key signature scheme.17 The signer simply
proves knowledge of a witness (the secret key) for a composite statement x∗ :=
x∥m, which includes the public key x as well as the message m. The signature
σ then consists of a proof for x∗.

Definition 2.14. A binary relation R with instance generator G is said to be
hard if for any quantum polynomial-time algorithm A there exist a negligible
function µ(η) for which

Pr
�
(x,w′) ∈ R : (x,w)← G,w′ ← A(x)

�
≤ µ(η)

where G is such that it always outputs a pair (x,w) ∈ R.

Definition 2.15. A Fiat-Shamir signature scheme based on a Σ-protocol Σ =
(P ,V) for a hard relation R with instance generator G, denoted by Sig[Σ] is
defined by the triple (Gen, Sign, Verify), with
17 In fact, that is how the Fiat-Shamir transform was originally conceived in [FS87]. Only

later [BG93] adapted the idea to construct a non-interactive zero-knowledge proof system.
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• Gen: Pick (x,w)← G, set sk := (x,w) and pk := x.
• SignH(sk,m): Return (m,σ) where σ ← PH

FS(x,m,w).
• VerifyH(pk,m,σ): Return V H

FS(x,m,σ).

Here (PH
FS , V

H
FS) = FS[Σ∗], where Σ∗ = (P∗,V∗) is the Σ-protocol obtained from

Σ by setting P∗(x,m) = P(x) and V∗(x,m) = V(x) for any m.

Note that by definition of FS in Section 2.2.3, we use V H
FS(x∥m,σ) as shortcut

for V (x∥m, a,H(x∥m, a), z).
We investigate the following standard security notions for signature schemes.

Definition 2.16 (sEUF−CMA/EUF−NMA). A signature scheme fulfills strong
existential unforgeability under chosen-message attack (sEUF−CMA) if for all
quantum polynomial-time algorithms A and for uniformly random H : X ′ → C
it holds that

Pr
h
VerifyH(pk,m,σ) ∧ (m,σ) /∈ Sig−q : (pk, sk)← Gen, (m,σ)← AH,Sig(pk)

i

is negligible. Here Sig is a classical oracle which upon classical input m returns
SignH(m, sk), and Sig−q is the list of all queries made to Sig.

Analogously, a signature scheme fulfills existential unforgeability under no-
message attack (EUF−NMA) if for all quantum polynomial-time algorithms A
and for uniformly random H : X ′ → C it holds that

Pr
h
VerifyH(pk,m,σ) : (pk, sk)← Gen, (m,σ)← AH(pk)

i

is negligible.

Section 2.3

Public-key encryption and key encapsulation

2.3.1 Definitions for PKE’s and KEM’s

Following the presentation of [HHK17] in general lines, we recall the formal
definition of a public-key encryption scheme.
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Definition 2.17 (Public-Key Encryption). A public-key encryption scheme
PKE consists of algorithms (Gen,Enc,Dec), a message space M, a ciphertext
space C and a set of random coins R, such that for any m ∈M, r ∈ R

(sk, pk)← Gen , C ∋ c← Encpk(m) and Decsk(c) ∈M ∪ {⊥} .

The security notion for a public-key encryption scheme that we will use in
this thesis is OW-CPA (One-Way Chosen Plaintext Attack) security.

Definition 2.18 (OW-CPA security of a PKE). The security game OW-
CPA is given in Figure 2.2. We define the OW-CPA advantage function of an
adversary A against PKE as

ADVOW-CPA
pke [A] := Pr[OW-CPA(A)⇒ 1].

A public-key encryption scheme PKE is IND-CCA if for any quantum polynomial
time algorithm A the advantage function ADV[A]IND-CCA

KEM is negligible.

GAME OW-CPA
1: (pk, sk) ← Gen

2: m∗ $← M
3: c∗ ← Encpk(m

∗)
4: m′ ← A(pk, c∗)
5: return m′ == m∗

GAME IND-CCA-KEM
6: (pk, sk) ← Gen

7: b
$← {0, 1}

8: (K∗
0 , c

∗) ← Encaps(pk)

9: K∗
1

$← K
10: b′ ← ADecaps(c∗,K∗

b )
11: return b′ == b

Decaps(c ̸= c∗)
12: K := Decapssk(c)
13: return K

Fig. 2.2. Games for OW-CPA security of a PKE and IND-CCA security of a KEM. In the
latter, A is not allowed to query c∗ to Decaps.

For a given public-key encryption scheme, it may be useful to consider the
probability of encountering decryption failures.

Definition 2.19 (δ-correctness). A public-key encryption scheme is δ-correct
if

E
(sk,pk)←Gen

�
max
m∈M

Pr
�
Decsk(c) ̸= m : c← Encpk(m)

��
≤ δ

where the probability is over the randomness of the encryption.

Another important property of encryption schemes is the min-entropy of a
ciphertext given the plaintext, measured by their γ-spreadness.
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Definition 2.20 (γ-spreadness). A public-key encryption scheme is γ-spread
if

min
m∈M;
(sk,pk)

�
− logmax

c∈C
Pr

�
c = Encpk(m)

��
≥ γ ,

where the probability is over the randomness of the encryption, and the min-
imum is over all key pairs that have positive probability of being produced by
Gen.

The above definition can be relaxed to an expectation over the choice of pk,
when the expectation is done inside the negative logarithm.

Definition 2.21 (weak γ-spreadness). A public-key encryption scheme is
weakly γ-spread if

− log E
(sk,pk)←Gen

�
max
m∈M
c∈C

Pr
�
c = Encpk(m)

��
≥ γ ,

where again the probability is over the randomness of the encryption.

A key-encapsulation mechanism (KEM) is defined as follows:

Definition 2.22 (Key Encapsulation Mechanism). A key encapsulation
mechanism KEM consists of algorithms (Gen,Encaps,Decaps) and a key space
K, where

(sk, pk)← Gen , (K, c)← Encaps(pk) and Decapssk(c) ∈ K ∪ {⊥} .

For a key encapsulation mechanism, the security notion that we consider in
this thesis is that of IND-CCA (Indistinguishability under Chosen Ciphertext
Attack).

Definition 2.23 (IND-CCA security of a KEM). The security game IND-
CCA-KEM is given in Figure 2.2. We define the IND-CCA advantage function
of an adversary A against KEM as

ADV[A]IND-CCA
KEM := |Pr[IND-CCA-KEM(A)⇒ 1]− 1

2
|.

A public-key encryption scheme PKE is IND-CCA if for any quantum polynomial
time algorithm A the advantage function ADV[A]IND-CCA

KEM is negligible.
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Section 2.4

The compressed oracle technique

The results in Chapters 4 and 5 build upon and extend the compressed oracle
framework [Zha19a]. We recall here (some version of) the technique. Consider
the multi-register D = (Dx)x∈X , where the state space of Dx is given by HDx =
C[{0, 1}n∪{⊥}], meaning that it is spanned by an orthonormal set of vectors |y⟩
labelled by y ∈ {0, 1}n ∪ {⊥}. The initial state is set to be |⊥⟩D :=

N
x |⊥⟩Dx .

Consider the unitary F defined by

F |⊥⟩ = |0̂⟩ , F |0̂⟩ = |⊥⟩ and F |ŷ⟩ = |ŷ⟩ ∀ y ∈ {0, 1}n \ {0n} ,

where |ŷ⟩ := H|y⟩ with H the Walsh-Hadamard transform on C[{0, 1}n] =
(C2)⊗n. Exploiting the relation |y⟩ = 2−n/2

P
η(−1)η·y|η̂⟩, we see that

F |y⟩ = |y⟩+ 2−n/2

|⊥⟩−|0̂⟩

�
. (2)

When the oracle is queried, a unitary OXYD, acting on the query registers X
and Y and the oracle register D, is applied, given by

OXYD =
X

x

|x⟩⟨x|X ⊗Ox
Y Dx

with Ox
Y Dx

= FDxCNOTY DxFDx , (3)

where CNOTY Dx |y⟩|yx⟩ = |y ⊕ yx⟩|yx⟩ for y, yx ∈ {0, 1}n and acts as the
identity on |y⟩|⊥⟩.

As long as no other operations are applied to the state of D, this compressed
oracle is perfectly indistinguishable from the quantum random oracle. Also, the
support of the state of Dx then remains orthogonal to |0̂⟩ for any x. However,
these properties may change when, e.g., measurements are performed on D.
The oracle may then behave differently than the quantum random oracle, and
the state of D may then have a non-trivial overlap with |0̂⟩. We note that, by
the convention on CNOT to act trivially when the control register is in state
|⊥⟩, it holds that Ox

Y Dx
|y⟩|0̂⟩ = |y⟩|0̂⟩.

When considering a classical query, which is a query with the XY -register
in state |x⟩|0⟩ for some x, it is understood that the Y -register is then measured
after the application of OXYD. If Dx is in state ρ then a classical query on x
will give response h with probability tr(|h⟩⟨h|FρF )— unless ρ has nontrivial
overlap with |0̂⟩ and h = 0, in which a classical query on x will give response 0
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with probability tr(|0⟩⟨0|FρF ) + tr(|⊥⟩⟨⊥|FρF ). We note that, for any h ∈ Y
and ρ = |h⟩⟨h|,

tr(|h⟩⟨h|FρF ) = |⟨h|F |h⟩|2 =
���⟨h|

�
|h⟩+ 2−n/2(|⊥⟩ − |0̂⟩)

����
2

=
���1− 2−n/2⟨h|ϕ0⟩

���
2
=

���1− 2−n
���
2
≥ 1− 2 · 2−n . (4)

Vice-versa, after a classical query on x with response h, the state of Dx is
F |h⟩— unless the state of Dx prior to the query had a nontrivial overlap with
|0̂⟩ and h = 0, in this case, the state after the query is supported by F |0⟩ and
F |⊥⟩ = |0̂⟩.

Efficient representation of the compressed oracle. By the techniques of
[Zha19a], it is possible to make the (considered variant of the) compressed
oracle efficient. Concretely, by means of a suitable encoding, it is possible to
efficiently maintain the quantum state of the register D of the compressed
oracle, compute the unitary OXYD, and extract information from the state of
D. We briefly describe this procedure below.

Writing Ȳ = {0, 1}n ∪ {⊥}, consider the following standard sparse encoding
scheme

SparseEncq : ȲX → D = (X × Ȳ)q ,

which maps any “database” y = (yx)x∈X with at most q non-⊥ entries to the
“compressed database”

SparseEncq(y) =

(x1, yx1), . . . , (xs, yxs), (0,⊥), . . . , (0,⊥)

�

of pairs (x, yx) with yx ̸= ⊥, sorted as x1 < · · · < xs, and padded with (0,⊥)s.
Naturally, we then set
��SparseEncq(y)

�
= |x1⟩|yx1⟩ · · · |xs⟩|yxs⟩|0⟩|⊥⟩ · · · |0⟩|⊥⟩ ∈


C[X ]⊗ C[Ȳ]

�⊗q

for any such y. The crucial observations now are:

1. Using the representation H⊗|X ||y⟩ 7→ |SparseEncq(y)⟩ for the state of reg-
ister D after q queries, the evolution of the compressed oracle, given by
OXYD, is an efficiently quantum computable isometry (this was shown by
Zhandry, but is also easy to see from scratch). Here and below, H is the
Walsh-Hadamard transform on C[{0, 1}n] = (C2)⊗n, extended to act as
identity on |⊥⟩.
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2. Using the representation |y⟩ 7→ |SparseEncq(y)⟩ instead, it follows from ba-
sic theory of quantum computation that for any classical function f with
domain ȲX and that is classically efficiently computable using the repre-
sentation y 7→ SparseEncq(y), the unitary U : |y⟩|z⟩ 7→ |y⟩|z + f(y)⟩ is
efficiently quantum computable.

3. |y⟩ 7→ |SparseEncq(y)⟩ commutes with applying Walsh-Hadamards to the
C[Ȳ]-components. Therefore, one can efficiently switch between the two rep-
resentations above, simply by applying H⊗q to the corresponding registers
of |SparseEncq(y)⟩.

Thus, using either of the two representations for representing the internal state
of the oracle, both the evolution of the oracle and the typical unitaries or mea-
surements used to “read out” information are efficiently quantum computable.
For example, checking if yx = ⊥ for a given x ∈ X , or if there exists x ∈ X
for which x and yx satisfy some given (efficiently computable) relation, etc.
Formally:

Lemma 2.24. Let f : ({0, 1}n ∪ {⊥})|X | → T be a function such that f̃ =
f ◦SparseDecq can be computed in polynomial time in q. Then the measurement
{Π̃t}t∈T given by the projections

Π̃t =
X

y:f̃(y)=t

|y⟩⟨y|

can be implemented in time linear in Time[f̃ ] and thus in quantum polynomial
time in q.
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3.1. Introduction

Section 3.1

Introduction

The Fiat-Shamir transformation [FS87] (Section 2.2.3) turns any public-coin
three-round interactive proof, i.e., any Σ-protocol, into a non-interactive proof
in the (Q)ROM. In the classical case it is well known that the security proper-
ties of the Σ-protocol are inherited by the Fiat-Shamir transformation [BR93;
FKMV12]. In the quantum setting, when considering the security of the Fiat-
Shamir transformation against quantum dishonest provers in the QROM, mainly
negative results are known — see below for a more detailed exposition of previ-
ous results and how they compare to the results in this chapter.

Measure-and-reprogram. The main technical result (Theorem 3.3) of the
current chapter can be understood as a particular way to overcome — to some
extent — the limitation in the QROM of not being able to “read out” any query
to the random oracle and to then reprogram the corresponding hash value, as
described in Section 1.1.3. Concretely, we achieve the following.

We consider an arbitrary quantum algorithm A that makes queries to the
random oracle and in the end outputs a pair (x, z), where z is supposed to
satisfy some relation with respect to H(x), e.g., z = H(x). We then show how
to extract early on, by measuring one of the queries that A makes, the very x
that A will output, and to reprogram the random oracle at the point x with a
fresh random value Θ, with the effect that the pair (x, z) that A then outputs
now satisfies the given relation with respect to Θ, with a not too large loss in
probability.

The way this works is surprisingly simple. We choose the query that we
measure uniformly at random among all the queries that A makes (also counting
A’s output), in order to (hopefully) obtain x. Subsequently we reprogram the
RO, so as to answer x with Θ, either from this point on or from the following
query on, where this binary choice is made at random. This last random decision
seems counter-intuitive, but it makes our proof work. Indeed, we prove that the
probability that (x, z) satisfies the required relation drops by no more than a
factor O(q2), where q is the number of oracle queries A makes.

Application to the Fiat-Shamir transformation. It is quite easy to see
that the above result on the reprogrammability of the random oracle is ex-
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3. Security of the Fiat-Shamir Transformation

actly what is needed to turn a quantum prover that attacks the Fiat-Shamir
transformation into a quantum prover that attacks the underlying Σ protocol.
Indeed, from any Fiat-Shamir dishonest prover A that tries to produce a proof
π = (a, z) for a statement x, we obtain an interactive dishonest prover for the
Σ protocol that extracts a from A and sends it to the verifier, and then uses
the received challenge c to reprogram the RO, so that the z output by A will
be a correct reply with respect to c with a probability not much smaller than
the probability that A succeeds in forging π in the QROM.

This gives us a very generic transformation (stated in Theorem 3.7 below)
from a Fiat-Shamir dishonest prover to a Σ-protocol dishonest prover that is
similarly successful, up to a loss in probability of order O(q2). Applied to the
standard notions of soundness and proof-of-knowledge, we prove that both these
security properties, in both the computational and the statistical variant, are
preserved under the Fiat-Shamir transformation in the QROM (Corollaries 3.8
and 3.9).

Comparison with prior results. Before our contribution, the Fiat-Shamir
tranform in the QROM was studied in a number of works [Unr17; DFG13;
KLS18], where weaker security properties were shown. In addition, Unruh de-
veloped an alternative transform [Unr15b] that provided QROM security at the
expense of an increased proof size. The Unruh transform was later generalized
to apply to 5-round public coin interactive proof systems [CHR+18].

Mainly negative results were known about the security of the Fiat-Shamir
transformation against quantum attacks. Figure 3.1 shows a table copied from
[ARU14], which outlines the different negative results on the security of Σ-
protocols against quantum attackers that carry over to the Fiat-Shamir trans-
formation. All the potential positive claims on the security of the Fiat-Shamir
transformation were left unanswered (see Figure 3.1).

The only known positive result on the security of the Fiat-Shamir trans-
formation against quantum attacks was the result by Unruh [Unr17], which
showed that statistical soundness carries over from a Σ-protocol to the Fiat-
Shamir transformation.

Our generic transformation from a Fiat-Shamir dishonest prover to a Σ-
protocol dishonest prover implies that all the (considered) security properties
of the Σ-protocol carry over´ to the Fiat-Shamir transformation. Hence, we

52



3.1. Introduction

Properties of Σ-protocol Σ-protocol directly Fiat-Shamir transf.
special strict

soundness soundness PoK proof PoK proof
perf comp attack stat attack stat
comp comp attack attack attack attack
perf perf stat stat stat stat

Fig. 3.1. Table adapted from [ARU14], showing which versions of special soundness and strict
soundness, which we call unique responses, imply that the Σ-protocol is a proof of knowledge
(PoK) or a proof (in the sense of ordinary soundness). The values comp, stat and perf mean
that the considered property holds respectively computationally, statistically and perfectly,
and attack means that there exist example schemes that allow an attack. Gray values are
copied from [ARU14]. The last column shows that the negative results carry over to the
Fiat-Shamir transformation, while our results (in bold face) complete the table by showing
that also the positive results carry over. (Previously, only the lower right corner entry was
known [Unr17].) If the computational version of the unique responses, or strict soundness,
property is replaced by our quantum strengthening (Definition 3.24), all instances of attack
can be replaced by comp.

show that all the three open settings from [ARU14] are statistically secure, as
shown in Figure 3.1.18

We point out that [DFG13] claims an impossibility result about the sound-
ness of the Fiat-Shamir transformation as a quantum proof of knowledge, which
contradicts one of our implications above. However, their result only applies to
a restricted notion of proof of knowledge where the extractor is not allowed
to measure any of the adversary’s queries to the random oracle. The rationale
for this restriction was that such a measurement would disturb the adversary’s
quantum state beyond control; however, our technical result shows that it actu-
ally is possible to measure one of the adversary’s queries and still have sufficient
control over the adversary’s behavior.

Placing prior negative results into perspective. At first glance, the neg-
ative results from [ARU14] together with our new positive results, as shown
in the Fiat-Shamir column in Figure 3.1, seem to give a complete answer to
the question of the security of the Fiat-Shamir transformation against quantum
attacks. However, there is actually more to it.

We consider a stronger but still meaningful notion of computational unique
responses, which is in the spirit of the collapsing property as introduced by Un-
ruh [Unr16]. We call the new notion quantum computationally unique responses
18 In the (quantum) random-oracle model, statistical security considers a computationally

unbounded attacker with a polynomially bounded number of oracle queries.
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and define it in Definition 3.24. Adapting a proof from [Unr12], it is not hard
to see that a Σ-protocol with (perfect or computational) special soundness and
quantum computational unique responses is a computational proof of knowl-
edge. Therefore, our result then implies that its Fiat-Shamir transformation is
a computational proof of knowledge as well.

Finally, our result also implies that if the Σ-protocol is computationally
sound (as a ‘proof’), then its Fiat-Shamir transformation is computationally
sound as well. Interestingly, Unruh seems to suggest in [Unr17] (right after
Theorem 21) that this is not true in general, due to a counterexample from
[ARU14]. The counter example is, however, a Σ-protocol that is computation-
ally special sound but not computationally sound (the issue being that in the
quantum setting, special soundness does not imply ordinary soundness).

Thus, with the right adjustments of the considered computational soundness
properties, the three negative answers in the Fiat-Shamir column in Figure 3.1
may actually be turned into positive answers. One caveat here is that we expect
proving quantum computationally unique responses to be much harder than
computational unique responses.

Application to signatures. Our positive results on the Fiat-Shamir trans-
formation have direct applications to the security of Fiat-Shamir signatures.
From the proof-of-knowledge property of the Fiat-Shamir transformation we
immediately obtain the security of the Fiat-Shamir signature scheme under
a no-message attack, assuming that the public key is a hard instance (Theo-
rem 3.33). Furthermore, [Unr17] and [KLS18; BBD+23] have shown that for
Fiat-Shamir signatures, up to some loss in the security parameter and under
some additional mild assumptions on the underlying Σ-protocol, one can also
derive security under chosen-message attack.

In conclusion, Fiat-Shamir signatures offer security against quantum attacks
(in the QROM) if the underlying Σ-protocol is a proof of knowledge against
quantum attacks and satisfies a few additional natural assumptions (Theo-
rem 3.34).

As a concrete application, using Unruh’s result19 on the collapsing property
of the RO [Unr16] to argue the collapsing version of computational unique
responses (which we call quantum computational unique responses) for the
underlying Σ-protocol, we can conclude that the non-optimized version of Fish,
which is the Fiat-Shamir variant of Picnic, is secure in the QROM.
19 The proof in [Unr16] has been shown incomplete, but the updated eprint version [Unr15a]

contains a new proof.

54



3.1. Introduction

Comparison with concurrent results. In concurrent and independent work
[LZ19a]20, Liu and Zhandry show results that are very similar to ours: they also
show the security of the Fiat-Shamir transformation in the QROM, and they
introduce a similar stronger version of the computational unique responses prop-
erty in order to argue that a Σ-protocol is a (computational) proof of knowledge
against a quantum adversary. In short, [LZ19a] differs from the work here in
the following aspects. In [LZ19a], the result on the Fiat-Shamir transforma-
tion is obtained using a very different approach, resulting in a greater loss in
the reduction: O(q9) compared to the O(q2) loss that we obtain. On the other
hand, on the quantum proof of knowledge front, Liu and Zhandry introduce
some additional techniques that, for instance, allow them to prove that the Σ-
protocol underlying Dilithium satisfies (their variant) of the newly introduced
strong version of the computational unique responses property, while we phrase
this as a conjecture in order to conclude the security of (some variant of) the
Dilithium signature scheme.

Measure-and-reprogram 2.0. Given important examples of multi-round
public-coin interactive proofs, used in, e.g., MQDSS [CHR+16] and for Bullet-
proofs [BBB+18], a natural question that arises is whether the measure-and-
reprogram technique extends to the reprogrammability of the QROM at multi-
ple inputs and the security of the Fiat-Shamir transformation (in the QROM)
of multi-round public-coin interactive proofs. Another question is whether the
O(q2) loss (for the original Σ-protocols) is optimal, or whether one might hope
for a linear loss as in the classical case.

A technical hurdle for generalizing to multi-round Fiat-Shamir. To
answer the first question, we observe that the naive approach of applying our
original result from [DFMS19] (Lemma 3.1 and Equation 5 in this thesis) induc-
tively so as to reprogram multiple inputs one by one does not work. This is due
to a subtle technical issue that has to do with the precise statement of the orig-
inal result. In more detail, the statement involves an additive error term εx ≥ 0
that depends on the particular choice of the point x, which is (adaptively) cho-
sen to be the input on which the random oracle (RO) is reprogrammed. The
guarantee provided in [DFMS19] is that this error term stays negligible even
when summed over all x’s, i.e.,

P
x εx = negl. The formulation of the result for

individual x’s with control over
P

x εx is important for the later applications
20 The paper [LZ19a] was put on eprint (ia.cr/2019/262) a few days after our eprint version

(ia.cr/2019/190).
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to the Fiat-Shamir transformation. However, when applying the result twice
in a row, with the goal being to reprogram the random oracle at two inputs
x1, x2, then we end up with two error terms εx1 and εx1

x2
(with the second one

depending on x1), where the first one stays negligible when summed over x1

and the second one stays negligible when summed over x2 (for any x1); but it
is unclear that the sum εx1,x2 := εx1 + εx1

x2
stays negligible when summed over

x1 and x2, which is what we would need to get the corresponding generalized
statement.

An improved version of the technique. Our work [DFM20] revised the
original result from [DFMS19] of reprogramming the QROM at one input by
showing an improved version that has no additive error term, but only the
original multiplicative O(q2) loss. In Section 3.2.2 we present both side by side
for comparison, but we omit the proof of the original result.

For typical direct cryptographic applications, the improvement makes no big
quantitative difference due to the error term being negligible, but: (1) it makes
the statement cleaner and easier to formulate, (2) somewhat surprisingly, the
proof is simpler than that of the original result in [DFMS19], and (3) most im-
portantly, it removes the technical hurdle to extend to multiple inputs. Indeed,
we then get the desired multi-input reprogrammability result by means of a not
too difficult, though somewhat tedious, induction argument.

Building on our multi-input reprogrammability result above, our next goal
then is to show the security of the Fiat-Shamir transformation (in the QROM)
of multi-round public-coin interactive proofs. In contrast to the the Fiat-Shamir
transformation of Σ-protocols, some additional work is needed here, to deal with
the order of the messages extracted from the Fiat-Shamir adversary. Thus,
as a stepping stone, we consider and analyze a variant of the above multi-
input reprogrammability result, which enforces the right order of the extracted
messages. As a simple corollary of this, we then obtain the desired security of
multi-round Fiat-Shamir. Here, the multiplicative loss becomes O(q2n) for a
(2n+ 1)-round public-coin interactive proof with constant n.

More applications. In the context of digital signatures, the original motiva-
tion for the Fiat-Shamir transformation, we show that Fiat-Shamir signature
schemes based on a multi-round, honest-verifier zero knowledge public-coin in-
teractive quantum proof of knowledge have standard signature security (exis-
tential unforgeability under chosen message attacks, UF-CMA) in the QROM.
Assuming the additional collision-resistance-like property of computationally
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unique responses, they are even strongly unforgeable. We go on to apply this
result to the signature scheme MQDSS [CHR+16], a multivariate signature
scheme that made it to the second round of the NIST standardization process
for post-quantum cryptographic schemes, providing its first QROM proof.

Another application of our multi-round Fiat-Shamir result would for in-
stance be to Bulletproofs [BBB+18].

As a second application of our multi-input reprogrammability result, we
show security (in the QROM) of the non-interactive OR-proof introduced by
Liu, Wei and Wong [LWW04], further analyzed by Fischlin, Harasser and Jan-
son [FJ20]. While the well-known (interactive) OR-proof by Cramer, Damgård
and Schoenmakers [CDS94] is a Σ-protocol and thus the results from [DFMS19]
apply, the inherently non-interactive OR-proof by Liu et al. does not follow this
blueprint of being obtained as the Fiat-Shamir transformation of a Σ-protocol
(though in some sense it is “close” to being of this form). We show here how the
2-input version of our multi-input reprogrammability result implies security of
this OR-proof in the QROM.

Tightness of the FS reductions. Finally, we derive a lower bound that shows
that the multiplicative O(q2) loss in the security argument of the Fiat-Shamir
transformation of Σ-protocols is tight (up to a factor 4). Thus, the O(q2) loss is
unavoidable in general. Furthermore, we extend this lower bound to the Fiat-
Shamir transformation of multi-round interactive proofs as considered in this
work, and we show that also here to obtained loss O(q2n) is in general optimal,
up to a constant that depends on n only.

Section 3.2

Reprogramming the quantum random oracle

We show and analyze a particular way to reprogram a random oracle in the
quantum setting, where the oracle can be queried in superposition.

3.2.1 Notation

In line with Section 2.1.3, we consider a quantum oracle algorithm A that
makes q queries to an oracle, i.e., an unspecified function H : X → Y with

57



3. Security of the Fiat-Shamir Transformation

finite non-empty sets X ,Y . We may assume without loss of generality that
A makes no intermediary measurements (see Section 2.1.2 for a proof of this
fact). Formally, A is then described by a sequence of unitaries A1, . . . , Aq and
an initial state |ϕ0⟩.21 The unitaries Ai act on registers X,Y,Z,E, where X
and Y have respective |X |- and |Y|-dimensional state spaces, while Z and E
is arbitrary. As will become clear, X and Y are the quantum registers for the
queries to H as well as for the final output x, Z is for the output z, and E is
internal memory. For any concrete choice of H : X → Y , we can write

AH |ϕ0⟩ := AqOH · · ·A1OH |ϕ0⟩ ,

for the execution of A with the oracle instantiated by H, where OH is the
unitary OH : |x⟩|y⟩ 7→ |x⟩|y ⊕H(x)⟩ that acts on registers X and Y.

It will be convenient to introduce the following notation. For 0 ≤ i, j ≤ q
we set

AH
i→j := AjOH · · ·Ai+1OH

with the convention that AH
i→j := 1 for j ≤ i. Furthermore, we set

|ϕH
i ⟩ :=


AH

0→i

�
|ϕ0⟩

to be the state of A after the i-th step but right before the (i+1)-st query, and
so that |ϕH

q ⟩ equals

AH

0→q

�
|ϕ0⟩ = AH |ϕ0⟩, the output state produced by A.

Finally, for a given function H : X → Y and for fixed x ∈ X and Θ ∈ Y,
we define the reprogrammed function H∗Θx : X → Y that coincides with H on
X \ {x} but maps x to Θ. With this notation at hand, we can then write


AH∗Θx

i→q

�
AH

0→i

�
|ϕ0⟩ =


AH∗Θx

i→q

�
|ϕH

i ⟩

for an execution of A where the oracle is reprogrammed at a given point x after
the i-th query.

We are interested in the probability that after the execution of AH and
upon measuring register X in the computational basis to obtain x ∈ X , the
state of register Z is of a certain form dependent on x and H(x). This relation
is captured by a projection GH

x , where, more generally, for x, x′ ∈ X and Θ ∈ Y
we set

GΘ
x,x′ = |x′⟩⟨x′|⊗ 1⊗Πx,Θ ⊗ 1 ,

21 Alternatively, we may understand |ϕ0⟩ as an auxiliary input given to A.
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where {Πx,Θ}x∈X ,Θ∈Y is a family of projections acting on Z, which we refer to
as a quantum predicate. We use the short hands GΘ

x for GΘ
x,x and GH

x for GH(x)
x ,

i.e.,
GH

x = |x⟩⟨x|⊗ 1⊗Πx,H(x) ⊗ 1 .

For an arbitrary but fixed x◦ ∈ X , we then consider the probability

∥GH
x◦ |ϕH

q ⟩∥22 .

Understanding AH as an algorithm that outputs the measured x together with
the state z in register Z, we will denote this probability also by

Pr
�
x=x◦ ∧ V (x,H(x), z) : (x, z)← AH

�
,

understanding V to be a quantum predicate specified by the projections Πx,H(x).

3.2.2 Main technical result

As explained in the introduction, [DFM20] contains an improvement of the
original measure-and-reprogram theorem from [DFMS19]. In this section we
present both for comparison, but omit the proof of the technical lemma (Lemma
3.1) that underlies the original theorem.

We consider a quantum oracle algorithm A as formalized above, and we
define a two-stage algorithm S with black-box access to A as follows. In the
first stage, S tries to predict A’s future output x, and then, upon input a
(random) Θ, in the second stage tries to output what A is supposed to output,
but now with respect to Θ instead of H(x).

S works by running A, but with the following modifications. First, one of
the q + 1 queries of A (also counting the final output in register X) is selected
uniformly at random and this query is measured, and the measurement outcome
x is output by (the first stage of) S. Then, this very query of A is answered either
using the original H or using the reprogrammed oracle H ∗Θx, with the choice
being made at random, while all the remaining queries of A are answered using
oracle H∗Θx.22 Finally, (the second stage of) S outputs whatever A outputs.

Here, the figure of merit is the probability that for a fixed x, both the inter-
mediate measurement and a measurement of the register X return x and that
the register Z contains a state that satisfies the considered quantum predicate
with respect to x and its (now reprogrammed) hash value Θ. Formally, this
probability is captured by
22 If it is the final output that is measured then there is nothing left to reprogram.
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E
Θ,i,b

h

GΘ
x


AH∗Θx

i+b→q

�
AH

i→i+b

�
X|ϕH

i ⟩


2
2

i

where here and from now on, we use X as a short hand for the projection |x⟩⟨x|
acting on X. The expectation is taken over Θ ∈ Y , i ∈ {0, ..., q} and b ∈ {0, 1}
uniformly random. Note that the random bit b ∈ {0, 1} determines whether the
measured query is answered with H or with H∗Θx.

We write SA[H] to emphasize that S only makes black-box access to A and
that it depends on H. Our main technical lemma below then ensures that for
any H and for a random Θ ∈ Y , the success probability of SA[H] is up to an
order-q2 loss not much smaller than that of AH∗Θx, and therefore not much
smaller than that of AH in case of a random H.

Lemma 3.1 (Original version from [DFMS19]). For any H : X → Y and
x ∈ X , it holds that

E
Θ,i,b

h

GΘ
x


AH∗Θx

i+b→q

�
AH

i→i+b

�
X|ϕH

i ⟩


2
2

i
≥

EΘ

h

GΘ
x |ϕH∗Θx

q ⟩


2
2

i

2(q + 1)(2q + 3)
−



X|ϕH
q ⟩



2
2

2(q + 1)|Y| .

where the expectation is over random Θ ∈ Y, i ∈ {0, . . . , q} and b ∈ {0, 1}.23

The proof of this version of the lemma is omitted in this thesis, it is available
as the proof of Lemma 1 in [DFMS19].

Introducing more algorithmic-probabilistic notation, we write

(x, x′, z)← ⟨SA[H],Θ⟩

to specify the probability space determined as follows, relying on the above
construction of the two-stage algorithm S when given A. In the first stage
SA[H] produces x, and then in the second stage, upon receiving Θ, it produces
x′ and z, where z may be quantum. Our figure of merit above, i.e., the left hand
side of the bound in Lemma 3.1 (with x replaced by x◦), is then denoted by

Pr
Θ

�
x=x◦ ∧ x′=x◦ ∧ V (x,Θ, z) : (x, x′, z)← ⟨SA[H],Θ⟩

�
,

where the subscript Θ in PrΘ denotes that the probability is averaged over a
random choice of Θ.
23 We consider |Y| to be superpolynomial in the security parameter, so that 1

2(q+1)|Y| is
negligible and can be neglected. In cases where |Y| is polynomial, the presented bound
is not optimal, but an improved bound can be derived with the same kind of techniques.
However, the improved variant Lemma 3.3 does not suffer from this impairment.
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3.2. Reprogramming the quantum random oracle

Using this notation, but also weakening the bound slightly by not requiring
x′ = x◦ (thus dropping x′ from the output of S), for any H and x◦ the bound
from Lemma 3.1 then becomes

Pr
Θ

�
x=x◦ ∧ V (x,Θ, z) : (x, z)← ⟨SA[H],Θ⟩

�

≳ 1

O(q2)
Pr
Θ

�
x=x◦ ∧ V (x,Θ, z) : (x, z)← AH∗Θx

�
(5)

where the approximate inequality ≳ hides the term

ϵx◦ :=
1

2(q + 1)|Y| PrH
�
x=x◦ : (x, z)← AH

�
.

Recall that the output z may be a quantum state, in which case the predicate
V is given by a measurement that depends on x, and H(x) or Θ, respectively.

We now fix a family H of 2(q + 1)-wise independent hash functions and
average the above inequality over a random choice of H ∈ H from this family.
We simply write S for S[H] with H chosen like that. Furthermore, we observe
that, for any fixed x, the family {H ∗ Θx |H ∈ H,Θ ∈ {0, 1}n} is a family
of 2(q + 1)-wise independent hash functions as well. Finally, we use that A
(together with the check V (x,H(x), z)) cannot distinguish a random function
H∗Θx in that family from a fully random function H [Zha12]. We then obtain
the following result from Lemma 3.1.

Theorem 3.2 (Measure-and-reprogram, deprecated version from
[DFMS19]). Let X ,Y be finite non-empty sets. There exists a black-box two-
stage quantum algorithm S with the following property. Let A be an arbitrary or-
acle quantum algorithm that makes q queries to a uniformly random H : X → Y
and that outputs some x ∈ X and a (possibly quantum) output z. Then, the two-
stage algorithm SA outputs some x ∈ X in the first stage and, upon a random
Θ ∈ Y as input to the second stage, a (possibly quantum) output z, so that for
any x◦ ∈ X and any (possibly quantum) predicateV :

Pr
Θ

�
x=x◦ ∧ V (x,Θ, z) : (x, z)← ⟨SA,Θ⟩

�

≳ 1

O(q2)
Pr
H

�
x=x◦ ∧ V (x,H(x), z) : (x, z)← AH

�
,

where the ≳ hides a term that is bounded by 1
2q|Y| when summed over all x◦.

We go on to show the improved variant (from [DFM20]) of Theorem 3.2,
which avoids the additive error term ϵx◦ . While having negligible quantita-
tive effect in typical situations, it makes the statement simpler. In addition,
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3. Security of the Fiat-Shamir Transformation

as explained in the introduction, it circumvents a technical issue one encoun-
ters when trying to extend to the multi-input case. Furthermore, the improved
version comes with a simpler proof.24

The approach is to avoid the additive error term in Lemma 3.1. We achieve
this by slightly tweaking the simulator S. From the technical perspective, while
on the left hand side of Lemma (3.1) the expectation is over a random i ∈
{0, . . . , q}, selecting one of the q + 1 queries of A at random (where the X
register of the output state is considered to be a final query), and a random b ∈
{0, 1}, our new version has syntactically the same left hand side, but with the
expectation over a random pair (i, b) ∈ ({0, . . . , q91}×{0, 1})∪{(q, 0)} instead.
This allows us to absorb the additive error term into the success probability of
the simulator. Furthermore, it holds for any fixed choice of Θ (and not only on
average for a random choice).

Lemma 3.3 (Improved variant from [DFM20]). Let A be a q-query oracle
quantum algorithm. Then, for any function H : X → Y, any x ∈ X and Θ ∈ Y,
and any projection Πx,Θ, it holds that

E
i,b

h

(|x⟩⟨x|⊗Πx,Θ)

AH∗Θx

i+b→q

�
AH

i→i+b

�
X|ϕH

i ⟩


2
2

i
≥


(|x⟩⟨x|⊗Πx,Θ)|ϕH∗Θx

q ⟩


2
2

(2q + 1)2
,

where the expectation is over uniform (i, b) ∈ ({0, . . . , q91} × {0, 1}) ∪ {(q, 0)}.

This new version of Lemma 3.1 translates to a simulator S that works by
running A, but with the following modifications. First, one of the q+1 queries
of A (also counting the final output in register X) is measured, and the mea-
surement outcome x is output by (the first stage of) S. We emphasize that
the crucial difference to the old version is that each of the q actual queries is
picked with probability 2

2q+1 , while the final output is picked with probability
1

2q+1 . Then, very much as before, this very query of A is answered either using
the original H or using the reprogrammed oracle H∗Θx, with the choice being
made at random25, while all the remaining queries of A are answered using
oracle H∗Θx. Finally, (the second stage of) S outputs whatever A outputs. We
thus get the following result.
24 We thank Dominique Unruh for the idea that it might be possible to avoid the additive

error term, and for proposing an argument for achieving that, which inspired us to find
the simpler argument we eventually used.

25 If it is the final output that is measured then there is nothing left to reprogram, so no
choice has to be made.
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3.2. Reprogramming the quantum random oracle

Theorem 3.4 (Measure-and-reprogram, single input). Let X and Y be
finite non-empty sets. There exists a black-box two-stage quantum algorithm S
with the following property. Let A be an arbitrary oracle quantum algorithm
that makes q queries to a uniformly random H : X → Y and that outputs some
x ∈ X and a (possibly quantum) output z. Then, the two-stage algorithm SA

outputs some x ∈ X in the first stage and, upon a random Θ ∈ Y as input to
the second stage, a (possibly quantum) output z, so that for any x◦ ∈ X and
any (possibly quantum) predicate V :

Pr
Θ

�
x=x◦ ∧ V (x,Θ, z) : (x, z)← ⟨SA,Θ⟩

�

≥ 1

(2q + 1)2
Pr
H

�
x=x◦ ∧ V (x,H(x), z) : (x, z)← AH

�
.

Furthermore, S runs in time polynomial in q, log |X | and log |Y|.

The proof of Lemma 3.3 follows closely the proof of Lemma 3.1 (available as
Lemma 1 in [DFMS19]), but the streamlined statement and simulator allow to
cut some corners.

Proof (of Lemma 3.3). For any 0 ≤ i ≤ q, inserting a resolution of the identity
and exploiting that
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�
AH

i→i+1

�
1−X

�
|ϕH

i ⟩ =
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i ⟩ ,

we can write
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Rearranging terms, applying GΘ
x = (|x⟩⟨x|⊗Πx,Θ) and using the triangle equal-

ity, we can thus bound


GΘ

x


AH∗Θx

i→q

�
|ϕH

i ⟩



2
≤



GΘ
x


AH∗Θx

i+1→q

�
|ϕH

i+1⟩



2

+


GΘ

x


AH∗Θx

i→q

�
X|ϕH

i ⟩



2

+


GΘ

x


AH∗Θx

i+1→q

�
AH

i→i+1

�
X|ϕH

i ⟩



2
.
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3. Security of the Fiat-Shamir Transformation

Summing up the respective sides of the inequality over i = 0, . . . , q − 1, we get
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x |ϕH∗Θx
q ⟩
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x |ϕH
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b∈{0,1}
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2
.

By squaring both sides, dividing by 2q + 1 (i.e., the number of terms on the
right hand side), and using Jensen’s inequality on the right hand side, we obtain
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and thus, noting that we can write
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with i = q and b = 0,
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⊓⊔

Remark 3.5. We do not spell out in detail what it means for a quantum algo-
rithm like S to be black-box; see e.g. [Unr17] for a rigorous definition. What we
obviously need here is that SA has access to A’s initial state |ϕ0⟩ and to q, and
is given black-box access to the unitaries Ai. Furthermore, for later purposes,
we need the following composition property: if S is a black-box algorithm with
access to A, and K is a black-box algorithm with access to SA, then there exists
a black-box algorithm KS with access to A so that (KS)A = K(SA).

64



3.3. Security of the Fiat-Shamir transformation

Section 3.3

Security of the Fiat-Shamir transformation

In this section, we show how to reduce security of the Fiat-Shamir transforma-
tion (Section 2.2.3) to the security of the underlying Σ-protocol (Definition 2.2):
any dishonest prover attacking the Fiat-Shamir transformation can be turned
into a dishonest prover that succeeds to break the underlying Σ-protocol with
the same probability up to a polynomial loss. This reduction is obtained by a
straightforward application of Theorem 3.4. Our security reduction holds very
generically and is not strongly tied to the considered notion of security, as long
as the respective security definitions for the Σ-protocol and the Fiat-Shamir
transformation “match up”.

3.3.1 The generic security reduction

Since an adaptive adversary is clearly not less powerful than a static adversary,
we restrict our attention for the moment to the adaptive case. Recall that
such an adaptive FS-adversary A outputs the instance x ∈ X along with the
proof π = (a, z), and the figure of merit is the probability that x, a, z satisfies
V (x, a,H(x, a), z). Thus, we can simply apply Theorem 3.4, with (x, a) playing
the role of what is referred to as x in the theorem statement, to obtain the
existence of an adaptive Σ-adversary SA that produces (x, a) in a first stage,
and upon receiving challenge c produces z, such that for any x◦ ∈ X

Pr
�
x=x◦ ∧ V (x, a, c, z) : (x, a, z)← ⟨SA, c⟩

�

≥ 1

(2q + 1)2
Pr
H

�
x=x◦ ∧ V (x, a,H(x, a), z) : (x, a, z)← AH

�
.

Understanding that x is given to V along with the first message a but also
treating it as an output of SA, while V ’s output v is its decision to accept or
not, we write this as

Pr
�
x=x◦ ∧ v = accept : (x, v)← ⟨SA,V⟩

�

≥ 1

(2q + 1)2
Pr
H

�
x=x◦ ∧ V H

FS(x,π) : (x,π)← AH
�
.

Summed over all x◦ ∈ X , this in particular implies that

Pr
�
⟨SA,V⟩ = accept

�
≥ 1

(2q + 1)2
Pr
H

�
V H
FS(x,π) : (x,π)← AH

�
.
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Remark 3.6. We point out that the above arguments extend to a FS-adversary
A that, besides the instance x and the proof π = (a, z), also produces some
local (possibly quantum) output satisfying some (quantum) predicate that may
depend on x, a, z. The resulting Σ-adversary SA is then ensured to produce a
local output that satisfies the considered predicate as well, up to the given loss
in the probability. Indeed, we can simply include this local output in z and
extend the predicate V accordingly.

In a very broad sense, the above means that for any FS-adversary A there
exists a Σ-adversary SA that “achieves the same thing” up to a (2q + 1)2 loss
in success probability. Hence, for matching corresponding security definitions,
security of a Σ-protocol (against a dishonest prover) implies security of its
Fiat-Shamir transform.

We summarize here the above basic transformation from an adaptive FS-
adversary A to an adaptive Σ-adversary SA.

Theorem 3.7. There exists a black-box quantum polynomial-time two-stage
quantum algorithm S such that for any adaptive Fiat-Shamir adversary A, mak-
ing q queries to a uniformly random function H with appropriate domain and
range, and for any x◦ ∈ X :

Pr
�
x=x◦ ∧ v = accept : (x, v)← ⟨SA,V⟩

�

≥ 1

(2q + 1)2
Pr
H

�
x=x◦ ∧ V H

FS(x,π) : (x,π)← AH
�
.

Below, we apply the above general reduction to the respective standard defini-
tions for soundness and proof of knowledge. Each property comes in the variants
computational and statistical, for guarantees against computationally bounded
or unbounded adversaries respectively, and one may consider the static or the
adaptive case.

3.3.2 Preservation of soundness

Let Σ = (P,V) be a Σ-protocol for a relation R, and let FS[Σ] be its Fiat-Shamir
transformation. We set L := {x ∈ X | ∃w ∈W : R(x,w)}. It is understood that
P and V , as well as R and thus L, may depend on a security parameter η. We
note that in the following definition, we overload notation a bit by writing A
for both for the ordinary static and for the adaptive adversary (even though a
given A is usually either static or adaptive).

The following is now an immediate application of Theorem 3.7 and
Lemma 2.6.
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3.3. Security of the Fiat-Shamir transformation

Corollary 3.8. Let Σ be a Σ-protocol. If Σ is computationally/statistically
sound against a static adversary then FS[Σ] is computationally/statistically
sound against an adaptive adversary.

Proof. Applying Theorem 3.7, we find that for any adaptive FS-adversary A,
polynomially bounded in the computational setting, there exists an adaptive
Σ-protocol adversary SA, polynomially bounded if A is, so that

Pr
�
x /∈ L ∧ V H

FS(x,π) : (x,π)← AH
�

=
X

x◦ /∈L
Pr

�
x=x◦ ∧ V H

FS(x,π) : (x,π)← AH
�

≤ (2q + 1)2 ·
� X

x◦ /∈L
Pr

�
x=x◦ ∧ v = accept : (x, v)← ⟨SA,V⟩

��

= (2q + 1)2 ·
�
Pr

�
x ̸∈ L ∧ v = accept : (x, v)← ⟨SA,V⟩

��

≤ (2q + 1)2 · µ(η),

where the last inequality holds for some negligible function µ(η) if Σ is sound
against an adaptive adversary. The latter is ensured by the assumed soundness
against a static adversary and Lemma 2.6. This bound can obviously be written
as q2µ′(η) for another negligible function µ′(η), showing the claimed soundness
of FS[Σ]. ⊓⊔

3.3.3 Preservation as a proof of knowledge

Again, the following is now an immediate application of Theorem 3.7 and
Lemma 2.8.

Corollary 3.9. Let Σ be a Σ-protocol with superpolynomially sized C. If Σ is
a computational/statistical proof of knowledge for static adversaries then FS[Σ]
is a computational/statistical proof of knowledge for adaptive adversaries.

Proof. First, we observe that by Lemma 2.8, we may assume Σ to be a
computational/statistical proof of knowledge for adaptive adversaries. Let K
be the black-box knowledge extractor. Let A be an (quantum polynomial-
time/unbounded) adaptive FS-adversary A. We define a black-box knowledge
extractor E for FS[Σ] as follows. EA simply works by running KSA , where SA

is the adaptive Σ-protocol adversary obtained by invoking Theorem 3.7. For
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any subset X ⊆ X , invoking the proof-of-knowledge property of Σ and using
Theorem 3.7, we see that

Pr
�
x ∈ X ∧ (x,w) ∈ R : (x,w)← EA�

= Pr
�
x ∈ X ∧ (x,w) ∈ R : (x,w)← KSA�

=
1

p(η)
· Pr

�
x ∈ X ∧ v = accept(x, v)← ⟨SA,V⟩

�d − κ(η)

=
1

p(η)
·
� X

x◦∈X
Pr

�
x = x◦ ∧ v = accept(x, v)← ⟨SA,V⟩

��d

− κ(η)

≥ 1

p(η)

�
1

(2q + 1)2

X

x◦∈X
Pr
H

�
x = x◦ ∧ V H

FS(x,π) : (x,π)← AH
��d

− κ(η)

≥ 1

p(η) · (2q + 1)2
· Pr
H

�
x ∈ X ∧ V H

FS(x,π) : (x,π)← AH
�d − κ(η)

for some negligible function κ(η). ⊓⊔

Remark 3.10. We point out that in [Unr17] Unruh considers a stronger notion
of extractability than our Definition 2.7, where it is required that, in some
sense, the extractor also recovers any local (possibly quantum) output of the
adversary A. In the light of Remark 3.6, we expect that our result also applies
to this stronger notion of extractability.

Section 3.4

Multi-input reprogrammability

In this section, we extend our (improved) results on adaptively reprogramming
the quantum random oracle at one point x ∈ X to multiple points x1, . . . , xn ∈
X . This in turn will allow us to extend the results on the security of the Fiat-
Shamir transformation to multi-round protocols. We point out again that the
improvement of Lemma 3.3 over Lemma 3.1 in Section 3.2.2 plays a crucial
role here, in that it circumvents the trouble with the negligible error term that
occurs when trying to extend the single-input result to the setting considered
here.
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The starting point is the following generalized version of the problem consid-
ered in Section 3.2.2. We assume an oracle quantum algorithm AH that makes
q queries to a random oracle H : X → Y and then produces an output of the
form (x1, . . . , xn, z), where z may be quantum, such that a certain (quantum)
predicate V (x1, H(x1), . . . , xn, H(xn), z) is satisfied with some probability. The
goal then is to turn such an AH into a multi-stage quantum algorithm S (the
simulator) that, stage by stage, outputs the xi’s and takes corresponding Θi’s
as input, and eventually outputs a (possibly quantum) z with the property that
V (x1,Θ1, . . . , xn,Θn, z) is satisfied with similar probability.

3.4.1 Notation

Up to some modifications, we follow closely the notation introduced in Sec-
tion 3.2.1. We consider a (purified) oracle quantum algorithm A that makes q
queries to an oracle, i.e., an unspecified function H : X → Y with finite non-
empty sets X ,Y. Formally, A is described by a sequence of unitaries A1, . . . , Aq

and an initial state |ϕ0⟩.26 For technical reasons that will become clear later,
we actually allow (some of) the Ai’s to be a projection followed by a unitary (or
vice versa). One can think of such a projection as a measurement performed
by the algorithm, with the algorithm aborting except in case of a particular
measurement outcome.

For any concrete choice of H : X → Y , the algorithm A computes the state

|ϕH
q ⟩ := AH |ϕ0⟩ := AqOH · · ·A1OH |ϕ0⟩ ,

where OH is the unitary defined by OH : |c⟩|x⟩|y⟩ 7→ |c⟩|x⟩|y⊕ c·H(x)⟩ for any
triple c ∈ {0, 1}, x ∈ X and y ∈ Y, with OH acting on appropriate registers. We
emphasize that we allow controlled queries to H. Per se, this gives the algorithm
more power, and thus will make our result only stronger, but it is easy to see
that such controlled queries to the standard quantum oracle for a function can
always be simulated by means of ordinary queries.27 The final state AH |ϕ0⟩ is
considered to be a state over registers X = X1 . . .Xn, Z and E.

Recall from Section 3.2.1 the following notation. For 0 ≤ i, j ≤ q we set

AH
i→j := AjOH · · ·Ai+1OH ,

26 Alternatively, we may regard |ϕ0⟩, as an additional input given to A.
27 Allowing controlled queries to the random oracle is also the more natural model compared

to restricting to plain access to the unitary. After all, the motivation for the QROM is that
in the real world, an attacker can implement the modeled hash function on their quantum
computer, so they can definitely implement the controlled version as well.
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where, by convention, AH
i→j is set to 1 if j ≤ i. Furthermore, we let

|ϕH
i ⟩ :=


AH

0→i

�
|ϕ0⟩

be the state of A after the i-th step but right before the (i+1)-st query, which
is consistent with |ϕH

q ⟩ above.
For a given function H : X → Y and for fixed x ∈ X and Θ ∈ Y , we define

the reprogrammed function H∗Θx : X → Y that coincides with H on X \ {x}
but maps x to Θ. With this notation at hand, we can then write


AH∗Θx

i→q

�
AH

0→i

�
|ϕ0⟩ =


AH∗Θx

i→q

�
|ϕH

i ⟩

for an execution of A where the oracle is reprogrammed at a given point x after
the i-th query. We stress that (AH∗Θx

i→q )(AH
0→i) can again be considered to be an

oracle quantum algorithm B, which depends on Θ ∈ Y, that makes q queries
to (the unprogrammed) function H. Indeed, the (controlled) queries to the
reprogrammed oracle H ∗Θx can be simulated by means of controlled queries
to H (using one additional “work qubit”).28 Exploiting that, in addition to
unitaries, we allow projections as elementary operations, we can also understand
(AH∗Θx

i→q )X(AH
0→i) to be an oracle quantum algorithm again that makes oracle

queries to H, where X is the projection X = |x⟩⟨x|, acting on the corresponding
query register to the oracle.

More generally, for any x = (x1, . . . , xn) ∈ X n without duplicate entries, i.e.,
xi ̸= xj for i ̸= j, and for any Θ ∈ Yn, we define

H ∗Θx = H ∗Θ1x1 ∗ · · · ∗Θnxn : X → Y

x 7→
(
Θi if x = xi for some i ∈ {1, . . . , n}
H(x) otherwise.

This will then allow us to consider (AH∗Θ1x1∗Θ2x2
i2→q )X2(AH∗Θ1x1

i1→i2
)X1(AH

0→i1
) as

an oracle quantum algorithm with oracle queries to H, etc.
Eventually, we are interested in the probability that after the execution of

the original algorithm AH , and upon measuring register X in the computational
basis to obtain x = (x1, . . . , xn) ∈ X n, the state of register Z is of a certain
form dependent on x and H(x) = (H(x1), . . . , H(xn)). Such a requirement (for
a fixed x) is captured by a projection

GH
x = |x⟩⟨x|⊗Πx,H(x) ,

28 Here it is crucial that we allow controlled queries to H.
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where {Πx,Θ}x,Θ is a family of projections with x ∈ X n and Θ ∈ Yn, and with
the understanding that |x⟩⟨x| acts on X and Πx,H(x) on register Z. We refer
to such a family of projections as a quantum predicate. We use GΘ

x as a short
hand for GH∗Θx

x , and we write GH
x and GΘ

x with x ∈ X and Θ ∈ Y for the case
n = 1.

For an arbitrary but fixed x◦ ∈ X n, we are then interested in the probability

Pr
�
x=x◦ ∧ V (x, H(x), z) : (x, z)← AH

�
=



GH
x◦ |ϕH

q ⟩


2
2
.

where the left hand side is our notation for this probability, where we under-
stand AH to be an algorithm that outputs the measured x together with the
quantum state z in register Z, and V to be the quantum predicate specified
by the projections Πx,Θ. Correspondingly, Pr

�
x=x◦ ∧ V (x,H(x), z) : (x, z)←

AH
�
= ∥GH

x◦ |ϕH
q ⟩∥22 for the n = 1 case.

3.4.2 The general case

Naively, one might hope for an S that outputs x1 in the first stage (obtained
by measuring one of the queries of AH), and then on input Θ1 proceeds by
outputting x2 in the second stage (obtained by measuring one of the subsequent
queries of AH), etc. However, since AH may query the hashes of x1, . . . , xn in
an arbitrary order, we cannot hope for this to work. Therefore, we have to allow
S to produce x1, . . . , xn in an arbitrary order as well.29 Formally, we consider S
with the following syntactic behavior: in the first stage it outputs a permutation
π together with xπ(1) and takes as input Θπ(1), and then for every subsequent
stage 1 < i ≤ n it outputs xπ(i) and takes as input Θπ(i); eventually, in the final
stage (labeled by n + 1) it outputs z. In line with earlier notation, but taking
this additional complication into account, we denote such an execution of S as
(π,π(x), z)← ⟨SA,π(Θ)⟩.

A final issue is that if xi = xj then H(xi) = H(xj) as well, whereas Θi

and Θj may well be different. Thus, we can only expect S to work well when
x1, . . . xn has no duplicates.

For us to be able to mathematically reason about the simulator described
above, we introduce some additional notation. For the basic simulator from
Lemma 3.3 we write, using r1 = (b1, i1), as

SH,A
Θ1,x1,r1

:= SH,A,Θ1,x1,r1 :=

AH∗Θ1x1

i1+b1→q

�
AH

i1→i1+b1

�
X1


AH

0→i1

�
.

29 Looking ahead, in Section 3.4.3 we will force AH to query, and thus S to extract, x1, . . . , xn

in the right order by requiring x2 to contain H(x1) as a substring, x3 to contain H(x2) as
a substring, etc. This will be important for the the multi-round Fiat-Shamir application.
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3. Security of the Fiat-Shamir Transformation

This can be recursively extended by applying it to AH now being SH,A
Θ1,x1,r1

so
as to obtain

SH,A
Θ1,2,x1,2,r1,2

:=

SH∗Θ2x2,A,Θ1,x1,r1
i2+b2→q

�
SH,A,Θ1,x1,r1
i2→i2+b2

�
X2


SH,A,Θ1,x1,r1
0→i2

�
.

In general, we can consider the following operator, which simulates A and
performs n measurements:

SH,A
Θ,x,r :=


SH∗Θnxn,A,Θ,x,r
in+bn→q

�
SH,A,Θ,x,r
in→in+bn

�
Xn


SH,A,Θ,x,r
0→in

�
.

where, for arbitrary but fixed n and Θ = (Θ1, . . . ,Θn) ∈ Yn, the notation Θ
is understood as Θ = (Θ1, . . . ,Θn−1) ∈ Yn−1, and correspondingly for x etc.
Finally, when considering fixed Θ ∈ Yn and x ∈ X n, we write

SH
r (A) := SH,A

Θ,x,r .

At the core of our multi-round result will be the following technical lemma,
which generalizes Lemma 3.3.

Lemma 3.11. Let A be a q-query oracle quantum algorithm. Then, for any
function H : X → Y, any x ∈ X n and Θn ∈ Yn, and any projection Πx,Θ, it
holds that



|x⟩⟨x|⊗Πx,Θ

�
AH∗Θx|ϕ0⟩



2
2

(2q + 1)2n
≤ E

r

h

|x⟩⟨x|A ⊗Πx,Θ

�
SH
r (A)|ϕ0⟩



2
2

i
.

Proof. The proof is by induction on n, where the base case is given by
Lemma 3.3.

For the induction step we first apply the base case, substituting xn for x1,
Θn for Θ1, rn for r1, H∗Θx for H, and Π̂xn,Θn for Πx1,Θ1 , where

Π̂xn,Θn = |x1⟩⟨x1|⊗ . . .⊗ |xn91⟩⟨xn91|⊗Πx,Θ

to obtain


|xn⟩⟨xn|⊗ Π̂xn,Θn

�
A(H∗Θx)∗Θnxn |ϕ0⟩



2
2

(2q + 1)2

≤ E
rn

h

|xn⟩⟨xn|A ⊗ Π̂xn,Θn

�
SH∗Θx
rn (A)|ϕ0⟩



2
2

i

which we can write as


|x⟩⟨x|⊗Πx,Θ

�
AH∗Θx|ϕ0⟩



2
2

(2q + 1)2n
≤

Ern

h

|x⟩⟨x|⊗Πx,Θ

�
SH∗Θx
rn (A)|ϕ0⟩



2
2

i

(2q + 1)2(n91)

(6)
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3.4. Multi-input reprogrammability

dividing both sides by (2q + 1)2(n91) and swapping registers appropriately (to
make sure that the register which contains xn comes after the others).

Now fix rn. We define

Π̂x,Θ := |xn⟩⟨xn|⊗Πx,Θ.

and apply the induction hypothesis for n−1, substituting SH∗Θx
rn (A) for AH∗Θx,

and Π̂x,Θ for Πx,Θ, in order to derive


|x⟩⟨x|⊗Πx,Θ

�
SH∗Θx
rn (A)|ϕ0⟩



2
2

(2q + 1)2(n91)
=



|x⟩⟨x|⊗ Π̂x,Θ

�
SH∗Θx
rn (A)|ϕ0⟩



2
2

(2q + 1)2(n91)

≤ E
r

h

|x⟩⟨x|⊗ Π̂x,Θ

�
SH
r (Srn(A))|ϕ0⟩



2
2

i

= E
r

h

|x⟩⟨x|⊗Πx,Θ

�
SH
r (A)|ϕ0⟩



2
2

i
.

Since this inequality holds for any fixed rn, it also holds in expectation over rn.
Substituting it in Equation 6, we retrieve the statement of the lemma. ⊓⊔
Remark 3.12. In case of x = (x1, . . . , xn) ∈ X n without duplicate entries, it
follows from the resulting mutual orthogonality of the projections Xj and the
definition of SH

r (A) that the following holds. The term in the expectation Er in
the inequality of Lemma 3.11 vanishes for any r = (i,b) for which there exist
two distinct coordinates j ̸= k with ij = ik. As such, we may well understand
this expectation to be over r = (i,b) for which ij ̸= ik whenever j ̸= k; this
only increases the expectation.30 In other words, we may assume that random
distinct queries are measured in order to extract x1, . . . , xn.

Theorem 3.13 (Measure-and-reprogram, multiple inputs). Let n be a
positive integer, and let X ,Y be finite non-empty sets. There exists a black-box
polynomial-time (n+1)-stage quantum algorithm S with the syntax as outlined at
the start of this section, satisfying the following property. Let A be an arbitrary
oracle quantum algorithm that makes q queries to a uniformly random H : X →
Y and that outputs a tuple x ∈ X n and a (possibly quantum) output z. Then,
for any x◦ ∈ Xn without duplicate entries and for any predicate V :

Pr
Θ

�
x=x◦ ∧ V (x,Θ, z) : (π,π(x), z)← ⟨SA,π(Θ)⟩

�

≥ 1

(2q + 1)2n
Pr
H

�
x=x◦ ∧ V (x, H(x), z) : (x, z)← AH

�
.

30 One might try to exploit this actual improvement in the bound; however, for typical choices
of parameters, with n a small constant and q large, this is insignificant.
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3. Security of the Fiat-Shamir Transformation

Proof. We consider the inequality of Lemma 3.11 with the expectation over r
understood as in Remark 3.12. Additionally taking the expectation over H and
Θ on both sides, we obtain

E
H,Θ

"

|x⟩⟨x|⊗Πx,Θ

�
AH∗Θx|ϕ0⟩



2
2

(2q + 1)2n

#
≤ E

H,Θ,r

h

|x⟩⟨x|⊗Πx,Θ

�
SH
r (A)|ϕ0⟩



2
2

i

and note that this is equivalent to

E
H

"

|x⟩⟨x|⊗Πx,H(x)

�
AH |ϕ0⟩



2
2

(2q + 1)2n

#
≤ E

H,Θ,r

h

|x⟩⟨x|⊗Πx,Θ

�
SH
r (A)|ϕ0⟩



2
2

i
.

since all values Θj and H(xj) have the same distribution. The term
SH
r (A)|ϕ0⟩ = SH,A

Θ,x,r|ϕ0⟩ corresponds to the output of the simulator that uses
oracle access to H to run A on an initial state |ϕ0⟩, while measuring queries
ij (finding xj as the outcome) and reprogramming the oracle at xj to Θj from
the (ij + bj)-th query onwards, with (ij , bj) = rj .

Next, we note that the value of the right hand side does not change [Zha12]
when instead of giving S oracle access to H, we let it choose a random in-
stance from a family of 2q-wise independent hash functions to simulate A
on. The choice of r uniquely determines the permutation π with the property
iπ(1) < · · · < iπ(n); by definition of SH,A

Θ,x,r, the values x = (x1, . . . , xn) are then
extracted from the adversary’s queries in the order π(x) = (xπ(1), . . . , xπ(n)).
Since S chooses this r itself, we can assume that it includes π in its output.
Likewise, the simulator takes as input to every stage — from the second to the
(n+1)-st —a fresh random value, in the order given by π(Θ). However, by def-
inition of Πx,Θ the final output of the simulator satisfies the predicate V with
respect to the given order (without π), i.e. such that V (x,Θ, z) = 1, as is the
claim of the theorem. ⊓⊔

3.4.3 The time-ordered case

In some applications, like the multi-round version of the Fiat-Shamir transfor-
mation, we need that the simulator extracts the messages in the right order.
This can be achieved by replacing the hash list H(x) =


H(x1), . . . , H(xn)

�
,

consisting of individual hashes, by a hash chain, where subsequent hashes de-
pend on previous hashes. Intuitively, this enforces A to query the oracle in the
given order.
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3.4. Multi-input reprogrammability

Formally, considering a function H : (X0∪Y)×X → Y and given a tuple x =
(x0, x1, . . . , xn) in X0 × X n, we define the hash chain hH,x =


hH,x
1 , . . . , hH,x

n

�

given by
hH,x
1 = H(x0, x1) and hH,x

i := H

hH,x
i−1 , xi

�

for 2 ≤ i ≤ n.

Theorem 3.14 (Measure-and-reprogram, enforced extraction order).
Let n be a positive integer, and let X0,X and Y be finite non-empty sets. There
exists a black-box polynomial-time (n+1)-stage quantum algorithm S, satisfying
the following property. Let A be an arbitrary oracle quantum algorithm that
makes q queries to a uniformly random H : (X0∪Y)×X → Y and that outputs
a tuple x = (x0, x1, . . . , xn) ∈ (X0 ×X n) and a (possibly quantum) output z.
Then, for any x◦ ∈ (X0 × X n) without duplicate entries and for any predicate
V :

Pr
Θ

�
x=x◦ ∧ V (x,Θ, z) : (x, z)← ⟨SA,Θ⟩

�

≥ n!

(2q + n+ 1)2n
Pr
H

�
x=x◦ ∧ V (x,hH,x, z) : (x, z)← AH

�
− ϵx◦ .

where ϵx◦ is equal to n!
|Y| when summed over all x◦.

Remark 3.15. The additive error term n!/|Y| stems from the fact that the
extraction in the right order fails if A succeeds in guessing one (or more)
of the hashes in the hash chain. The claimed term can be improved to
(n − 1)2/|Y| + n!/|Y|2 by doing a more fine-grained analysis, distinguishing
between permutations π ̸= id that bring 2 elements “out of order” or more. In
any case, it can be made arbitrary small by extending the range Y of H for
computing the hash chain.

Proof. First, we note that V (x,hH,x, z) = V ′(v, H(v), z) for v = (v1, . . . , vn)
given by v1 = (x0, x1) and vi =


hH,x
i−1 , xi

�
=


H(vi−1), xi

�
for i ≥ 2, and

V ′(v,h, z) :=
�
V (x,h, z) ∧ h′i=hi−1∀i ≥ 2

�
for any v of the form v1 = (x0, x1)

and vi =

h′i, xi

�
for i ≥ 2. Next, at the cost of n additional queries, we can

extend A to an algorithm A+ that actually outputs (v, z), since A+ can easily
obtain the H(vi)’s by making n queries to H. These observations together give

Pr
H

�
x=x◦ ∧ V (x,hH,x, z) : (x, z)← AH

�

=Pr
H

�
x=x◦ ∧ V ′(v, H(v), z) : (v, z)← AH

+

�
.
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Let v◦ = (v◦1, . . . , v
◦
n) with v◦i := (h◦i , x

◦
i ), where h◦1 = x◦0 and h◦i ∈ Y is

arbitrary but fixed for i ≥ 2. Let Θ be uniformly random in Yn. An application
of Theorem 3.13 yields a simulator Ŝ with

Pr
Θ

�
v=v◦ ∧ V ′(v,Θ, z) : (π,π(v), z)← ⟨ŜA+ ,π(Θ)⟩

�

≥ 1

(q + n+ 1)2n
Pr
H

�
v=v◦ ∧ V ′(v, H(v), z) : (v, z)← AH

+

�
.

Summing both sides of the inequality over h◦
i for i ≥ 2 yields

Pr
Θ

�
x=x◦ ∧ V ′(v,Θ, z) : (π,π(v), z)← ⟨ŜA+ ,π(Θ)⟩

�

≥ 1

(q + n+ 1)2n
Pr
H

�
x=x◦ ∧ V ′(v, H(v), z) : (v, z)← AH

+

�

=
1

(q + n+ 1)2n
Pr
H

�
x=x◦ ∧ V (x,hH,x, z) : (x, z)← AH

�
.

(7)

Recalling its construction, the simulator ŜA+ begins by sampling a uniformly
random permutation π, so we can write

Pr
Θ

�
x=x◦ ∧ V ′(v,Θ, z) : (π,π(v), z)← ⟨ŜA+ ,π(Θ)⟩

�

=
1

n!

X

σ∈Sn

Pr
Θ

�
x=x◦ ∧ V ′(v,Θ, z) : (π,π(v), z)← ⟨ŜA+ ,π(Θ)⟩

��π = σ
�
.

(8)

By definition, the predicate V ′(v,Θ, z) (with v of the form as explained above)
is false whenever there exists an i ≥ 2 such that hi ̸= Θi−1. Now suppose that
π ̸= id, then there must be some j such that π(j) < π(j − 1). This implies
that the first π(j) stages of ŜA+ which together (in the π(j)-th stage) produce
vj = (hj , xj) are independent of Θj−1, since Θj−1 is given as input only at the
later stage π(j − 1). We thus have the following, taking it as understood, here
and in the sequel, that the random variables π,v,Θ and z are as in (8).

Pr
�
x=x◦ ∧ V ′(v,Θ, z)

��π ̸= id
�
≤ Pr

�
x=x◦ ∧ hj = Θj−1|π ̸= id

�

=
Pr

�
x=x◦|π ̸= id

�

|Y| .

Using Equation (8), we can bound

1

n!

X

σ∈Sn

Pr
�
x=x◦ ∧ V ′(v,Θ, z)

��π=σ
�
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≤ 1

n!
Pr

�
x=x◦ ∧ V ′(v,Θ, z)

��π=id
�
+
Pr

�
x=x◦|π ̸=id

�

|Y| .

We note that by definition of V ′,

Pr
�
x=x◦ ∧ V (x,Θ, z)

��π = id
�
≥ Pr

�
x=x◦ ∧ V ′(v,Θ, z)

��π = id
�
.

Furthermore, we may define a new simulator S which takes oracle access to
A and turns it into A+, and always chooses π = id instead of a random per-
mutation. Where Ŝ would output (v, z), S ignores the h-part of v and simply
outputs (x, z). We then have

Pr
Θ

�
x=x◦ ∧ V (x,Θ, z) : (x, z)← ⟨SA,Θ⟩

�

≥ n!

(q + n+ 1)2n
Pr
H

�
x=x◦ ∧ V (x,hH,x, z) : (x, z)← AH

�
− ϵx◦ .

with ϵx◦ given by ϵx◦ := n! · PrΘ
�
x = x◦|π ̸= id

�
/|Y|. ⊓⊔

Section 3.5

The multi-round Fiat-Shamir transformation

A straightforward generalization of the Fiat-Shamir transformation can be
applied to arbitrary (i.e., multi-round) public-coin interactive proof systems
(PCIP). We show here security of this multi-round Fiat-Shamir transformation
in the QROM.

3.5.1 Public coin interactive proofs and multi-round Fiat-
Shamir

We begin by defining PCIPs, mainly to fix notation, and the corresponding
multi-round Fiat-Shamir transformation.

Definition 3.16 (Public coin interactive proof system (PCIP)). A (2n+
1)-round public coin interactive proof system (PCIP) Π = (P,V) for a language
L is a (2n+1)-round two-party interactive protocol of the form depicted in Figure
3.2.
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3. Security of the Fiat-Shamir Transformation

Prover P(x) Verifier V(x)
a1−→
c1←− c1

$← C
...

an−→
cn←− cn

$← C
z−→ Accept iff V (x, a1, c1, ..., an, cn, z) = 1

Fig. 3.2. The structure of a PCIP. Here C is a finite non-empty set and V is a predicate.

Remark 3.17. If the language L is definied by means of an (efficiently verifiable)
witness relation R ⊆ X ×W , then the prover typcially gets a witness w for x as
an additional input. We then also say that Π is a PCIP for the relation R. In
case of a (2n+1)-round PCIP Π for a witness relation R that is hard on average,
meaning that there exists an instance generator Gen with the property that for
(w, x)← Gen it holds that (w, x) ∈ R, but given x alone it is computationally
hard to find w with (w, x) ∈ R, Π is also called an identification scheme.

Just as in the ordinary Fiat-Shamir transformation, the interaction used
to enforce the time order between the prover committing to the message ai
and receiving the challenge ci can be replaced by means of a hash function. In
addition, we can include the previous challenge (i.e. the previous hash value) in
the hash determining the next challenge to enforce the ordering of the n pairs
(ai, ci) according to increasing i. We thus obtain the following non-interactive
proof system.

Definition 3.18 (Fiat-Shamir transformation for general PCIP
(mFS)).
Given an (2n+1)-round PCIP Π = (P ,V) for a language L and a hash function
H with appropriate domain, and range equal to C, we define the non-interactive
proof system FS[Π] = (PH

FS ,VH
FS) as follows. The prover P outputs

(x, a1, ..., an, z)← PH
FS

where z and ai for i = 1, ..., n are computed using P, and the challenges are
computed as

c1 = H(0, x, a1) and
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3.5. The multi-round Fiat-Shamir transformation

ci = H(i− 1, ci−1, ai) for i = 2, ..., n ,

The verifier outputs ‘accept’ iff V (x, a1, c1, ..., an, cn, z) = 1 for c1 = H(0, x, a1)
and ci = H(i− 1, ci−1, ai), i = 2, ..., n, denoted by VFS(x, a1, c1, ..., an, cn, z) =
1.

Remark 3.19. The challenge number i (minus 1) is included in the hash input
to ensure that the challenges are generated using distinct inputs to H with
probability 1. This is to enable us to apply Theorem 3.14, which only holds
for duplicate-free lists of hash inputs. In fact, any additional strings can be
included in the argument when computing ci using H, without influencing the
security properties of the non-interactive proof system in a detrimental way. In
the literature one sometimes sees that the entire previous transcript is hashed
(in which case the counter number i may then be omitted).

3.5.2 General security of multi-round Fiat-Shamir in the
QROM

When constructing a reduction for mFS, this reduction is participating as a
prover in the underlying PCIP, and is hence only provided with random chal-
lenges one at a time. We thus need the special simulator from Theorem 3.14,
which always outputs the corresponding messages in the right order. The success
of this simulator is based on the very essence of the Fiat-Shamir transforma-
tion, namely the fact that the intractability of the hash function takes the role
of the interaction in enforcing a time order in the transcript of the PCIP.

The security of the multi-round Fiat-Shamir transformation follows as a
simple Corollary of Theorem 3.14.

Corollary 3.20. There exists a black-box quantum polynomial-time (n+1)-
stage quantum algorithm S such that for any adaptive adversary A against the
multi-round Fiat-Shamir transformed version FS[Π] of a (2n+1)-round PCIP Π,
making q queries to a uniformly random function H with appropriate domain
and range equal C, and for any x◦ ∈ X :

Pr
�
x = x◦ ∧ v = accept : (x, v)← ⟨SA,V⟩

�

≥ n!

(2q + n+ 1)2n
Pr
H

�
x = x◦ ∧ V H

FS(x,π) : (x,π)← AH
�
−ϵx◦ .

where the additive error term ϵx◦ is equal to n!
|C| when summed over all x◦.
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Proof. We may simply set x◦ = (x◦, (0, a1), . . . , (n − 1, an)) for arbitrary
a1, . . . , an, apply Theorem 3.14 and then sum over all choices of a1, . . . , an
to obtain the claimed inequality. Note that the round indices ensure that every
such x◦ is duplicate free, satisfying the corresponding requirement of Theorem
3.14.

Note that the additive error terms reflect the fact that the random oracle
only approximately succeeds in enforcing the original time order in the tran-
script of the PCIP. However, it can be made arbitrarily small, as discussed
below.

Remark 3.21. There exist PCIPs with soundness error much smaller than 1/|C|.
As an example, consider the sequential repetition of a Σ-protocol with special
soundness. Here, the soundness error is 1/|C|n. In this case, the term propor-
tional to 1/|C| renders the bound from the above theorem trivial. Note however,
that (i) this situation is extremely artificial, as there is absolutely no reason to
repeat sequentially instead of in parallel, and (ii) the additive error term can be
made arbitrarily small by considering a variant Π′ of Π where the random chal-
lenges are enlarged with a certain number of bits that are ignored otherwise,
see Remark 3.15.

In fact, we suspect that the observation from (i) is true in a much broader
sense: if a PCIP still has negligible soundness error when allowing the adver-
sary to learn one of the challenges ci in advance of sending the corresponding
commitment-type message ai, it seems like the number of rounds can be reduced
and the loss in soundness error can be won back by parallel repetition.

As for the case of the Fiat-Shamir transformation for Σ-protocols, the gen-
eral reduction implies that security properties that protect against dishonest
provers carry over from the interactive to the non-interactive proof system. For
a definition of the properties considered in the following theorem see Section
3.3.3. The quantum proof-of-knowledge-property was introduced in [Unr12].

Corollary 3.22 (Preservation of Soundness/PoK). Let Π be a constant-
round PCIP that has (statistical/computational) soundness, and/or the (statis-
tical/computational) quantum proof-of-knowledge-property, respectively. Then,
in the QROM, FS[Π] has (statistical/computational) soundness, and/or the
(statistical/computational) quantum proof-of-knowledge-property, too.

Proof. Corollary 3.20 turns any dishonest prover AFS[Π] for FS[Π] with success
probability ϵ into a dishonest prover AΠ for Π, with success probability ϵ · (2q+
1)−2n, where 2n+ 1 is the number of rounds in Π. Since n is constant and q is
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3.6. Extractable PCIP’s from quantum computationally unique responses

polynomial in the security parameter, the success probabilities of the respective
provers are polynomially related. The claimed implications follow now using the
same arguments as in Corollaries 3.8 and 3.9. ⊓⊔

Section 3.6

Extractable PCIP’s from quantum computationally
unique responses

In Section 3.7.1, we will see that the proof-of-knowledge property of the under-
lying Σ-protocol is crucial for a Fiat-Shamir signature scheme to be unforgeable.
In [Unr12], Unruh proved that special soundness (a witness can be constructed
efficiently from two different accepting transcripts) and perfect unique responses
are sufficient conditions for a Σ-protocol to achieve this property in the con-
text of quantum adversaries. The perfect-unique-responses property is used to
show that the final measurement of the Σ-protocol adversary that produces the
response is nondestructive conditioned on acceptance. This property ensures
that the extractor can measure the response, and then rewind “as if nothing
had happened”.

A natural question is therefore which other property except the arguably
quite strict condition of perfect unique responses is sufficient to imply extract-
ability together with special soundness. In [ARU14], the authors show that
computationally unique responses is insufficient to replace perfect unique re-
sponses. A Σ-protocol has computationally unique responses if the verification
relation V is collision-resistant from responses to commitment-challenge pairs
in the sense that it is computationally hard to find two valid responses for the
same commitment-challenge pair.

3.6.1 Generalizing Unruh-rewinding

In [Unr16], Unruh introduced the notion of collapsingness, a quantum general-
ization of the collision-resistance property for hash functions. The same work
also showed how to adapt a transformation from [Unr12] to allow for rewind-
ing of Σ-protocols with the help of collapsingness instead of perfect-unique
responses, but this transformation suffers from the same inefficiency as the
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Unruh-transform. Here, we take a more direct approach of generalizing collaps-
ingness to the setting of Σ-protocols.

Definition 3.23 (generalized from [Unr16]). Let R : X × Y → {0, 1}
be a relation with |X| and |Y | superpolynomial in the security parameter η,
and define the following two games for polynomial-time two-stage adversaries
A = (A1,A2),

Game 1 :
(S,X, Y )← A1, r ← R(X,Y ), X ←M(X), Y ←M(Y ), b← A2(S,X, Y )

Game 2 :
(S,X, Y )← A1, r ← R(X,Y ), Y ←M(Y ), b← A2(S,X, Y ).

Here, X and Y are registers of dimension |X| and |Y |, respectively, M denotes
a measurement in the computational basis, and applying R to quantum regis-
ters is done by computing the relation coherently and measuring it. R is called
collapsing from X to Y, if an adversary cannot distinguish the two experiments
if the relation holds, i.e. if for all adversaries A it holds that

���� Pr
A, Game 1

[r = b = 1]− Pr
A, Game 2

[r = b = 1]

���� ≤ negl(η). (9)

Note that this definition is equivalent to Definition 23 in [Unr16] for functions,
i.e. if R(x, y) = 1 if and only if f(x) = y for some function f .

Via the relation that is computed by the second stage of the verifier, the
collapsingness property can be naturally defined for Σ-protocols.

Definition 3.24 (Quantum computationally unique responses). A Σ-
protocol has quantum computationally unique responses, if the verification
predicate V (x, ·, ·, ·) : Y × C × Z → {0, 1} seen as a relation between Y × C
and Z is collapsing from Z to Y × C, where Y, C and Z are the commitment,
challenge and response spaces of the protocol, respectively.

Intuitively, for fixed commitment-challenge pairs, no adversary should be able
to determine whether a superposition over successful responses z has been mea-
sured or not. As in the case of hash functions (where collapsingness is a natural
stronger quantum requirement than collision-resistance), quantum computa-
tionally unique responses is a natural stronger quantum requirement than com-
putationally unique responses. In Section 3.6.3 we define (Definition 3.29) a
generalized notion of quantum computationally unique responses for general
PCIP’s.
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3.6. Extractable PCIP’s from quantum computationally unique responses

The following is a generalization of Theorem 9 in [Unr12] where the as-
sumption of perfect unique responses is replaced by the above quantum com-
putational version. Additionally, we relax the special soundness requirement to
t-soundness, which requires that for any first message a, for uniformly random
chosen challenges c1, . . . , ct, and for any responses z1, . . . , zt with V (x, ai, ci, zi)
for all i ∈ {1, . . . , t}, a witness w for x can be efficiently computed except with
negligible probability (over the choices of the ci). See Definition 4.22 and the
text below it for a formal definition of t-soundness.

Theorem 3.25 (Generalization of Theorem 9 from [Unr12]). Let Π be
a Σ-protocol with t-soundness for some constant t and with quantum computa-
tionally unique responses. Then Π is a computational proof of knowledge as in
Definition 2.7.

The proof follows very much the proof of Theorem 9 in [Unr12], up to some
small extensions; thus, we only give a proof sketch here.

Proof (sketch). We consider the following extractor K. It runs A to the point
where it outputs a. Then, it chooses a random challenge c1 and sends it to
A, and obtains a response z1 by measuring A’s corresponding register. K then
rewinds A (on the measured state!) and chooses and sends to A a fresh random
challenge c2, resulting in a response z2, etc., up to obtaining response zt. If
V (x, ai, ci, zi) for all i ∈ {1, . . . , t} then K can compute w except with negligible
probability by the t-soundness property; otherwise, it aborts.

It remains to analyze the probability, denoted by F below, that
V (x, ai, ci, zi) for all i. If the Σ-protocol has perfect unique responses then
measuring the response z is equivalent to measuring whether the response sat-
isfies the verification predicate V (with respect to x, a, c). Lemma 3.26 in Sec-
tion 3.6.2, which generalizes Lemma 7 in [Unr12], allows us then to control the
probability F by means of the probability V that A succeeds in convincing
the verifier in an ordinary run (this holds for an arbitrary but fixed a, and on
average over a by means of Jensen’s inequality).31 If the Σ-protocol has quan-
tum computationally unique responses instead, then measuring the response z
is computationally indistinguishable from measuring whether the response sat-
isfies the verification predicate, and so there can only be a negligible loss in the
success probability of K compared to above. ⊓⊔

We expect the above theorem to be very useful in practice, for the following
reason. Usually, Σ-protocols deployed in Fiat-Shamir signature schemes have
31 For the case of 2-special soundness, the originial Lemma 7 in [Unr12] suffices.
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computationally unique responses to ensure strong unforgeability via Theorem
3.34 or similar reductions. On the other hand, only very artificial separations
between the notions of collision resistance and collapsingness for hash func-
tions are known (e.g. the one presented in [Zha19b]). It is therefore plausible
that many Σ-protocols deployed in strongly unforgeable Fiat-Shamir signature
schemes have quantum computationally unique responses as well. In Section 3.7
we take a look at a couple of examples that form the basis of signature schemes
that featured in the NIST competition for the standardization of post-quantum
cryptographic schemes.

3.6.2 Quantum extractability of t-special sound Σ-protocols

In order to do quantum rewinding in the case of t-special sound Σ-protocols
(as opposed to 2-special sound protocols), we need to generalize Lemma 7 from
[Unr12]. The generalized lemma relates the success probability of applying a
random projection to a state vector with the success probability of sequentially
applying t random projections, where “success probability” here is in terms of
the (average) square-norm of the projected state vector. This statement gives
us the means to relate the probability of a interactive prover making the verifier
accept with the probability of an extractor making the verifier accept t times,
when rewinding t − 1 times and using a freshly random (and independent)
challenge each time.

Lemma 3.26. Let P1, . . . , Pn be projections and |ψ⟩ a state vector, and set

V :=
1

n

X

i

⟨ψ|Pi|ψ⟩ =
1

n

X

i

∥Pi|ψ⟩∥2 and F :=
1

nt

X

i1···it
∥Pit · · ·Pi1 |ψ⟩∥2 .

Then F ≥ V 2t−1.

The case t = 2 was proven in [Unr12, Lemma 7]. We show here how to extend
the proof to t = 3; the general case works along the same lines.

Proof (of the case t = 3). For convenience, set A := 1
n

P
i Pi and |ψijk⟩ :=

PkPjPi|ψ⟩. Then, using convexity of the function x 7→ x5 to argue the first
inequality, we get

V 5 =(⟨ψ|A|ψ⟩)5 = ⟨ψ|A5|ψ⟩ = 1

n5

X

ijkℓm

⟨ψ|PiPjPkPℓPm|ψ⟩
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=
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n3
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ijk

∥|ψijk⟩∥2 = F ,

where the last inequality is Claim 2 in the proof of Lemma 7 in [Unr12]. ⊓⊔

The following is a generalization of Lemma 7 from [Unr12] in a different di-
rection. It gives us control over the success probability of the extractor when
the challenge consists of two parts, and the extractor works by rewinding once
with a freshly chosen challenge pair, and once more where now one part of the
challenge is re-used and only the other part is freshly chosen.

Lemma 3.27. Let Pij (1 ≤ i ≤ n, 1 ≤ j ≤ m) be projections |ψ⟩ a state
vector, and set

V :=
1

nm

X

i,j

∥Pi,j |ψ⟩∥2 and F :=
1

n2m3

X

i1,i2
j1,j2,j3

∥Pi2j3Pi2j2Pi1j1 |ψ⟩∥2 .

Then F ≥ V 6.

Proof. We set |φi1j1⟩ := Pi1j1 |ψ⟩/⟨ψ|Pi1j1 |ψ⟩. Then

F =
1

n2m3

X

i1,i2
j1,j2,j3

∥Pi2j3Pi2j2Pi1j1 |ψ⟩∥2

=
1

n2m

X

i1,i2,j1

1

m2

X

j2,j3

∥Pi2j3Pi2j2 |φi1j1⟩∥2 ⟨ψ|Pi1j1 |ψ⟩

≥ 1

n2m

X

i1,i2,j1

�
1

m

X

j2

∥Pi2j2 |φi1j1⟩∥2
�3

⟨ψ|Pi1j1 |ψ⟩ (Lemma 3.26)

=
1

n2m

X

i1,i2,j1

�
1

m

X

j2

∥Pi2j2Pi1j1 |ψ⟩∥2/⟨ψ|Pi1j1 |ψ⟩2/3
�3

≥
�

1

n2m2

X

i1,i2,j1,j2

∥Pi2j2Pi1j1 |ψ⟩∥2/⟨ψ|Pi1j1 |ψ⟩2/3
�3

(Jensen’s inequality)

≥
�

1

n2m2

X

i1,i2,j1,j2

∥Pi2j2Pi1j1 |ψ⟩∥2
�3
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≥
�

1

nm

X

i1,j1

∥Pi1j1 |ψ⟩∥2
�6

(Lemma 3.26)

This proves the claim. ⊓⊔

3.6.3 Quantum extractability of PCIP’s: the q2 identification
scheme case

A class of identification schemes that is of particular interest in the multi-round
setting are so-called q2-identification schemes. The signature scheme MQDSS,
for example, is obtained from such an identification scheme via the multi-round
Fiat-Shamir transformation from Definition 3.38 (with some additional strings
included in the hash arguments). In this section, we will prove that a PCIP
with a so-called “q2 extractor” [CHR+16, Definition 4.6] is a quantum proof
of knowledge if it has an additional collapsingness property. This is necessary
for its Fiat-Shamir transformation to fulfill (s)UF-CMA in the QROM (for
(s)UF-CMA in the ROM, the q2-extractor alone is sufficient [CHR+16]).

We begin by defining q2 identification schemes and their extractors.

Definition 3.28. A 5-round identification scheme is a q2 identification
scheme, if the second challenge is a single bit. A q2 identification scheme is
called q2-extractable if there exists a polynomial-time algorithm that, on input
accepting transcripts t(i) = (a1, c

(i)
1 , a

(i)
2 , c

(i)
2 , z(i)), i = 1, 2, 3, 4, such that

c
(1)
1 = c

(2)
1 ̸= c

(3)
1 = c

(4)
1 and

c
(1)
2 = c

(3)
3 ̸= c

(2)
2 = c

(4)
2 ,

(10)

outputs the secret key with non-negligible probability.

For ease of exposition we have assumed that the different challenges of a sin-
gle PCIP come all from the same challenge space. A q2 identification scheme
can be brought into this form by having the prover compute the second chal-
lenge by selecting the first bit of an augmented second challenge that is as
large as the first one. For classical provers, four transcripts as required by the
above definition can be obtained by straightforward rewinding. In the follow-
ing, we show that, if the q2 identification scheme has an additional property
similar to the quantum-computationally unique responses property introduced
at the start of this section (Definition 3.24) and [LZ19a], then the existence
of a q2 extractor implies that there exists a quantum extractor. This makes
the scheme a quantum proof of knowledge. The argument follows the same
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lines as the the proof (sketch) of Theorem 3.25 – showing that t-soundness
and quantum-computationally unique responses imply the quantum proof-of-
knowledge-property – which in turn is an extension of the result by Unruh for
Σ-protocols with perfect unique responses [Unr12].

Recall the definition of a collapsing relation, Definition 3.24, a generalization
of the notion of a collapsing hash function [Unr16]. We define the notion of
collapsingness for interactive proof systems as follows:

Definition 3.29. A (2n+1)-round interactive proof system Π is called col-
lapsing, if the relation RΠ : X × Y → {0, 1} with X = Cn × A1 and
Y = A2 × ...×An ×Z given by the verification predicate VΠ of Π is collapsing
from X to Y.

Note that for n = 1, this notion of collapsingness coincides with the notion of
quantum-computationally unique responses from Definition 3.24.

Given a q2-identification scheme Π, consider the following straightforward
(first stage of a) quantum extractor EA

Π . The extractor runs the prover A using
honestly sampled challenges to obtain a first transcript t(1). Now it rewinds
three times and reruns A, each time with a fresh pair of challenges, chosen such
as to obtain t(i), i = 2, 3, 4 such that the four transcripts fulfill the conditions
(10). For this extractor, we obtain the following

Theorem 3.30. Let Π a q2-extractable q2-identification scheme that is also
collapsing. Then the success probability of the extractor EA

Π is lower-bounded in
terms of the success probability of the prover A as

Pr[EA
Π extracts] ≥


Pr

�
v = accept : (x, v)← ⟨A,VΠ⟩

��7 (11)

The proof of this theorem is essentially the same as for Theorem 3.25, which
is a slight modification of an argument from [Unr12].

As a corollary, we obtain the fact that for q2 identification schemes, q2-
extractability and collapsingness imply the quantum proof of knowledge prop-
erty as defined in [Unr12].

Corollary 3.31. Let Π a q2-extractable q2-identification scheme that is also
collapsing. Then it is a quantum proof of knowledge.

In particular, the 5-round identification scheme ΠSSH from [SSH11] which is
used to construct the post-quantum digital signature scheme MQDSS has these
properties under plausible assumptions, namely that it is instantiated with
the standard hash-based commitment scheme using a collapsing hash function
[Unr16] (see discussion towards the end of Section 3.7.2). For MQDSS, this is

87



3. Security of the Fiat-Shamir Transformation

no additional assumption, as the Fiat-Shamir transformation uses the QROM
anyway, and a quantum accessible random oracle is collapsing by [Unr16].

Corollary 3.32. If the 5-round identification scheme from [SSH11] is instan-
tiated with the standard hash-based commitment scheme using a collapsing hash
function, it is a quantum proof of knowledge.

Proof (sketch). According to [CHR+16], ΠSSH is a q2-extractable q2 identifi-
cation scheme. In ΠSSH, the honest prover’s first message consists of two com-
mitments, and the second and final messages contain functions of the strings
commited to in the first message, and some opening information, respectively.
Measuring a function of a register is equivalent to a partial computational basis
measurement of that register. According to the the collapsing property of the
hash function, no efficient algorithm can distinguish whether the the committed
string and the opening information are measured or not. This clearly implies
the same indistinguishability for partial measurements of the string register,
which implies that ΠSSH is collapsing. ⊓⊔

Note that the above proof works for any multi-round PCIP that has a similar
commit-and-open structure.

Section 3.7

Applications

3.7.1 Unforgeability of Fiat-Shamir signatures

Any Fiat-Shamir non-interactive proof system can easily be transformed into a
public-key signature scheme.32 The signer simply proves knowledge of a witness
(the secret key) for a composite statement x∗ := x∥m, which includes the public
key x as well as the message m. The signature σ then consists of a proof for x∗.

The unforgeability (against no-message attacks) of a Fiat-Shamir signature
scheme is shown below to follow from the proof-of-knowledge property of the
underlying proof system (hence, as we now know, of the underlying Σ-protocol),
32 In fact, that is how the Fiat-Shamir transform was originally conceived in [FS87]. Only

later [BG93] adapted the idea to construct a non-interactive zero-knowledge proof system.
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under the assumption that the relation is hard, i.e. it is infeasible to compute
sk from pk.

Theorem 3.33. Let Σ be Σ-protocol for some hard relation R, C and the proof-
of-knowledge property according to Definition 2.7. Then, the Fiat-Shamir sig-
nature scheme Sig[Σ] fulfills EUF−NMA security.

Proof. Let A be an adversary against EUF−NMA, issuing at most q quantum
queries to H. We show that

AdvEUF−NMA
Sig[Σ] (A) := Pr

�
VerifyH(pk,m,σ) : (pk, sk)← Gen, (m,σ)← AH(pk)

�

is negligible.
Recall from Definition 2.15 of Fiat-Shamir signatures that the Σ-protocol

Σ∗ is the Σ-protocol Σ where the prover and verifier ignore the message part
m of the instance x∥m. A successful forgery (m,σ) is such that V H

FS(x∥m,σ)
accepts the proof σ. Therefore,

AdvEUF−NMA
Sig[Σ] (A) = E

(x,w)←G

�
Pr
H

�
V H
FS(x∥m,σ) : (m,σ)← AH(x)

��
. (12)

Note that if Σ is a proof of knowledge, so is Σ∗. Our Corollary 3.9 assures
that if Σ∗ is a proof of knowledge, then also FS[Σ∗] is a proof of knowledge.

For fixed instance x, let X be the set of instance/message strings x′∥m where
x′ = x. We apply the knowledge extractor from Definition 2.7 to the adaptive
FS-attacker AH(x) that has x hard-wired and outputs it along with a message
m and the proof/signature σ: There exists a knowledge extractor E , constants
d, e and a polynomial p (all independent of x) such that

Pr
H

�
x′∥m ∈ X ∧ V H

FS(x
′∥m,σ) : (x′∥m,σ)← AH(x)

�

≤

Pr

�
x′∥m ∈ X ∧ (x′, w) ∈ R : (x′∥m,w)← EA�qep(η) + µ(η)

�1/d (13)

Finally, taking the expected value of (13) over the choice of the instance x
according to the hard-instance generator G, we obtain that the left hand side
equals AdvEUF−NMA

Sig[Σ] (A). For the right-hand side, we can use the concavity of
(·)1/d (note that we can assume without loss of generality that d > 1) and apply
Jensen’s inequality to obtain

E
x←G

h
Pr

�
x′∥m ∈ X ∧ (x′, w) ∈ R : (x′∥m,w)← EA�qep(η) + µ(η)

�1/di
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≤
�

E
x←G

Pr
�
x′∥m ∈ X ∧ (x′, w) ∈ R : (x′∥m,w)← EA�qep(η) + µ(η)

�1/d

.

Note that the expected probability is the success probability of the extractor
to produce a witness w matching the instance x. As long as the relation R is
hard according to Definition 2.14, this success probability is negligible, proving
our claim.

⊓⊔

If we wish for unforgeability under chosen-message attack, zero-knowledge
is required as well. [Unr17] and [KLS18] contain partial results that formalize
this intuition, but they were unable to derive the extractability of the non-
interactive proof system. Instead, they modify the Σ-protocol to have a lossy
mode [AFLT12], i.e. a special key-generation procedure that produces key pairs
whose public keys are computationally indistinguishable from the real ones, but
under which it is impossible for any (even unbounded) quantum adversary to
answer correctly.

Our new result above completes these previous analyses, so that we can
now state precise conditions under which a Σ-protocol gives rise to a (strongly)
unforgeable Fiat-Shamir signature scheme, without the need for lossy keys.

Theorem 3.34. Let Σ be Σ-protocol for some hard relation R, with superpoly-
nomially sized challenge space C and the proof-of-knowledge property according
to Definition 2.7. Assume further that Σ is ε-perfect sigma-(non-abort) honest-
verifier zero-knowledge (naHVZK), has α bits of min entropy and computation-
ally unique responses as defined in [KLS18]. Then, Sig[Σ] fulfills sEUF−CMA
security.

Proof. By Theorem 3.3 of [KLS18] and Theorem 2.2 of [BBD+23], we can
use the naHVZK, min-entropy and computationally-unique-response properties
of Σ to reduce an sEUF−CMA adversary to an EUF−NMA adversary33. The
conclusion then follows immediately from our Theorem 3.33 above. ⊓⊔

Several schemes of the Fiat-Shamir kind have featured (and have been se-
lected) in the NIST post-quantum standardization process. Below we outline
how our result might be applied to some of these schemes, and under which ad-
ditional assumptions. We leave the problems of applying our techniques to the
actual (highly optimized) signature schemes and of working out the concrete
security bounds for future work.
33 See also Theorem 25 in [Unr17] for a different proof technique.
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Picnic In order to obtain QROM-security, Picnic uses the Unruh transform
[Unr15b] instead of the Fiat-Shamir transformation, incurring a 1.6x loss in
efficiency (according to [CDG+17]) compared to Fish, which is the same scheme
under plain Fiat-Shamir.

The underlying sigma-protocol for these schemes is ZKB++ [CDG+17], an
optimized version of ZKBoo [GMO16], which uses an arbitrary one-way function
ϕ, a commitment scheme COM and a multi-party computation protocol to prove
knowledge of a secret key. Roughly, a prover runs the multi-party protocol ‘in
its head’ (i.e. simulates the three agents from the protocol, see [IKOS07b]) to
compute pk := ϕ(sk). Only a prover who knows the secret key can produce
the correct view of all three agents, but the public key suffices to verify the
correctness of two of the views. In the first round, the prover uses COM to
commit to all three views separately, and sends these commitments to the
verifier. The verifier replies with a random challenge i ∈ {1, 2, 3}, to which the
prover in turn responds by opening the i-th and i+1-th commitment.

ZKBoo does not specify a concrete commitment scheme for COM. A natural
option is to commit by hashing the input together with some random bits.

Corollary 3.35. Sig[ZKBoo] is strongly existentially unforgeable in the QROM
when COM is instantiated with a hash function H.

Proof. If we treat H as a quantum-accessible random oracle, then H is collaps-
ing by [Unr16]. Since the response of the prover in the third round consists only
of openings to the commitments ci, ci+1, i.e. preimages of ci and ci+1 under H,
and since collapsingness is closed under concurrent composition [Feh18], the
collapsingness of H implies that ZKBoo has quantum computational unique
responses. ZKBoo further has 3-soundness, and thus the claim follows using
Theorems 3.25 and 3.34. ⊓⊔

ZKB++ improves on ZKBoo by introducing optimizations specific to the
signature context, which complicate the analysis of the overall scheme. We
therefore leave the adaption of Corollary 3.35 to ZKB++ and Fish for future
work.

We also point out that Picnic2 is not t-sound because a witness can be
computed from 3 responses only under certain restrictions on the challenges.
However, this can be taken care of by a variation of the t-soundness property,
as proven in Lemma 3.27 in Section 3.6.2.

Lattice-based Fiat-Shamir signature schemes – CRYSTALS-Dilithium
and qTesla In [Lyu09] and [Lyu12], Lyubashevsky developed a Fiat-Shamir
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signature scheme based on (ring) lattice assumptions. In the following, we
explain the lattice case and mention ring-based lattice terms in parentheses.
The underlying sigma protocol, which forms the basis of the NIST submissions
CRYSTALS-Dilithium and qTesla, can be roughly described as follows. The in-
stance is given by a key pair ((A, T ), S), with T = AS. Here, A and S are
matrices of appropriate dimensions over a finite field (polynomials of appro-
priate degree), and S is small. For the first message to the verifier, the prover
selects a random short vector (small polynomial) y, and sends over Ay. The
second message, from the verifier to the prover, is a random vector (polyno-
mial) c with entries (coefficients) in {−1, 0, 1} and a small Hamming weight.
The third message, i.e. the response of the prover, is z = Sc+ y, which is short
(small) as well. The prover actually sends z only with a particular probability,
which is chosen so as to make the distribution of (sent) z independent of S.
Otherwise, it aborts and tries again. Verification is done by checking whether z
is indeed short (small), and whether Az−Ay = Tc. Let us denote this protocol
by LatticeΣ. In the following we restrict our attention to the lattice case, but
we expect that one can do a similar analysis for the ring-based schemes.

The security of the scheme is, in the lattice case, based on the Short Inte-
ger Solution (SIS) problem, which essentially guarantees that it is hard to
find an integral solution to a linear system that has a small norm. The compu-
tationally unique responses property for the simple Σ-protocol described above,
in fact, follows directly from SIS: If one can find a vector c and two short vec-
tors xi, i = 1, 2 such that Ax0 = c = Ax1, then the difference x = x1 − x0 is a
short solution to the linear system Ax = 0.

Another way to formulate the computationally unique responses property
for the above Σ-protocol is as follows. Let S ⊂ Fn

q be the set of short vectors. Let
fA : S → Fm

q be the restriction to S of the linear map given by the matrix A ∈
Fm×n
q . The Σ-protocol above has computationally unique responses if and only

if fA is collision resistant. As pointed out at the end of Section 3.6, the known
examples that separate the collision resistance and collapsingness properties are
fairly artificial. Hence it is a natural to assume that fA is collapsing as well.

Assumption 3.36. For m,n and q polynomial in the security parameter η, the
function family fA keyed by a uniformly random matrix A ∈ Fm×n

q is collapsing.

Under Assumption 3.36, LatticeΣ has quantum computational unique re-
sponses, and hence gives rise to an unforgeable Fiat-Shamir signature scheme.
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Corollary 3.37. Under Assumption 3.36, Sig[LatticeΣ] is strongly existentially
unforgeable in the QROM.

As mentioned at the end of the introduction, in their concurrent and inde-
pendent work [LZ19a], Lie and Zhandry show that fA satisfies their notion
of weak -collapsingness (assuming hardness of LWE), which roughly says that
there is some non-negligible probability that the adversary does not notice a
measurement. Weak-collapsingness implies a similarly weakened variant of our
property ‘quantum computational responses’, which is still sufficient to let the
proof of Theorem 3.25 go through, albeit with a worse but still non-negligible
success probability for the knowledge-extractor.

3.7.2 Signature schemes from multi-round Fiat-Shamir

In the context of Fiat-Shamir signature schemes, multi-round variants have
also been used. One example is MQDSS [CHR+16], a digital signature scheme
that made it to the second round of the NIST standardization process for post-
quantum cryptographic schemes. This digital signature scheme is constructed
by applying the multi-round Fiat-Shamir transformation to the 5-round identi-
fication scheme by Sakumoto, Shirai, and Hiwatari [SSH11] based on the hard-
ness of solving systems of multivariate quadratic equations.

In this section, we present a generic construction of a digital signature
scheme based on multi-round FS, and give a proof sketch of its strong un-
forgeability under chosen message attacks. We refrain from giving a full, self-
contained proof here so as to not distract from our main technical result and
its implications. Many, though not all, parts of the argument are very similar
to the ones made elsewhere for the 3-round case.

The following construction is a straightforward generalization of the original
construction of Fiat and Shamir.

Definition 3.38 (Fiat-Shamir signatures from a general PCIP). Given
an (2n+1)-round public coin identification scheme Π = (Gen,P,V) for a witness
relation R and a hash function H with appropriate domain and range equal to
C, we define the digital signature scheme Sig[Π] = (Gen, Sign,Verify) as follows.
The key generation algorithm Gen is just the one from Π. The signing algorithm
Sign, on input a secret key sk and a message m, outputs

σ = (a1, ..., an, z)← Signsk(m)
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where z and ai for i = 1, ..., n are computed using P(pk), and the challenges
are computed as

c1 = H(0, pk,m, a1) and
ci = H(i− 1, ci−1, ai) for i = 2, ..., n .

The verification algorithm Verify, on input a public key pk, a message m and
a signature σ = (a1, ..., an, z), computes ci as specified above, outputs ‘accept’
iff Vpk(a1, c1, ..., an, cn, z) = 1, denoted by Verifypk(m,σ) = 1.

We note that the above definition is equivalent to the following, alterna-
tive formulation: Let Signsk(m) produce σ by running PH

FS(x||m), and let
Verify(m,σ) be equal to the outcome of V H

FS(x||m), where (PH
FS , V

H
FS) = FS[Π∗]

and Π∗ = (P∗,V∗) is the identification scheme obtained from Π by setting
P∗(x||m) = P(x) and V∗(x||m) = V(x) for any m. This alternative formulation
will be convenient in the proof of Theorem 3.41.

Remark 3.39. As in the case of the plain multi-round Fiat-Shamir transfor-
mation, one can include arbitrary additional strings in the argument when
computing the challenges ci. Examples where this is done include the MQDSS
signature scheme [CHR+16], where the message m and the first commitment a1
are also included in the argument for computing the second challenge, and Bul-
letproofs, where the challenges are computed by hashing the entire transcript
up to that point [BBB+18].

As an identification scheme is an interactive honest-verifier zero knowledge
proof of knowledge of a secret key, the above signature scheme is a a non-
interactive zero knowledge proof of knowledge of a secret key according to
Corollary 3.20. For a digital signature scheme, however, the stronger security
notion of (strong) unforgeability against chosen message ((s)UF-CMA) attacks
is required.

In the following, we give a proof sketch for the fact that the above signature
scheme is (s)UF-CMA. This fact follows immediately once we have convinced
ourselves that a certain result by Unruh about the Fiat-Shamir transformation
holds for the multi-round case as well: For the Fiat-Shamir transformation of
Σ-protocols, extractability implies a stronger notion of extractability enabling
a proof of (s)UF-CMA [Unr17]. Here, we just patch the parts of the proof from
[Unr17] that make use of the fact that the underlying PCIP has only three
rounds.

For the following we need the notion of a PCIP having computationally
unique responses.
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Definition 3.40 (Computationally unique responses - PCIP). A (2n+
1)-round PCIP Π = (P,V) is said to have computationally unique responses if
given a partial transcript (x, a1, c1, . . . ai, ci) it is computationally hard to find
two accepting conversations that both extend the partial transcript but differ
in (at least) ai+1 (here we consider z to be equal to an+1), i.e. for coni =

x, a1, c1, . . . ai, ci, a
(j)
i+1, c

(j)
i+1 . . . , a

(j)
n , c

(j)
n , z(j), j = 1, 2 we have that

Pr [V(con1) = 1 ∧ V(con2) = 1 : (con1, con2)← A]

is negligible for computationally bounded (quantum) A, where a
(1)
i+1 ̸= a

(2)
i+1.

Equipped with this definition, we can state the main result of this section.

Theorem 3.41 ((s)UF-CMA of multi-round FS signatures). Let Π be a
PCIP for some hard relation R, which is a quantum proof of knowledge and sat-
isfies completeness, HVZK, and has unpredictable commitments34 as well as a
superpolynomially large challenge space. Then Sig[Π] is existentially unforgeable
under chosen message attack (UF-CMA). If Π in addition has computationally
unique responses, Sig[Π] is strongly existentially unforgeable under chosen mes-
sage attack (sUF-CMA).

In [Unr17] (Theorem 24, and 25, respectively), it is proven that an extractable
FS proof system (of an HVZK Σ-protocol, and of an HVZK Σ-protocol with
computationally unique responses, respectively) satisfies the stronger notion of
(strong) simulation-sound extractability. In addition, it is shown that such a
FS proof system gives rise to a (s)UF-CMA signature scheme if the underlying
relation is hard. Corollary 3.22 implies that FS[Π∗] is indeed extractable if Π is
extractable. Below we rely on the proof in [Unr17] to argue simulation-sound
extractability, only pointing out a particular difference for the multi-round case.

Proof (sketch). Since Π is a quantum proof of knowledge, so is Π∗. By Corollary
3.22, FS[Π∗] is a quantum proof of knowledge (extractable), and by Theorem
20 in [Unr17] (which easily generalizes to the multi-round setting), complete-
ness, unpredictable commitments35 and HVZK of Π∗ together imply ZK for
34 We take unpredictable commitments for PCIP’s to be exactly the same as for Σ-protocols,

with the first message playing the role of the commitment.
35 This property is required to have sufficient entropy on the inputs to the oracle that are

reprogrammed by the zero-knowledge simulator SZK . While SZK may reprogram the oracle
on inputs (i − 1, ci−1, ai) for i > 1, it is enough to require the first message a1 to have
sufficient entropy, since with ci−1, these later inputs all include a uniformly random element
from the superpolynomially large challenge space.
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FS[Π∗]. For the proof that FS[Π∗] is also simulation-sound extractable, we re-
fer to the proof of Theorem 24 in [Unr17], noting only that in the hop from
Game 1 to Game 2 we have to adjust the argument as follows: Let SZK be
the zero-knowledge simulator that runs the HVZK simulator from Π∗ and
reprograms the oracle as necessary. We write Hf for the oracle H after it
has been reprogrammed by SZK , at the end of the run of A. We have to
show that V

Hf

FS (x, a1, . . . , an, z) = 1 implies V H
FS(x, a1, . . . , an, z) = 1, where

(x, a1, . . . , an, z) is the final output of A. Suppose the implication does not
hold. Then either (i) Hf (0, x, a1) ̸= H(0, x, a1) or (ii) Hf (i − 1, ci−1, ai) ̸=
H(i− 1, c′i−1, ai) for some i, where ci−1 is the (i−1)-st challenge as recomputed
by V

Hf

FS and c′i−1 is the one computed by V H
FS . In case (i) holds, A has queried

x and the corresponding forged proof that was output by SZK starts with a1.
In case (ii), assume that Hf (j − 1, cj−1, aj) = H(j − 1, cj−1, aj) for all j < i,
so that ci−1 = c′i−1. Then,

Hf (i−1, ..., H(1, H(0, x, a1), a2), ..., ai) ̸= H(i−1, ..., H(1, H(0, x, a1), a2), ..., ai)

which means that A either queried x and the corresponding forged proof that
was output by SZK starts with a1, or else A has queried some x′ such that

H(i− 2, . . . , H(1, H(0, x′, a′1), a
′
2), . . . a

′
i−1)

= H(i− 2, . . . , H(1, H(0, x, a1), a2), . . . , ai−1)

and ai = a′i, where (a′1, . . . , a′i) is part of the SZK proof resulting from the query
x′. By the fact that H is a random oracle, it is infeasible for A to find such an
x′.

In the context of weak simulation-sound extractability, the fact that A has
queried x is enough to derive a contradiction. For the strong variant, we now
have that SZK has output (x, a1, a

′
2, . . . , a

′
n, z

′) such that

V(x, a1, Hf (0, x, a1), a
′
2, c

′
2 . . . , a

′
n, c

′
n, z

′) = 1

and A has output (x, a1, a2, . . . , an, z) such that

V(x, a1, Hf (0, x, a1), a2, c2, . . . , an, cn, z) = 1

(and A knows both since it interacted with SZK). By the computationally
unique responses property of Π, it must be that a2 = a′2. But then it follows
that

c2 = Hf (1, Hf (0, x, a1), a2) = Hf (1, Hf (0, x, a1), a
′
2) = c′2
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(remember that both proofs are accepting with respect to Hf ) which in turn
implies that a3 = a′3, etc. Thus, we obtain that A has output a proof that was
produced by SZK , yielding a contradiction. We conclude that

V
Hf

FS (x, a1, . . . , an, z) = 1 implies V H
FS(x, a1, . . . , an, z) = 1

except with negligible probability.
In the rest of the proof of Theorems 24 and 25 in [Unr17], no properties

specific to a three-round scheme are used, and so the results extend to the
PCIP context, that is, FS[Π∗] is (strongly) simulation-sound extractable. Now
applying Theorem 31 from [Unr17], we obtain that Sig[Π] is (s)UF-CMA. ⊓⊔

Together with the fact that commit-and-open PCIPs can easily be made
quantum extractable in the right sense by using standard hash-based com-
mitments based on a collapsing hash function, we obtain the security of the
MQDSS signature scheme. Recall that the standard hash-based commitment
scheme works as follows. On input s, the commitment algorithm samples a ran-
dom opening string u and outputs it together with the commitment c = H(s, u).
Opening just works by recomputing the hash and comparing it with c . Note
that, while this commitment scheme is collapse-binding [Unr16], we need the
stronger property of collapsingness of the function defined by the commitment
algorithm that, on input a string and some randomness, outputs a commitment
(collapse-binding only requires the collapsingness with respect to the committed
string, not the opening information).36

Corollary 3.42 (sUF-CMA of MQDSS). Let ΠSSH be the 5-round identi-
fication scheme from [SSH11] repeated in parallel a suitable number of times
and instantiated with the standard hash-based commitment scheme using a col-
lapsing hash function. Then the Fiat-Shamir signature scheme constructed from
ΠSSH is sUF-CMA.

Proof (sketch). In ΠSSH, the honest prover’s first message consists of two com-
mitments, and the second and final messages contain functions of the strings
committed to in the first message. This structure, together with the compu-
tational binding property (implied by the collapse binding property) of the
commitments, immediately implies that ΠSSH has computationally unique re-
sponses. According to Corollary 3.32 in the appendix, ΠSSH is a quantum proof
of knowledge. It also has HVZK according to [SSH11]. Finally, the first message
of ΠSSH is clearly unpredictable. An application of Theorem 3.41 finishes the
proof. ⊓⊔
36 Alternatively, the extractor should be adjusted to only measure the message part of the

response.
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3.7.3 Sequential Or-Proofs

A second application of our multi-input version of the measure-and-reprogram
result is to the OR-proof as introduced by Liu, Wei and Wong [LWW04] and
further analyzed by Fischlin, Harasser and Janson [FJ20]. This is an alternative
(non-interactive) proof for proving existence/knowledge of (at least) one of two
witnesses without revealing which one, compared to the well known technique
by Cramer, Damgård and Schoenmakers [CDS94].

Formally, given two Σ-protocols Σ0, and Σ1, for languages L0, and L1,
respectively, [LWW04] proposes as a non-interactive proof for the OR-language
L∨ = {(x0, x1) : x0∈L0 ∨ x1∈L1} a quadruple π∨ = (a0, a1, z0, z1) such that

V H
∨ (x0, x1,π∨) :=

�
V0


x0, a0, H(1, x0, x1, a1), z0

�
∧V1


x1, a1, H(0, x0, x1, a0), z1

��

is satisfied. Fischlin et al. call this construction sequential OR proof. We em-
phasize that the two challenges c0 and c1 are computed “over cross”, i.e., the
challence c0 for the execution of Σ0 is computed by hashing a1, and vice versa.
It is straightforward to verify that if Σ0 and Σ1 are special honest-verifier
zero-knowledge, meaning that for any challenge c and response z one can ef-
ficiently compute a first message a such that (a, c, z) is accepted, then it is
sufficient to be able to succeed in one of the two interactive protocols Σ0 and
Σ1 in order to honestly produce such an OR-proof π∨. Thus, depending on the
context, it is sufficient that one instance is in the corresponding language, or
that the prover knows one of the two witnesses, to produce π∨. Indeed, if, say,
x0 ∈ L0 (and a witness w0 is available), then π∨ can be produced as follows.
Prepare a0 according to Σ0, compute c1 := H(0, x0, x1, a0) and simulate z1
and a1 using the special honest-verifier zero-knowledge property of Σ1 so that
V1(x1, a1, c1, z1) is satisfied, and then compute the response z0 for the challenge
c0 := H(1, x0, x1, a1) according to Σ0.

On the other hand, intuitively one expects that one of the two instances must
be true in order to be able to successfully produce a proof. Indeed, [LWW04]
shows security of the sequential OR in the (classical) ROM. [FJ20] go a step
further and show security in the (classical) non-programmable ROM. Here we
show that our multi-input version of the measure-and-reprogram result (as a
matter of fact the 2-input version) implies security in the QROM.

Theorem 3.43. There exists a black-box quantum polynomial-time interactive
algorithm P̂, which first outputs a bit b and two instances x0, x1, and in a second
stage acts as an interactive prover that runs Σb on instance xb, such that for
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any adversary A making q queries to a uniformly random function H and for
any x◦0, x

◦
1:

Pr
�
x0 = x◦0 ∧ x1 = x◦1 ∧ vb = accept : (b, x0, x1, vb)← ⟨P̂A,Vb⟩

�

≥ 1

(2q + 1)4
Pr
H

�
x0 = x◦0 ∧ x1 = x◦1 ∧ V H

∨ (x0, x1,π∨) : (x0, x1,π∨)← AH
�
.

As explained above, the execution (b, x0, x1, vb) ← ⟨P̂A,Vb⟩ should be under-
stood in that P̂A first outputs x0, x1 and b, and then it engages with Vb to
execute Σb on instance xb. Thus, the statement ensures that if AH succeeds to
produce a convincing proof π∨ then P̂A succeeds to convincingly run Σ0 or Σ1

(with similar success probability), where it is up to P̂A to choose which one it
wants to do.

Of course, the statement translates to the static setting where the two in-
stances x0 and x1 are fixed and not produced by the dishonest prover.

Proof. The algorithm A fits well into the statement of Theorem 3.13 with the
two extractable inputs x̃0 = (0, x0, x1, a0) and x̃1 = (1, x0, x1, a1). Thus, we can
consider the 3-stage algorithm S ensured by Theorem 3.13, which behaves as
follows with at least the probability given by the right hand side of the claimed
inequality. In the first stage, it outputs a permutation on the set {0, 1}, which
we represent by a bit b ∈ {0, 1} with b = 0 corresponding to the identity
permutation, as well as x̃b = (b, x0, x1, ab). On input a random Θb = c1−b

(“locally” chosen by P̂), S then outputs x̃1−b = (1 − b, x0, x1, a1−b). Finally,
on input a random Θ1−b = cb (provided by Vb as the challenge upon the first
message ab), S outputs z0, z1 so that V∨ is satisfied with the challenges cb and
c1−b, and thus in particular Vb


xb, ab, cb, zb

�
is satisfied. This directly shows the

existence of P̂ as claimed.
⊓⊔

Section 3.8

Tightness of the reductions

Here, we show tightness of our generic Fiat-Shamir reduction, for both the
Σ-protocol and the multi-round versions. We start with proving tightness of
Theorem 3.7 (up to essentially a factor 4). This implies that a O(q2)-loss is
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unavoidable in general. Indeed, the following result shows that for a large and
natural class of Σ-protocols Σ, there exists an attack against FS[Σ] that succeeds
with a probability q2 times larger than the best attack against Σ. The attack is
based on an application of Grover’s quantum algorithm for unstructured search.

To our surprise, we could not find an analysis of Grover’s algorithm in the
regime we require in the literature. Grover search has been analyzed in the case
of an unknown number of solutions [BBHT98], but the focus of that work is on
analyzing the expected number of queries required to find a solution, while we
analyze the probability with which the Grover search algorithm succeeds for a
fixed but arbitrary number of queries.

Theorem 3.44. Let L be a language, and let Σ be a Σ-protocol for L with chal-
lenge set C, special soundness and perfect honest-verifier zero-knowledge. Fur-
thermore, we assume that the triples (a, c, z) produced by the simulator SZK(x)
are always accepted by the verifier even for instances x ̸∈ L, and that a has min-
entropy γ.37 Then for any q such that (q2+1) ·e2 ·(5q)6 < |C| and 2γ/(5q)3 > 2,
there exists a q-query dishonest prover that succeeds with probability at least
q2/|C| in producing a valid FS[Σ]-proof for an instance x ̸∈ L.

The idea of the attack against FS[Σ] is quite simple. For a Σ-protocol that
is special honest-verifier zero-knowledge, meaning that the simulation works
by first sampling the challenge c and the response z and then computing a
fitting first message a as a function a(c, z), one simply does a Grover search
to find a pair (c, z) for which H


x, a(c, z)

�
= c. For a typical H, this will give

a quadratic improvement over the classical search, which, for a random H,
succeeds with probability q/|C| (due to the special soundness). A subtle issue is
that, for some (unlikely) choices of H, there are actually many (c, z) for which
H

x, a(c, z)

�
= c, in which case the Grover search “overshoots”. In the formal

proof below, this is dealt with by controlling the probability of H having this
(unlikely) property. Also, it removes the special honest-verifier zero-knowledge
property by doing the Grover search over the randomness of the simulator,
which requires some additional caution.

Remark 3.45. It is not hard to see that Theorem 3.44 still holds in the following
two variations of the statement. (1) H(x, a) is random and independent for
37 These additional assumptions on the simulator could be avoided, but they simplify the

proof. Furthermore, for typical Σ-protocols they are satisfied. In particular, the simulated
transcripts for hard instances are accepted by the verifier with high probability. Otherwise,
the two polynomial-time algorithms could otherwise be used to solve the hard instances,
a contradiction.
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different choices of a, but is not necessarily independent for different choices of
x. (2) The Σ-protocol Σ is replaced by Σ′, which has its challenge enlarged with
a certain number of bits that are ignored otherwise, in line with Remark 3.21,
and FS[Σ′] then uses an H with a correspondingly enlarged range.38

Proof. Let SZK be the zero-knowledge simulator given by the perfect honest-
verifier zero-knowledge property of Σ. Consider an adversary AFS against
FS[Σ], that works as follows for an arbitrary instance x /∈ L:

• Define the function fH : R → {0, 1} (where R is the set of random coins
for SZK) as

fH(ρ) =

(
1 for SZK(x; ρ)→ (a, c, z) ∧H(x||a) = c

0 otherwise.

• Use Grover’s algorithm for q steps, to try and find ρ s.t. f(ρ) = 1
• Run SZK(x; ρ)→ (a, c, z) and output (x, a||z).

Let pH1 be the fraction of random coins from R that map to 1 under fH . Note
that by the special soundness of Σ, in any accepting triple a determines c and we
thus have EH [pH1 ] = 1

|C| . By the way Grover works, after q iterations (requiring
q queries to H) the probability pH2 of finding such an input is sin2((2q+1)ΘH),
where 0 ≤ ΘH ≤ π/2 is such that sin2(ΘH) = pH1 . Now as long as Θ is not
too large to begin with (i.e. as long as the Grover search will not ‘overshoot’),
pH2 is approximately a factor q2 larger than pH1 . Our goal will be to show that
also on average over H, the improvement is at least q2. To this end we define
Hbad := {H : pH1 > sin2( π

6q+3)} and Hgood its complement. Then,

E
H
[pH2 ] = (1− α) · E

H

�
pH2 |H ∈ Hgood

�
+ α · E

H

�
pH2 |H ∈ Hbad

�

≥ (1− α) · E
H

�
pH2 |H ∈ Hgood

�

where α = PrH [H ∈ Hbad] and 1− α = PrH [H ∈ Hgood].
We first compute EHgood

�
pH2

�
. Let H ∈ Hgood. We have (2q + 1)ΘH ≤ π

3 .
Since d

dΘ sin(Θ) = cos(Θ) ≥ 1/2 for Θ ∈ [0, π3 ], and Θ ≥ sin(Θ), it follows that

sin((2q + 1) ·ΘH) ≥ sin(ΘH) +
2q ·ΘH

2
≥ (q + 1) · sin(ΘH).

38 While (1) follows by inspecting the proof, (2) holds more generically: the dishonest prover
attacking FS[Σ′] simply runs the prover attacking FS[Σ] but enlarges the output register
of the hash queries, with the corresponding state being set to be the fully mixed state in
each query, and then dismisses these additional qubits again.
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Using sin(Θ) ≥ 0 for Θ ∈ [0, π3 ], we obtain

pH2 = sin2((2q + 1) ·ΘH) ≥ (q + 1)2 · sin2(ΘH) = (q + 1)2 · pH1 .

Therefore,

E
H
[pH2 ] ≥ E

H

�
pH2 |H ∈ Hgood

�
· Pr
H
[H ∈ Hgood]

≥ (q + 1)2 · E
H

�
pH1 |H ∈ Hgood

�
· Pr
H
[H ∈ Hgood]

≥ (q + 1)2 ·
�

E
H
[pH1 ]− Pr

H
[H ∈ Hbad]

�
.

(14)

Next we bound α = PrH [H ∈ Hbad] = PrH [pH1 > sin2( π
6q+3)]. Note that

for pH1 to be large, we need that for many first messages a, H(a) must be the
unique challenge c for which there exist an accepting response. For a random
H this is unlikely to happen. Formally, we argue as follows, using the Chernoff
bound eventually.

We first define the following equivalence relation:

ρ ∼ ρ′ iff SZK(ρ) = (a, c, z) ∧ SZK(ρ
′) = (a, c′, z′) for ρ, ρ′ ∈ R.

R/∼ then denotes the set of equivalence classes [ρ] = {ρ′ ∈ R | ρ ∼ ρ′}. By the
perfect special soundness property and the assumptions on SZK, we have that a
determines c (remember that x /∈ L), and therefore fH is constant on elements
within a given equivalence class. Thus, fH : R/∼ → {0, 1}. For two distinct
equivalence classes [ρ] ̸= [ρ′], we have

Pr
H
[fH([ρ]) = 1 ∧ fH([ρ′]) = 1] = Pr

H
[fH([ρ]) = 1] · Pr

H
[fH([ρ′]) = 1] ,

since H(x||a) is chosen independently for different a. Finally, taking XH :=P
[ρ] f

H([ρ]) we have

pH1 = Pr
ρ
[fH(ρ) = 1] =

P
ρ f(ρ)

|R|

=

P
[ρ]


fH([ρ]) · |[ρ]|

�

|R| ≤
|[ρmax]| ·

P
[ρ] f

H([ρ])

|R| = XH · 2−γ

where [ρmax] is the [ρ] that maximizes |[ρ]|. It follows that

α = Pr
H
[pH1 > sin2

�
π

6q + 3

�
]
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≤ Pr
H

�
XH > sin2

�
π

6q + 3

�
· 2γ

�
≤ Pr

H

�
XH >

2γ

|C| +
2γ

(5q)3

�

where we used sin2(x) > x3 for 0 ≤ x ≤ 0.80 and π
6q+3 > 1

5q + 3

q
1
|C| for

|C| > (5q)3 in the last inequality. By definition of f , for any [ρ] we have
PrH [f(ρ) = 1] = 1

|C| , hence

E
H
[X] =

X

[ρ]

E
H
[fH([ρ])] =

X

[ρ]

Pr
H
[fH([ρ]) = 1] =

|R/∼|
|C| ≥ 2γ

|C| .

We use the following Chernoff bound:

Pr
H

�
XH > (1 + δ) · E

H

�
XH

��
<

�
eδ

(1 + δ)1+δ

�EH [XH ]
<

�
e1+δ

δ1+δ

�EH [XH ]

=
�e
δ

�EH [XH ]·(1+δ)
.

Setting δ := |C|
(5q)3

, together with the inequalities derived above this leads to

α ≤
�
e · (5q)3

|C|

� 2γ

|C|+
2γ

(5q)3

<
e2 · (5q)6

|C|2 <
1

|C| · (q2 + 1)

where we used 2γ

(5q)3
> 2 in the second to last, and |C| > (q2 + 1) · e2 · (5q)6 in

the last inequality. Plugging this bound into Equation 14, we get

E
H
[pH2 ] ≥ (q2 + 1) ·

�
p1 −

1

|C| · (q2 + 1)

�
=

q2

|C| +
1

|C| −
1

|C| =
q2

|C| .

Thus, the success probability of our adversary AFS after making q queries to
H is at least q2

|C| . ⊓⊔

The tightness of Corollary 3.20 follows from the above tightness result for
the case of Σ-protocols in a fairly straightforward manner.

Theorem 3.46. For all positive integers n and q, there exists a (2n+1)-round
PCIP Π with soundness error ϵ and challenge space C such that |C| ≥ 1/ϵ
and such that there exists a q-query dishonest prover A on FS(Π) with success
probability at least n−2nq2nϵ.

Before proving the theorem, we show how it implies the tightness of Corol-
lary 3.20.
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Corollary 3.47. The security loss in the bound in Corollary 3.20 is optimal
(i.e. matched by an attack), up to a multiplicative factor that depends on n only.

Proof. Let Π be a PCIP as shown to exist in Theorem 3.46. Let ϵΠ , and
ϵFS(Π)(q), be the soundness error of Π, and the one of its Fiat Shamir transfor-
mation against q-query adversaries, respectively. By Theorem 3.46,

ϵFS(Π)(q) ≥ n−2nq2nϵΠ. (15)

Theorem 3.20, on the other hand, yields

ϵΠ ≥
n!

(2q + n+ 1)2n
ϵFS(Π)(q)−

n!

|C| (16)

≥ n!

(2q + n+ 1)2n
ϵFS(Π)(q)− n!ϵΠ, (17)

where we used the condition on the challenge space size from Theorem 3.46 in
the last line. Rearranging terms we obtain

ϵFS(Π)(q) ≤ (2q + n+ 1)2n
�
1 +

1

n!

�
ϵΠ(q) (18)

≤ 2(n+ 3)2q2nϵΠ(q), (19)

where we have used 1 ≤ q in the last line. In summary, we have constants
c1 = n−2n and c2 = 2(n+ 3)2n such that

c1q
2nϵΠ ≤ ϵFS(Π)(q) ≤ c2q

2nϵΠ. (20)

⊓⊔

Proof (of Theorem 3.46). Let Σ̂ be a Σ-protocol for a language L fulfilling the
requirements of Theorem 3.44. Let the challenge space be denoted by Ĉ. Given
an arbitrary positive integer, we define an (2n+1)-round PCIP Π for the same
language L by means of n sequential independent executions of Σ̂ . Concretely,
the 2n+1 messages of Π are given in terms of the messages âi, ĉi and ẑi of the
i-th repetition of Σ̂ as

a1 = â1

ci = (ĉi, ri) for i = 1, ..., n

ai = (âi, ẑi−1) for i = 2, ..., n, and

z = ẑn,
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where ri is an independent random string of arbitrary (but fixed) length, which
is ignored otherwise (in line with Remark 3.21). The purpose of ri is to make the
challenge space C of Π arbitrary large, as required. The verification procedure
of Π simply checks if all the triples (âi, ĉi, ẑi) are accepted by Σ̂. By the special
soundness property of Σ̂, the soundness error of this PCIP is ϵ = |Ĉ|−n.

Using Theorem 3.44, we can attack the Fiat-Shamir transformation of Σ̂
repeatedly to devise an attack agains FS(Π): first use Theorem 3.44 to find
â1 and ẑ1, then use it again to find â2 and ẑ2, etc., having the property that
with the correctly computed challenges these form valid triples for an instance
x ̸∈ L. In each invocation of Theorem 3.44 we use a q′-query attack, which
then succeeds with probability q′2/|Ĉ|. Thus, using in total q = nq′ queries, we
succeed in breaking FS[Π] with probability q′2n/|Ĉ|n = n−2nq2nϵ, as claimed.

There are two issues we neglected in the above argument. First, we actually
employ Theorem 3.44 for attacking a variant of Σ̂ that has its challenge enlarged
(and thus is not special sound); and, second, the challenge ci is computed as

ci = H(i− 1, ..., H(1, H(0, x, â1), â2), ..., âi) ,

which is not a uniformly random function of x and âi (but only of âi). However,
by Remark 3.45, the attack from Theorem 3.44 still applies. ⊓⊔
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Section 4.1

Introduction

Background. Extractability plays an important role in cryptography. In an
extractable protocol, on a high level, an algorithm A sends messages that de-
pend on some secret s, and while the secret remains private in an honest run of
the protocol, an extractor can learn s via some form of enhanced access to A.
The probably most prominent example is that of (zero-knowledge) proofs (or
arguments) of knowledge, for which, by definition, there must exist an extractor
that manages to extract a witness from any successful yet possibly dishonest
prover. Another example are extractable commitments, which have a wide range
of applications. Hash-based extractable commitments are extremely simple to
construct and prove secure in the random-oracle model (ROM) [Pas03]. Indeed,
when the considered hash function H is modelled as a random oracle, the hash
input x for the commitment c = H(x), where x = s∥r consists of the actual
secret s and randomness r, can be extracted simply by finding a query x to the
random oracle that yielded c as an output.

The general notion of extractability comes in different flavors. The most
well-known example is extraction by rewinding. Here, the extractor is allowed to
run A several times, on the same private input and using different randomness.
This is the notion usually considered in the context of proofs/arguments of
knowledge. In some contexts, extraction via rewinding access is not possible.
For example, the UC security model prohibits the simulator to rewind the
adversary. In other occasions, rewinding may be possible but not desirable due
to a loss of efficiency, which stems from having to run A multiple times. In
comparison, so-called straightline extraction works with a single ordinary run
of A, without rewinding. Instead, the extractor is then assumed to know some
trapdoor information, or it is given enhanced control over some part of the
setting. For instance, in the above construction of an extractable commitment,
the extractor is given “read access” to A’s random-oracle queries.

Another binary criterion is whether the extraction takes place on-the-fly, i.e.,
during the run of the protocol, or after-the-fact, i.e., at the end of the execution.
For instance, in the context of proving CCA security for an encryption scheme,
to simulate decryption queries without knowing the secret key, it is necessary to
extract the plaintext for a queried ciphertext on-the-fly; otherwise, the attacker
may abort and not produce the output for which the reduction is waiting.
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The extractability of our running example of an extractable commitment
in the ROM is both, straightline and on-the-fly; we refer to this combination
as online extraction. This is what we are aiming for in this work: online ex-
tractability of (general) hash-based commitments, but now with post-quantum
security.

For post-quantum security, the ROM needs to be replaced by the quantum
random-oracle model (QROM) [BDF+11], to reflect the fact that attackers
can implement hash functions on a quantum computer. Here, adversaries have
quantum superposition access to the random oracle. Many ROM techniques fail
in the QROM due to fundamental features of quantum information, such as the
so-called no-cloning principle. In particular, it is impossible to maintain a query
transcript (a fact sometimes referred to as the recording barrier), and so one
cannot simply “search for a query x to the random oracle”, as was exploited for
the (classical) RO-security of the extractable-commitment example.

A promising step in the right direction is the compressed-oracle technique,
developed by Zhandry [Zha19a]. This technique enables to maintain some sort
of a query transcript, but now in the form of a quantum state. This state can
be inspected via quantum measurements, offering the possibility to learn some
information about the interaction history of an algorithm A and the random
oracle. However, since quantum measurements disturb the state to which they
are applied, and this disturbance is often hard to control, this inspection of
the query transcript can per-se, i.e., without additional argumentation, only be
done at the end of the execution (see the Related Work paragraph for more on
this).

Our Results. Our main contribution is the following generic extractability
result in the QROM. We consider an arbitrary quantum query algorithm A in
the QROM, which announces during its execution some classical value t that
is supposed to be equal to f(x,H(x)) for some x. Here, f is an arbitrary fixed
function, subject to that it must tie t sufficiently to x and H(x), e.g., there
must not be too many y’s with f(x, y) = t; a canonical example is the function
f(x, y) = y so that t is supposed to be t = H(x). In general, it is helpful to
think of t = f(x,H(x)) as a commitment to x. We then show that x can be
efficiently extracted with almost certainty. The extraction works online and is
by means of a simulator S that simulates the quantum random oracle, but
which additionally offers an extraction interface that produces a guess x̂ for x
when queried with t. The simulation is statistically indistiguishable from the
real quantum random oracle, and x̂ is such that whenever A outputs x with
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f(x,H(x)) = t at some later point, x̂ = x except with negligible probability,
while x̂ = ∅ (some special symbol) indicates that A will not be able to output
such an x.

The simulator S simulates the random oracle using Zhandry’s compressed-
oracle technique, and extraction is done via a suitable measurement of the
compressed oracle’s internal register. The technical core of our result is a new
bound for the operator norm ∥[O,M ]∥ of the commutator of O, the unitary
operator that describes the evolution of the compressed oracle, and of M , the
measurement that is used to extract x. This commutator bound allows us to
show that the extraction measurement disturbs the behavior of the compressed
oracle only by a negligible amount, and so can indeed be performed on-the-
fly. At first glance, our technical result has some resemblance with Lemma 39
in [Zha19a], which also features an almost-commutativity property, and, indeed,
with Lemma 4.7 we use (a reformulated version of) Lemma 39 in [Zha19a] as a
first step in our proof. However, the challenging part of the main proof consists
of lifting the almost-commutativity property of the “local” projectors Πx from
Lemma 4.7 to the “global” measurement M (Lemma 4.7).

We emphasize that even though the existence of the simulator with its ex-
traction interface is proven using the compressed-oracle technique, our pre-
sentation is in terms of a black-box simulator S with certain interfaces and
with certain promises on its behavior, abstracting away all the (mainly inter-
nal) quantum workings. This makes our generic result applicable (e.g. for the
applications discussed below) without the need to understand the underlying
quantum aspects.

A first concrete application of our generic result is in the context of so-
called commit-and-open Σ-protocols. These are (typically honest-verifier zero-
knowledge) interactive proofs of a special form, where the prover first announces
a list of commitments and is then asked to open a subset of them, chosen at
random by the verifier. We show that, when implementing the commitments
with a typical hash-based commitment scheme (like committing to s by H(s∥r)
with a random r), such Σ-protocols allow for online extraction of a witness in
the QROM, with a smaller security loss than witness extraction via rewinding.

Equipped with our extractable RO-simulator S, the idea for the above on-
line extraction is very simple: we simulate the random oracle using S and use
its extraction interface to extract the prover’s commitments from the first mes-
sage of the Σ-protocol. As we work out in detail, this procedure gives rise to
an online witness extractor that has a polynomial additive overhead in running
time compared to the considered prover, and that outputs a valid witness with
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a probability that is linear in the difference of the prover’s success probability
and the trivial cheating probability, up to an additive error. Using rewinding
techniques, on the other hand, incurs a square-root loss in success probabil-
ity classically and a cube-root loss quantumly for special-sound Σ-protocols,
and typically an even worse loss in case of weaker soundness guarantees, like
a k-th-root loss classically and a (2k + 1)-th-root loss quantumly for k-sound
protocols. Furthermore, we show that the dominating additive loss of our re-
duction is necessary in general, due to attacks on the computational binding
property of the random-oracle-based commitments. Along the way, we set up a
definitional framework for generalized special soundness notions that might be
of independent interest.

A second application of our extractable RO-simulator is a security reduc-
tion for the Fujisaki-Okamoto (FO) transformation. We offer the first complete
post-quantum security proof of the textbook FO transformation [FO99], with
concrete security bounds. Most of the prior post-quantum security proofs had
to adjust the transformation to facilitate the proof (like [HHK17]); those se-
curity proofs either consider a FO variant that employs an implicit-rejection
routine, i.e., where the decapsulation algorithm outputs a pseudo-random key
upon an invalid ciphertext rather than a rejection message, or have to resort to
an additional “key confirmation” hash [TU16] that is appended to the cipher-
tex, thus increasing the ciphertext size. The unmodified FO transformation was
analyzed in [Zha19a] and [KKPP20]; however, as we explain in detail in Sec-
tion 4.6.3, the given post-quantum security proofs are incomplete, both having
the same gap.

Beyond its theoretical relevance of showing that no adjustment is necessary
to admit a post-quantum security proof, the security of the original unmodified
FO transformation with explicit rejection in particular ensures that the conser-
vative variant with implicit rejection remains secure even when the decapsula-
tion algorithm is not implemented carefully enough and admits a side-channel
attack that reveals information on whether the submitted ciphertext is valid or
not.

The core idea of our proof for the textbook FO transformation is to use the
extractability of the RO-simulator to handle the decryption queries. Indeed,
letting f(x, y) be the encryption Encpk(x; y) of the message x under the ran-
domness y, a “commitment” t = f(x,H(x)) is then the encryption of x under
the derandomized scheme, and so the extraction interface recovers x.
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Related Work. The compressed-oracle technique has proven to be a power-
ful tool for lifting classical ROM proofs to the QROM setting. Examples are
[LZ19a; CFHL21] for quantum query complexity lower bounds and [HM21] for
space-time trade-off bounds, [CMS19] for the security of succinct arguments,
[AMRS20] for quantum-access security, and [BHH+19] for a new “double-sided”
O2H lemma in the context of the FO transformation. In these cases, the argu-
ment exploits the possibility to extract information on the interaction history
of the algorithm A and the (compressed) oracle after-the-fact, i.e., at the very
end of the run.

In addition, some tools have been developed that allow measuring (the inter-
nal state of) the compressed oracle on-the-fly, which then causes the state, and
thus the behavior of the oracle, to change. In some cases, the disturbance is sig-
nificant yet asymptotically good enough for the considered application, causing
“only” a polynomial blow-up of a negligible error term, as, e.g., in [LZ19b] for
proving the security of the Fiat-Shamir transformation. In other cases [Zha19a;
CMSZ19], it is shown for some limited settings that certain measurements do
not render the simulation of the random oracle distinguishable (except for neg-
ligible advantage). The indifferentiability result in [CMSZ19], for example, only
uses measurements that have an almost certain outcome.

In particular, [Zha19a] contains a security reduction for the Fujisaki-
Okamoto (FO) transformation that implicitly uses a measurement similar to the
one we analyze in Section 4.3, but without analyzing the disturbance it causes.
We discuss this in more detail in Section 4.6.3. The same gap exists in recent
follow-up work by Katsumata, Kwiatkowski, Pintore and Prest [KKPP20], who
follow the FO proof outline from [Zha19a].

Section 4.2

Preliminaries

For Section 4.3 and 4.4 (only), we assume some familiarity with the mathe-
matics of quantum information as well as with the compressed-oracle technique
of [Zha19a]. We refer the reader to Chapter 2 for a general introduction to both,
and summarize below the concepts that will be of particular importance.

For simplicity, we will express things in the remainder of this chapter in
terms of the inefficient variant of the compressed oracle, but we stress that all
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relevant unitaries and measurements can be efficiently computed, as is explained
in Section 2.4.

4.2.1 Mathematical Preliminaries

For a classical or quantum algorithm A, we denote by Time[A] the time com-
plexity of A (say, given by the number of gates from some universal gate set in
a circuit for A). For a function or algorithm f , we slightly abuse notation and
write Time[f ] to denote the time complexity of (an algorithm computing) f .
(The functions considered here come with an algorithm to compute them).

Let H be a finite-dimensional complex Hilbert space. We use the standard
bra-ket notation for the vectors in H and its dual space. For an operator
A ∈ L(H), we denote by ∥A∥ its operator norm, i.e., ∥A∥ = max|ψ⟩ ∥A|ψ⟩∥,
where the max is over all |ψ⟩ ∈ H with norm 1. We assume the reader
to be familiar with basic properties of these norms, like triangle inequality,
∥|φ⟩⟨ψ|∥ = ∥|φ⟩∥∥|ψ⟩∥, ∥A|φ⟩∥ ≤ ∥A∥∥|φ⟩∥, ∥AB∥ ≤ ∥A∥∥B∥, etc. Less well
known may be the inequality39

∥|φ⟩⟨ψ|− |ψ⟩⟨φ|∥ ≤ ∥|φ⟩∥∥|ψ⟩∥ . (21)

Another basic yet important property that we will exploit is the following.

Lemma 4.1. Let A and B be operators in L(H) with A†B = 0 (i.e., they have
orthogonal images) and AB† = 0 (i.e., they have orthogonal supports). Then,
∥A+B∥ ≤ max{∥A∥, ∥B∥}.

Exploiting that ∥A ⊗ B∥ = ∥A∥∥B∥, the following is a direct consequence of
Lemma 4.1.

Corollary 4.2. If A =
P

x |x⟩⟨x| ⊗ Ax, i.e., A is a controlled operator, then
∥A∥ ≤ maxx ∥Ax∥.

Definition 4.3. For operators A,B ∈ L(H), the commutator is defined as
[A,B] := AB −BA.

Some obvious properties of the commutator are:
39 It is immediate for normalized |ϕ⟩ and |ψ⟩ when expanding both vectors in an orthonormal

basis containing |φ⟩ and |ψ⟩−⟨φ|ψ⟩|φ⟩√
1−|⟨φ|ψ⟩|2

, and the general case then follows by homogeneity of

the norms.
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[B,A] = −[A,B] = [A,1−B] and [A⊗ 1, B ⊗ C] = [A,B]⊗ C , (22)

as well as

[AB,C] = A[B,C] + [A,C]B (23)

Combining the right equality in (22) with basic properties of the operator norm,
if ∥C∥ ≤ 1, e.g., if C is a unitary or a projection, we have

∥[A⊗ 1, B ⊗ C]∥ = ∥[A,B]∥∥C∥ ≤ ∥[A,B]∥ . (24)

It is common in quantum information science to write AX to emphasize that
the operator A acts on register X, i.e., on a Hilbert space HX that is labeled
by the letter/symbol X. It is then understood that when applied to registers
X and Y , say, AX acts as A on register X and as identity 1 on register Y ,
i.e., AX is identified with AX ⊗ 1Y . Property (24) would then e.g. be written
as ∥[AX , BX ⊗ CY ]∥ ≤ ∥[AX , BX ]∥. In this chapter, we will write or not write
these subscripts emphasizing the register(s) at our convenience; typically we
write them when the argument crucially depends on the registers, and we may
omit them otherwise.

In case of a hybrid classical-quantum state, consisting of a randomized clas-
sical value x that follows a distribution p and of a quantum register W with a
state ρxW that depends on x, we write [x,W ] =

P
x p(x)|x⟩⟨x|⊗ρxW .40 When the

distribution p and the density operators ρxW are implicitly given by a game (or
experiment) G then we may write [x,W ]G , in particular when considering and
comparing different such games. For instance, we write δ


[x,W ]G , [x,W ]G′

�
for

the trace distance of the respective density matrices in game G and in game G ′.

40 In this equality and at other occasions, we use the same letter, here x, for the considered
random variable as well as for a particular value.
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Section 4.3

Main Technical Result: A Commutator Bound

Our main technical result is a bound on the operator norm of the commu-
tator [OXYD,MDP ] of the unitary OXYD, which describes the evolution of
the compressed oracle, and the (purified) measurement MDP . Informally, this
measurement checks if there is a pair (x, y) in the database satisfying a given
relation. If yes, it outputs (the smallest such) x, otherwise it outputs ∅. A small
bound on this commutator means that performing this measurement during
the runtime of an oracle algorithm A interacting with a (compressed) random
oracle, has little effect.

4.3.1 Setup and the Technical Statement

Throughout this section, we consider an arbitrary but fixed relation R ⊂ X ×
{0, 1}n. A crucial parameter of the relation R is the number of y’s that fulfill
the relation together with x, maximized over all possible x ∈ X :

ΓR := max
x∈X

���y ∈ {0, 1}n
��(x, y) ∈ R

	�� . (25)

Given the relation R, we consider the following projectors:

Πx
Dx

:=
X

y s.t.
(x,y)∈R

|y⟩⟨y|Dx and Π∅
D := 1D −

X

x∈X
Πx

Dx
=
O

x∈X
Π̄x

Dx
(26)

with Π̄x
Dx

:= 1Dx −Πx
Dx

. Informally, Πx
Dx

checks whether register Dx contains
a value y ̸= ⊥ such that (x, y) ∈ R. We then define the measurement M = MR

to be given by the projectors

Σx :=
O

x′<x

Π̄x′
Dx′

⊗Πx
Dx

and Σ∅ := 1−
X

x′
Σx′

=
O

x′
Π̄x′

Dx′
= Π∅ (27)

i where x ranges over all x ∈ X . Informally, a measurement outcome x means
that register Dx is the first that contains a value y such that (x, y) ∈ R;
outcome ∅ means that no register contains such a value. For technical reasons,
we consider the purified measurement MDP = MR

DP ∈ L(HD ⊗HR) given by
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the unitary41

MDP :=
X

x∈X∪{∅}
Σx ⊗ Xx : |φ⟩D|w⟩P 7→

X

x∈X∪{∅}
Σx|φ⟩D|w + x⟩P . (28)

The following main technical result is a bound on the norm of the
commutator[OXYD,MDP ].

Theorem 4.4. For any relation R ⊂ X × {0, 1}n and ΓR as defined in Equa-
tion (25), the purified measurement MDP defined in Equation (28) almost com-
mutes with the oracle unitary OXYD:



 [OXYD,MDP ]


 ≤ 8 · 2−n/2

p
2ΓR .

We note that Lemma 8 in [CMS19] (with the subsequent discussion there)
also provides a bound on the norm of a commutator involving OXYD; how-
ever, there are various differences that make the two bounds incomparable.
E.g., we consider a specific measurement whereas Lemma 8 in [CMS19] is for
a rather general projector. See further down for a comparison with Lemma 39
in [Zha19a].

Corollary 4.5. For any state vector |ψ⟩ ∈ HWXYDP , with W an arbi-
trary additional register, the state vectors|ψ′⟩ := OXYDMDP |ψ⟩ and |ψ′′⟩ :=
MDPOXYD|ψ⟩ satisfy

δ

|ψ′⟩⟨ψ′|, |ψ′′⟩⟨ψ′′|

�
≤ 8 · 2−n/2

p
2ΓR .

The same holds for mixed states ρ′ := OXYDMDPρM
†
DPO

†
XYD and ρ′′ :=

MDPOXYDρO
†
XYDM

†
DP .

Proof. By elementary properties and applying Theorem 4.4, we have that


|ψ′⟩ − |ψ′′⟩



 =


(OXYDMDP −MDPOXYD)|ψ⟩



 ≤


[OXYD,MDP ]





≤ 8 · 2−n/2
p

2ΓR ,

and the claim on the trace distance then follows from (1). The claim for
mixed states follows from purification. ⊓⊔
41 Both in Xx and in w + x we understand x ∈ X ∪ {∅} to be encoded as an element in

Z/(|X |+1)Z, dim(HP ) = d := |X |+ 1, and X ∈ L(HP ) is the generalized Pauli of order d
that maps |w⟩ to |w + 1⟩.
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4.3.2 The Proof

We prove the Theorem 4.4 by means of the following two lemmas.

Lemma 4.6. Let F and Ox
Y Dx

be the unitaries introduced in Section ??, and
let Πx

Dx
and Π∅

D be as in (26). Set Γx :=
���y ∈ {0, 1}n

��(x, y) ∈ R
	��. Then



�FDx ,Π
x
Dx

�

 ≤ 2−n/2
p
2Γx , as well as



�Ox
Y Dx

,Πx
Dx

�

 ≤ 2 · 2−n/2
p
2Γx and



�Ox
Y Dx

,Π∅
D

�

 ≤ 2 · 2−n/2
p
2Γx .

The bound on ∥[F,Πx]∥ can be considered a compact reformulation of (a vari-
ant of) Lemma 39 in [Zha19a]. We state it in this form and (re-)prove it for
convenience and completeness.

Proof (Lemma 4.6). Recalling from (2) that F |y⟩ = |y⟩+ 2−n/2|δ⟩ with |δ⟩ :=
|⊥⟩ − |0̂⟩, we have

[F, |y⟩⟨y|] = F |y⟩⟨y|− |y⟩⟨y|F = 2−n/2|δ⟩⟨y|− 2−n/2|y⟩⟨δ| .

From this, it follows that

[F,Πx] =
X

y∈{0,1}n
(x,y)∈R

[F, |y⟩⟨y|] ≤ 2−n/2 |δ⟩
X

y∈{0,1}n
(x,y)∈R

⟨y|− 2−n/2
X

y∈{0,1}n
(x,y)∈R

|y⟩⟨δ|

and thus, using (21), that

∥[F,Πx]∥ ≤ 2−n/2 ∥|δ⟩∥





X

y∈{0,1}n
(x,y)∈R

⟨y|




 ≤ 2−n/2

√
2
p
Γx .

For the second bound, let CY Dx = CNOT with CNOT as in (3), with the
understanding that Dx is the control register and Y the target. Recall from (3)
that Ox

Y Dx
= FDxCY DxFDx . Thus, using (23) twice and omitting the registers,

we obtain

[Ox,Πx] = F [CF,Πx] + [F,Πx]CF = FC[F,Πx] + F [C,Πx]F + [F,Πx]CF .

Finally, we notice that [CY Dx ,Π
x
Dx

] = 0, since projections on the control regis-
ter of a CNOT commute with the CNOT. The claimed bound now follows from
the derived bound on [F,Πx] together with Equation (24).
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The third bound follows by recalling that Π∅
D =

N
x′ Π̄x′

Dx′
is a tensor-

product for which Ox
Y Dx

acts trivially on all the components except for the
component Π̄x

Dx
, so with Equation (24) we obtain,

∥[Ox
Y Dx

,Π∅
D]∥ ≤ ∥[Ox

Y Dx
, Π̄x

Dx
]∥ = ∥[Ox

Y Dx
,Πx

Dx
]∥ ,

which completes the proof. ⊓⊔
The conceptually new and technically challenging ingredient to the proof of

Theorem 4.4 is Lemma 4.7 below.42

Lemma 4.7. The purified measurement MDP defined in Equation (28) satis-
fies



[FDx ,MDP ]


 ≤ 3



[FDx ,Π
x
D]


+



[FDx ,Π
∅
D]


 and



[Ox
Y Dx

,MDP ]


 ≤ 3



[Ox
Y Dx

,Πx
D]


+



[Ox
Y Dx

,Π∅
D]


 .

Proof. We do the proof for the second claim. The first is proven exactly the
same way: the sole property we exploit from Ox

Y Dx
is that it acts only on the

Dx register within D, which holds for FDx as well. Let

∆̄ξ :=
O

ξ′<ξ

Π̄ξ′
Dξ′

be the projection that accepts if no register Dξ′ with ξ′ < ξ contains a value y′

with (ξ′, y′) ∈ R, and let ∆ξ be the complement. We then have, using that Πξ

and ∆̄ξ act on disjoint registers,

Σξ = ∆̄ξ ⊗Πξ = Πξ∆̄ξ = ∆̄ξΠξ . (29)

We also observe that, with respect to the Loewner order, ∆̄ξ′ ≥ ∆̄ξ for ξ′ < ξ.
Taking it as understood that Ox

Y Dx
acts on registers Y and Dx, we can write

[Ox,MDP ] =
X

ξ

[Ox,Σξ]⊗ Xξ + [Ox,Σ∅]⊗ X∅ . (30)

42 The challenging aspect of Lemma 4.7 is that MDP is made up of an exponential number
of projectors Πx, and thus the obvious approach of using triangle inequality leads to an
exponential blow-up of the error term. Naively, one might hope to avoid the exponen-
tial blow-up (at the cost of introducing a blow-up linear in the number of prior queries)
by using the efficient representation of the compressed oracle (which is discussed in Sec-
tion 2.4); however, the two representations are isometrically equivalent, and so switching
the representation has no effect in that respect.
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Exploiting basic properties of the operator norm and recalling that Σ∅ = Π∅
D,

we see that the norm of the last term is bounded by ∥[Ox,Σ∅]∥ = ∥[Ox,Π∅]∥.
To deal with the sum in (30), we use 1 = ∆ξ + ∆̄ξ to further decompose

[Ox,Σξ] = ∆̄ξ[Ox,Σξ]∆̄ξ + ∆̄ξOx,Σξ]∆ξ +∆ξ[Ox,Σξ]∆̄ξ +∆ξ[Ox,Σξ]∆ξ .
(31)

We now analyze the four different terms. For the first one, using (29) we see
that

∆̄ξ[Ox,Σξ]∆̄ξ = ∆̄ξ

OxΣξ−ΣξOx

�
∆̄ξ

= ∆̄ξOxΠξ∆̄ξ−∆̄ξΠξOx∆̄ξ = ∆̄ξ[Ox,Πξ]∆̄ξ ,

which vanishes for ξ ̸= x, since then Ox and Πξ act on different registers and
thus commute. For ξ = x, its norm is upper bounded by ∥[Ox,Πx]∥.

We now consider the second term; the third one can be treated the same way
by symmetry, and the fourth one vanishes, as will become clear immediately
from below. Using (29) and ∆̄ξ∆ξ = 0, so that ∆̄ξΣξ = 0, we have

∆̄ξ[Ox,Σξ]∆ξ = ∆̄ξ

OxΣξ −ΣξOx

�
∆ξ = ΣξOx∆ξ =: Nξ . (32)

Looking at (30), we want to control the norm of the sum N :=
P

ξ Nξ ⊗ Xξ.
To this end, we show that Nξ and Nξ′ have orthogonal images and orthogonal
support, i.e., N †

ξ′Nξ = 0 = Nξ′N
†
ξ , for all ξ ̸= ξ′. We first observe that if x ≥ ξ

then Ox commutes with ∆ξ, since they act on different registers then, and thus

Nξ = ΣξOx∆ξ = Σξ∆ξOx = Πξ∆̄ξ∆ξOx = 0 ,

exploiting once more that ∆̄ξ∆ξ = 0. Therefore, we only need to consider
Nξ, Nξ′ for ξ, ξ′ > x (see Figure 4.1 top left), where we may assume ξ > ξ ′. For
the orthogonality of the images, we observe that

Πξ′∆̄ξ = 0 (33)

by definition of ∆̄ξ as a tensor product with Π̄ξ′ being one of the components.
Therefore,

(Σξ′)†Σξ = Σξ′Σξ = ∆̄ξ′Πξ′∆̄ξΠξ = 0 ,

and N †
ξ′Nξ = 0 follows directly (see also Figure 4.1 top right). For the orthogo-

nality of the supports, we recall that ∆̄ξ′ ≥ ∆̄ξ, and thus ∆ξ′ ≤ ∆ξ, from which
it follows that ∆ξ∆ξ′ = ∆ξ′ . Nξ′N

†
ξ = 0 then follows by exploiting (33) again

(see Figure 4.1 bottom).
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Πξ

∆ξ ∆̄ξ

Ox

Σξ

Πξ

∆ξ ∆̄ξ

Πξ′

∆̄ξ′ ∆ξ′Ox Ox†

Πξ

∆̄ξ ∆ξ

Πξ′

∆ξ′ ∆̄ξ′Ox† Ox

=

Πξ

∆̄ξ

Πξ′

∆ξ′ ∆̄ξ′Ox† Ox

Fig. 4.1. The operators Nξ (top left), N †
ξ′Nξ (top right), and Nξ′N

†
ξ (bottom), for x < ξ′ < ξ.

These orthogonality properties for the images and supports of the Nξ im-
mediately extend to Nξ ⊗Xξ, so we have

∥N∥ ≤ max
ξ>x

∥Nξ ⊗ Xξ∥ ≤ max
ξ>x

∥Nξ∥

by Lemma 4.1. Recall from (32) that Nξ = ∆̄ξ[Σξ, Ox]∆ξ. Furthermore, we
exploit that, by definition, Σξ is in tensor-product form and Ox acts trivially
on all components in this tensor product except for the component Π̄x, so that
[Σξ, Ox] = [Π̄x, Ox] by property (24). Thus,

∥Nξ∥ ≤ ∥[Σξ, Ox]∥ = ∥[Π̄x, Ox]∥ = ∥[Πx, Ox]∥ .

Using the triangle inequality with respect to the sum versus the last term in
(30), and another triangle inequality with respect to the decoimposition (31),
we obtain the claimed inequality. ⊓⊔

The proof of Theorem 4.4 is now an easy consequence.

Proof (of Theorem 4.4). Since OXYD is a control unitary OXYD =
P

x |x⟩⟨x|⊗
Ox

Y Dx
, controlled by |x⟩, while MDP does not act on register X, it follows that



[OXYD,MDP ]


 ≤ max

x



[Ox
Y Dx

,MDP ]


 .

The claim of the theorem now follows by combining Lemma 4.7 with Lemma 4.6.
⊓⊔
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4.3.3 A First Immediate Application

As an immediate application of the commutator bound of Theorem 4.4, we can
easily derive the following generic query-complexity bound for finding x with
(x,H(x)) ∈ R and ΓR as defined in Equation (25).

Proposition 4.8. For any algorithm A that makes q queries to the random
oracle RO,

Pr
x←ARO

�
x,RO(x)

�
∈ R

�
≤ 152(q + 1)2ΓR/2

n . (34)

Proof. Consider the modified algorithm A′ that runs A to obtain output x,
makes a query to obtain RO(x) and outputs (x,RO(x)). By Lemma 5 in
[Zha19a], we have that43

r
Pr

x←A′H
[(x,RO(x)) ∈ R] ≤

q
Pr

x′←GR
[x′ ̸= ∅ ] + 2−n/2, (35)

where GR is the following procedure/game: (1) run A′ using the compressed
oracle, and (2) apply the measurement MR to obtain x′ ∈ X ∪ {∅}, which is
the same as preparing a register P , applying MDP = MR

DP , and measuring P .
In other words, writing |ψ⟩WXY for the initial state of A′ and VWXY for

the unitary applied between any two queries of A′(which we may assume to be
fixed without loss of generality), and setting UWXYD := VWXY OXYD, ΠP :=
1P − |∅⟩⟨∅|P and |Ψ⟩ := |ψ⟩WXY ⊗ |⊥⟩⊗|X |

D ⊗ |0⟩P , we have, omitting register
subscripts,

p
Pr [x′ ̸= ∅ ]

=


ΠMU q+1|Ψ⟩





≤
q+1X

i=1



ΠU i−1[M,U ]U q+1−i|Ψ⟩


+



ΠU q+1M |Ψ⟩




≤ (q + 1)


[MDP , OXYD]



+


ΠPMDP |Ψ⟩





= (q + 1)


[MDP , OXYD]



 ≤ 8 · 2−n/2(q + 1)
p
2ΓR ,

where the last equation exploits that ΠPMDP applied to |⊥⟩⊗|X |
D ⊗|0⟩P vanishes,

and the final inequality is by Theorem 4.4. Observing (8
√
2+1)2 = 129+16

√
2 ≈

151.6 finishes the proof. ⊓⊔
43 Lemma 5 in [Zha19a] applies to an algorithm A that outputs both x and what is supposed

to be its hash value; this is why we need to do this additional query.
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Applied to R = X × {0n}, where ΓR = 1, we recover the famous lower bound
for search in a random function. In essence, our commutator bound replaces the
“progress-measure” argument in the search-lower-bound proof from [Zha19a].

Corollary 4.9. For any algorithm A that makes q queries to the random oracle
RO,

Pr
x←ARO

[RO(x) = 0n] ≤ 152(q + 1)2/2n. (36)

Section 4.4

Extraction of Random-Oracle Based Commitments

Throughout this Section 4.4, let f : X ×Y → T be an arbitrary fixed function
with Y = {0, 1}n. For a hash function H : X → Y , which will then be modelled
as a random oracle RO, we will think and sometimes speak of f(x,H(x)) as a
commitment of x (though we do not require it to be a commitment scheme in
the strict sense). Typical examples are f(x, y) = y and f(x, y) = Encpk(x; y),
where the latter is the encryption of x under public key pk with randomness y.

4.4.1 Informal Problem Description

Consider a query algorithm ARO in the random oracle model, which, during
the course of its run, announces some t ∈ T . This t is supposed to be t =
f(x,RO(x)) for some x, and, indeed, ARO may possibly reveal x later on, i.e.,
open the commitment. Intuitively, in order for the required relation between x
and t to hold, we expect that ARO first has to query RO on x and only then
can output t; thus, one may hope to be able to extract x from RO early on,
i.e., at the time ARO announces t.

This is clearly true when A is restricted to classical queries, simply by check-
ing all the queries made so far. This observation was first made and utilized
by Pass [Pas03] and only requires looking at the query transcript (it can be
done in the non-programmable ROM). As the extractor does not change the
course of the experiment, it is in particular also suitable in situations where it
is necessary to extract an opening on the fly, i.e., while guaranteeing that A still
proceeds to produce its output (e.g. for multiple-committer parallel extraction
[ABG+20]).
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In the setting considered here, ARO may query the random oracle in super-
position over various choices of x, making it impossible to maintain a classical
query transcript. On the positive side, since the output t is required to be clas-
sical, ARO has to perform a measurement before announcing t, enforcing such
a superposition to collapse.44 We show here that early extraction of x is indeed
possible in this quantum setting as well.

Note that if the goal is to extract the same x as A will (potentially) output,
which is what we aim for, then we must naturally assume that it is hard for A
to find x ̸= x′ that are both consistent with the same t, i.e., we must assume
the commitment to be binding. Formally, for the upcoming discussion in this
section to be meaningful, we will think of Γ (f) and Γ ′(f), defined as follows,
to be small compared to |Y| = 2n. When f is fixed, we simply write Γ and Γ ′.

Definition 4.10. For f : X × {0, 1}n → T , we define

Γ (f) := max
x,t

|{y | f(x, y) = t}| and Γ ′(f) := max
x̸=x′,y′

|{y | f(x, y) = f(x′, y′)}| .

For the example f(x, y) = y, we have Γ (f) = 1 = Γ ′(f). For the example
f(x, y) = Encpk(x; y), they both depend on the choice of the encryption scheme
but typically are small, e.g. Γ (f) = 1 if Enc is injective as a function of the
randomness y and Γ ′(f) = 0 if there are no decryption errors.

Remark 4.11. We note that the ratio Γ (f)/2n remains unaffected when n is
increased, i.e., if ñ ≥ n and f̃ : X×{0, 1}ñ → T is given by f̃(x, y∥y′) := f(x, y)
for all x ∈ X , y ∈ {0, 1}n and y′ ∈ {0, 1}ñ−n, then Γ (f̃)/2ñ = Γ (f)/2n, because
the additional ñ−n bits of y′ do not affect the conditions on f̃ in Definition 4.10,
so both numerator and denominator of the fraction get multiplied by 2ñ−n. The
same holds for Γ ′(f)/2n.

4.4.2 The Extractable RO-Simulator S

Towards formalizing the above goal, we introduce a simulator S that replaces
RO and tries to extract x early on, right after A announces t. In more de-
tail, S acts as a black-box oracle with two interfaces, the RO-interface S.RO
providing access to the simulated random oracle, and the extraction interface
S.E providing the functionality to extract x early on (see Figure 4.3, left). In
principle, both interfaces can be accessed quantumly, i.e., in superposition over
different classical inputs, but in our applications we only use classical access to
44 We can also think of this measurement being done by the interface that receives t.
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S.E. We stress that S is per-se stateful and thus may change its behavior from
query to query.

Formally, the considered simulator S is defined to work as follows. It sim-
ulates the random oracle and answers queries to S.RO by means of the com-
pressed oracle. For the S.E interface, upon a classical input t ∈ T , S applies the
measurement Mt := MRt from (27) for the relation Rt := {(x, y) | f(x, y) = t}
to obtain x̂ ∈ X ∪ {∅}, which it then outputs (see Figure 4.2). In case of a
quantum query to S.E, the above is performed coherently: given the query reg-
isters TP , the unitary

P
t |t⟩⟨t|T ⊗MRt

DP is applied to TPD, and registers TP
are then returned.

The extractable RO-oracle S:

Initialization: S prepares its internal register D to be in state |⊥⟩D :=
N

x |⊥⟩Dx .
S.RO-query: Upon a (quantum) RO-query, with query registers XY , S applies OXY D to

registers XYD.
S.E-query: Upon a classical extraction-query with input t, S applies Mt to D and returns

the outcome x̂.

Fig. 4.2. The (inefficient version of the) simulator S, restricted to classical extraction queries.

We note that, as described here, the simulator S is inefficient, having to
maintain an exponential number of qubits; however, using the sparse represen-
tation of the internal state D, as discussed in Section 2.4, S can well be made
efficient without affecting its query-behavior (see Theorem 4.12 for details).

The following statement captures the core properties of S. We refer to two
subsequent queries as being independent if they can in principle be performed
in either order, i.e., if the input to one query does not depend on the output of
the other. More formally, e.g., two S.RO queries are independent if they can
be captured by first preparing the two in-/output registers XY and X ′Y ′, and
then doing the two respective queries with XY and X ′Y ′. The commutativity
claim then means that the order does not matter. Furthermore, whenever we
speak of a classical query (to S.RO or to S.E), we consider the obvious classical
variant of the considered query, with a classical input and a classical response.
Finally, the almost commutativity claims are in terms of the trace distance of
the (possibly quantum) output of any algorithm interacting with S arbitrarily
and doing the two considered independent queries in one or the other order.

Theorem 4.12. The extractable RO-simulator S constructed above, with in-
terfaces S.RO and S.E, satisfies the following properties.
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1. If S.E is unused, S is perfectly indistinguishable from the random oracle
RO.

2.a Any two subsequent independent queries to S.RO commute. In particular,
two subsequent classical S.RO-queries with the same input x give identical
responses.

2.b Any two subsequent independent queries to S.E commute. In particular,
two subsequent classical S.E-queries with the same input t give identical
responses.

2.c Any two subsequent independent queries to S.E and S.RO 8
p
2Γ (f)/2n-

almost-commute.

3.a Any classical query S.RO(x) is idempotent.45

3.b Any classical query S.E(t) is idempotent.

4.a If x̂ = S.E(t) and ĥ = S.RO(x̂) are two subsequent classical queries then

Pr[f(x̂, ĥ) ̸= t ∧ x̂ ̸= ∅] ≤ Pr[f(x̂, ĥ) ̸= t | x̂ ̸= ∅] ≤ 2 · 2−nΓ (f) (37)

4.b If h = S.RO(x) and x̂ = S.E(f(x, h)) are two subsequent classical queries
such that no prior query to S.E has been made, then

Pr[x̂ = ∅] ≤ 2 · 2−n. (38)

Furthermore, the total runtime of S, when implemented using the sparse repre-
sentation of the compressed oracle described in Section 2.4, is bounded as

TS = O

qRO · qE · Time[f ] + q2RO

�
,

where qE and qRO are the number of queries to S.E and S.RO, respectively.

Proof. All the properties follow rather directly by construction of S. Indeed,
without S.E-queries, S is simply the compressed oracle, known to be perfectly
indistinguishable from the random oracle, confirming 1. Property 2.a follows
from the fact that the unitaries OXYD and OX′Y ′D, acting on the same register
D but on distinct query registers, are both controlled unitaries with control
register D, conjugated by a fixed unitary (F⊗|X |). They thus commute. For
2.b, the claim follows from the fact that the unitaries M t

DP and M t′
DP ′ com-

mute, as they are both controlled unitaries with control register D. 2.c is a
direct consequence of our main technical result Theorem 4.4 (in the form of
45 I.e., applying it twice in a row has the same effect on the state of S as applying it once.
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Corollary 4.5). 3.a follows from the fact that a classical S.RO query with input
x acts as a projective measurement on register Dx, which is, as any projective
measurement, idempotent. Thus, so is the measurement Mt, confirming 3.b.

To prove 4.a, consider the state ρDx̂
of register Dx̂ after the measurement

Mt that is performed by the extraction query x̂ = S.E(t), assuming x̂ ̸= ∅. Let
|ψ⟩ be a purification of ρDx̂

. By definition of Mt, it holds that Π x̂
Dx̂

|ψ⟩ = |ψ⟩.
Then, understanding that all operators act on register Dx̂, by definition of Π̄ x̂

the probability of interest is bounded as46

Pr[f(x̂, ĥ) ̸= t | x̂ ̸= ∅] ≤


Π̄ x̂F |ψ⟩



2 =


Π̄ x̂FΠ x̂|ψ⟩



2 ≤


Π̄ x̂FΠ x̂



2

≤


[F,Π x̂]



2 ,

where the last inequality exploits that Π̄ x̂Π x̂ = 0. The claim now follows from
Lemma 4.6.

For 4.b, we first observe that, given that there were no prior extraction
queries, the state of Dx before the h = S.RO(x) query has no overlap with
|0̂⟩, and thus the state after the query is F |h⟩ (see the discussion above Equa-
tion (4)). For the purpose of the argument, instead of applying the measurement
Mf(x,h) to answer the S.E(f(x, h)) query, we may equivalently consider a mea-
surement in the basis {|y⟩}, and then set x̂ to be the smallest element X so
that f(x̂, yx̂) = t := f(x, h), with x̂ = ∅ if no such element exists. Then,

Pr[x̂ ̸= ∅] = Pr[∃ ξ : f(ξ, yξ) = t] ≥ Pr[f(x, yx) = t] ≥ Pr[yx = h]

= |⟨h|F |h⟩|2 ≥ 1− 2 · 2−n

where the last two (in)equalities are by Equation (4).
⊓⊔

4.4.3 Two More Properties of S

On top of the above basic features of our extractable RO-simulator S, we show
the following two additional, more technical, properties, which in essence cap-
ture that the extraction interface cannot be used to bypass query hardness
results.

The first property is easiest to understand in the context of the example
f(x, y) = y, where S.E(t) tries to extract a hash-preimage of t, and where
46 The first inequality is an artefact of the |⊥⟩⟨⊥|-term in Π̄ x̂ contributing to the probability

of ĥ = 0, as discussed in Section 2.4.
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S
RO E

... ...

A
...

t

S
RO E

t

x̂

A
...

t, x

S
RO E

x

h
t

x̂

Fig. 4.3. The extractable RO-simulator S, with its S.RO and S.E interfaces, distinguished
here by queries from the left and right (left), and the games considered in Proposition 4.13
(middle) and 4.14 (right) for ℓ = 1. Waved arrows denote quantum queries, straight arrows
denote classical queries.

the relations R and R′ in Proposition 4.13 below then coincide. In this case,
recall from Proposition 4.8 that, informally, if ΓR is small then it is hard to find
x ∈ X so that t := RO(x) satisfies (x, t) ∈ R. The statement below ensures
that this hardness cannot be bypassed by first selecting a “good” hash value t
and then trying to extract a preimage by means of S.E (Figure 4.3, middle).
For instance, setting t := t◦ for a given target t◦ and extracting x̂ := S.E(t),
we cannot hope for x̂ to satisfy S.RO(x̂) = t; unless there was a prior query to
S.RO with response t◦, the extraction will provide x̂ = ∅ most likely.

Proposition 4.13. Let R′ ⊆ X×T be a relation. Consider a query algorithm A
that makes q queries to the S.RO interface of S but no query to S.E, outputting
some t ∈ T ℓ. For each i, let x̂i then be obtained by making an additional query
to S.E on input ti (see Figure 4.3, middle). Then

Pr
t←AS.RO

x̂i←S.E(ti)

[ ∃ i : (x̂i, ti) ∈ R′] ≤ 128 · q2ΓR/2
n ,

where R ⊆ X × Y is the relation (x, y) ∈ R ⇔ (x, f(x, y)) ∈ R′ and ΓR as
in (25).

Proof. The considered experiment is like the experiment GR in the proof of
Proposition 4.8, the only difference being that in GR the measurement MR

is applied to register D to obtain x′ (see Figure 4.4b), while here we have ℓ
measurements Mti that are applied to obtain x̂i (see Figure 4.4a). Since all
measurements are defined by means of projections that are diagonal in the
same basis {|y⟩} with |y⟩ ranging over y ∈ (Y ∪ {⊥})X , we may equivalently
measure D in that basis to obtain y (see Figure 4.4c), and let x̂i be minimal so
that f(x̂i, yx̂i

) = ti (and x̂i = ∅ if no such value exists), and let x′ be minimal
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so that (x′, yx′) ∈ R (and x′ = ∅ if no such value exists). By the respective
definitions of Mt

i and MR, both pairs of random variables (x̂, t) and (x′, t)
then have the same distributions as in the respective original two games. But
now, we can consider their joint distribution and argue that

Pr[ ∃ i : (x̂i, ti) ∈ R′] = Pr[ ∃ i : (x̂i, f(x̂i, yx̂i
)) ∈ R′]

= Pr[ ∃ i : (x̂i, yx̂i
) ∈ R] ≤ Pr[ ∃x : (x, yx) ∈ R] = Pr[x′ ̸= ∅] .

The bound on Pr[x′ ̸= ∅] from the proof of Proposition 4.8 concludes the proof.
⊓⊔

(a) D

O

... Mt x̂

X

A0

...

AqY ...

... t • t

(b) ... MR x′

...

Aq...

... t

(c) ... y ; x̂, x′

...

Aq...

... t

Fig. 4.4. Quantum circuit diagrams for the experiments in the proof of Proposition 4.13 for
the case ℓ = 1.

In a somewhat similar spirit, the following ensures that if it is hard in the
QROM to find x and x′ with f(x,RO(x)) = f(x′, RO(x′)) then this hardness
cannot be bypassed by, say, first choosing x, querying h = S.RO(x), computing
t := f(x, h), and then extracting x̂ := S.E(t). The latter will most likely
give x̂ = x, except, intuitively, if S.RO has additionally been queried on a
colliding x′.

Proposition 4.14. Consider a query algorithm A that makes q queries to
S.RO but no query to S.E, outputting some t ∈ T and x ∈ X . Let h then
be obtained by making an additional query to S.RO on input x, and x̂ by mak-

129



4. Online Extractability

ing an additional query to S.E on input t (see Figure 4.3, right). Then

Pr
t, x ← AS.RO

h ← S.RO(x)
x̂ ← S.E(t)

[x̂ ̸= x ∧ f(x, h) = t] ≤ 40e2(q + 2)3Γ ′(f) + 2

2n
.

More generally, if A outputs ℓ-tuples t ∈ T ℓ and x ∈ X ℓ, and h ∈ Yℓ is obtained
by querying S.RO component-wise on x, and x̂ ∈ (X ∪ {∅})ℓ by querying S.E
component-wise on t, then

Pr
t,x ← AS.RO

h ← S.RO(x)
x̂ ← S.E(t)

[∃ i : x̂i ̸= xi ∧ f(xi, hi) = t] ≤ 40e2(q + ℓ+ 1)3Γ ′(f) + 2

2n
.

The proof is similar in spirit to the proof of Proposition 4.13, but relying on
the hardness of collision finding (Lemma 4.15) rather than on (the proof of)
Proposition 4.8. The following can be easily extracted from the derivation of
the general collision-finding bound Theorem 5.29 from [CFHL21]. It expresses
that, for any algorithm with bounded query complexity, it is unlikely that one
encounters a collision within the superposition oracle.

Lemma 4.15. Let f : X × {0, 1}n → T , and let Πcol be the projection into
the space spanned by |y⟩ ∈ HD for y = (yx)x∈X ∈ (Y ∪ {⊥})X such that there
exist x ̸= x′ with yx, yx′ ̸= ⊥ and f(x, yx) = f(x′, yx′). Then, for any oracle
algorithm A with query complexity q, at the end of the execution the state ρ of
the compressed oracle is such that

tr(Πcolρ) ≤ 40e2q2(q + 1)Γ ′(f)/2n ,

where Γ ′(f) = max
x̸=x′,y′

|{y | f(x, y) = f(x′, y′)}| and e ≈ 2.718 is Euler’s number.

Proof (of Proposition 4.14). Circuit (a) in Figure 4.5 defines (the distribution
of) the considered variables x, x̂, h, t. We also consider the circuit that applies
the measurement {Πcol,Π¬col} instead of Mt, where Πcol is as in Lemma 4.15
and Π¬col = 1 − Πcol (Figure 4.5b). Since the projections defining either
measurement are all diagonal in the basis {|y⟩}, we may equivalently measure
register D in that basis (Figure 4.5c), and then set x̂ to be the smallest element
X so that f(x̂, yx̂) = t (with x̂ = ∅ if no such element exists) and consider
the event col given by ∃x′ ̸= x′′ : f(x′, yx′) = f(x′′, yx′′). By the respective
definitions of Mt and Πcol, both, the variables x̂, x, h, t and the event and
variable col and x, h, t then have the same distributions as in the respective
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original two games. But now, we can consider their joint distribution and argue
that

Pr[x̂ ̸= x ∧ f(x, h) = t] ≤ Pr[x̂ ̸= x | f(x, h) = t ∧ ¬col] + Pr[col] .

We now observe that right before the considered measurement, by definition of
O, the state of D is supported by vectors F |y⟩ with yx = h (here we use the as-
sumption that no previous extraction queries have been made, see Preliminaries
for further detail), and so the measurement outcome y satisfies yx = h with
probability 1− 2 · 2−n by Equation (4). Therefore, the first term is bounded by
2 · 2−n by definition of col and x̂, while Pr[col] is bounded by 40e2(q+2)3Γ ′(f)+2

2n ,
using Lemma 4.15. ⊓⊔

(a) D

O

...

O

Mt x̂

X

A0

...

Aq

x x

Y ... 0 h

... t • t

(b) ...

O

Πcol

... x

... h

... t

(c) ...

O

y ; x̂

... x

... h

... t

Fig. 4.5. Quantum circuit diagrams for the experiments in the proof of Proposition 4.14.

Remark 4.16. The claim of Proposition 4.14 stays true when the queries
S.RO(xi) are not performed as additional queries after the run of A but are
explicitly among the q queries that are performed by A during its run. One way
to see this is to use 2.a and 3.a of Theorem 4.12 to re-do these queries once
more after the run of A, which does not affect the subsequent S.E-queries.
Alternatively, we observe that the proof does not exploit that these queries are
performed at the end, which additionally shows that in this case the ℓ-term on
the right hand side of the bound vanishes, i.e., scales as (q+1)3 rather than as
(q + ℓ+ 1)3 .
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4.4.4 Early Extraction

We consider here the following concrete setting. Let A be a two-round query
algorithm, interacting with the random oracle RO and behaving as follows. At
the end of the first round, ARO outputs some t ∈ T , and at the end of the second
round, it outputs some x ∈ X that is supposed to satisfy f(x,RO(x)) = t;
on top, ARO may have some additional (possibly quantum) output W (see
Figure 4.6, left).

We now show how the extractable RO-simulator S provides the means to
extract x early on, i.e., right after A has announced t. To formalize this claim,
we consider the following experiment, which we denote by GA

S . The RO-interface
S.RO of S is used to answer all the oracle queries made by A. In addition, as
soon as A outputs t, the interface S.E is queried on t to obtain x̂ ∈ X ∪ {∅},
and after A has finished, S.RO is queried on A’s final output x to generate h;
see Figure 4.6 (right).

A ···

···

t

x,W

RO A ···

···

t

x,W

S
RO E

t

x̂

x

h

Fig. 4.6. The original execution of ARO (left), and the experiment GA
S with RO simulated

by S (right).

Informally, we want that A does not notice any difference when RO is re-
placed by S.RO, and that x̂ = x whenever f


x, h

�
= t, while x̂ = ∅ implies

that A will fail to output x with f

x, h

�
= t. This situation is captured by the

following statement.

Corollary 4.17. The extractable RO-simulator S is such that the following
holds. For any A that outputs t after q1 queries and x ∈ X and W after an
additional q2 queries, it holds that

δ

[t, x,RO(x),W ]ARO , [t, x, h,W ]GA

S

�
≤ 8(q2 + 1)

p
2Γ/2n and
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Pr
GA

S

�
x ̸= x̂ ∧ f(x, h) = t

�
≤ 8(q2 + 1)

p
2Γ/2n +

40e2(q + 2)3Γ ′(f) + 2

2n
,

where q = q1 + q2.

Proof. The first claim follows from the fact that the trace distance vanishes
when S.E(t) is performed at the very end, after the S.RO(x)-query, in combi-
nation with the (almost-)commutativity of the two interfaces (Theorem 4.12,
2.a to 2.c). Similarly, the second claim follows from Proposition 4.14 when con-
sidering the S.E(t) query to be performed at the very end, in combination with
the (almost-)commutativity of the interfaces again. ⊓⊔

The statements above extend easily to multi-round algorithms ARO that
output t1, . . . , tℓ in (possibly) different rounds, and x1, . . . , xℓ ∈ X and some
(possibly quantum) output W at the end of the run. We then extend the defi-
nition of GA

S in the obvious way: S.E is queried on each output ti to produce
x̂i, and at the end of the run S.RO is queried on each of the final outputs
x1, . . . , xℓ of A to obtain h = (h1, . . . , hℓ) ∈ Yℓ. As a minor extension, we allow
some of the xi to be ⊥, i.e., ARO may decide to not output certain xi’s; the
S.RO query on xi is then not done and hi is set to ⊥ instead, and we declare
that RO(⊥) = ⊥ and f(⊥, hi) ̸= ti. To allow for a compact notation, we write
RO(x) = (RO(x1), . . . , RO(xℓ)) for x = (x1, . . . , xℓ).

Corollary 4.18. The extractable RO-simulator S is such that the following
holds. For any A that makes q queries in total, it holds that

δ

[t,x, RO(x),W ]ARO , [t,x,h,W ]GA

S

�
≤ 8ℓ(q + ℓ)

p
2Γ/2n and

Pr
GA

S

�
∃ i : xi ̸=x̂i ∧ f(xi, hi) = ti

�

≤ 8ℓ(q + 1)
p
2Γ/2n +

40e2(q + ℓ+ 1)3Γ ′(f) + 2

2n
.

Proof. The first claim follows from the fact that the trace distance vanishes
when the S.E(ti)-queries are performed at the very end, after all S.RO(xi)-
queries, in combination with the (almost-) commutativity of the interfaces.
Similarly, the second claim follows from (the more general second part of)
Proposition 4.14 when considering the S.E(ti)-queries to be performed at the
very end, in combination with the (almost-)commutativity of the interfaces
again. ⊓⊔
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Section 4.5

Extractability of Commit-And-Open Σ-protocols

4.5.1 Commit-and-Open Σ-protocols

We refer the reader to Section 2.2 for the concept of an interactive proof system
for a language L or a relation R, and specifically the notion of a commit-and-
open Σ-protocol.

Commit-and-open Σ-protocols are (classically) extractable in a straight-
forward manner as soon as a witness can be computed from sufficiently many
of the xi’s: rewind the prover a few times until it has opened every commitment
ai at least once.47 There is, however, an alternative (classical) online extractor
if the hash function H is modelled as a random oracle: simply look at the query
transcript of the prover to find preimages of the commitments a1, ..., aℓ. As the
challenge is chosen independently, the extractability and collision resistance of
the commitments implies that for a prover with a high success probability, the ℓ
extractions succeed simultaneously with good probability. This is roughly how
the proof of online extractability of the ZK proof system for graph 3-coloring by
Goldreich, Micali and Wigderson [GMW91], instantiated with random-oracle
based commitments, works that was announced in [Pas03] and shown in [Pas04]
(Proposition 5).

Equipped with our extractable RO-simulator S, we can mimmic the above
in the quantum setting. Indeed, the only change is that the look-ups in the
transcript are replaced with the additional interface of the simulator S. Corol-
lary 4.18 can then be used to prove the success of extraction using essentially
the same extractor as in the classical case.

4.5.2 Notions of Special Soundness

The property that allows such an extraction is most conveniently expressed in
terms of special soundness and its variants. Because there are, next to spe-
cial and k-soundness, a number of additional variants in the literature (e.g. in
the context of Picnic2/Picnic3 [CDG+20; KZ20] or MQDSS [CHR+16]), we
begin by formulating a generalized notion of special soundness that captures
in a broad sense that a witness can be computed from correct responses to
47 Naturally, we can assume [ℓ] =

S
c∈C c
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“sufficiently many ” challenges.48 While the notions introduced below can be
formulated for arbitrary public-coin interactive proof systems, we first present
them tailored to our use-case of commit-and-open Σ-protocols. For complete-
ness we then also include a variant for arbitrary Σ-protocols.

In the remainder, Π is thus assumed to be an arbitrary commit-and-open
Σ-protocol for a relation R with associated language L, and C is the challenge
space of Π. Furthermore, we consider a non-empty, monotone increasing set S
of subsets S ⊆ C, i.e., such that S ∈ S ∧ S ⊆ S ′ ⇒ S′ ∈ S, and we let
Smin := {S ∈ S |S◦ ⊊ S ⇒ S◦ ̸∈ S} consist of the minimal sets in S.

Definition 4.19. Π is called S-sound if there exists an efficient algorithm
ES(I, x1, . . . , xℓ, S) that takes as input an instance I ∈ L, strings x1, . . . , xℓ ∈ X
and a set S ∈ Smin, and outputs a witness for I whenever V (c, (xi)i∈c) = 1 for
all c ∈ S, and outputs ⊥ otherwise.49

Note that there is no correctness requirement on the xi’s with i ̸∈ Sc∈S c;
thus, those xi’s may just as well be set to be empty strings.

This property generalizes k-soundness, which is recovered for S = Tk :=
{S ⊆ C | |S| ≥ k}, but it also captures more general notions. For instance,
the r-fold parallel repetition of a k-sound protocol is not k-sound anymore,
but it is T∨r

k -sound with T∨r
k consisting of those subsets of challenge-sequences

(c1, . . . , cr) ∈ Cr for which the restriction to at least one of the positions is a
set in Tk. This obviously generalizes to the parallel repetition of an arbitrary
S-sound protocol, with the parallel repetition then being S∨r-sound with

S∨r := {S ⊆ Cr | ∃ i : Si ∈ S} ,

where Si := {c ∈ C | ∃ (c1, ..., cr) ∈ S : ci = c} is the i-th marginal of S.
For our result to apply, we need a strengthening of the above soundness

condition where ES has to find the set S himself. This is clearly the case for
S-sound protocols that have a constant sized challenge space C, but also for the
parallel repetition of S-sound protocols with a constant sized challenge space.
Formally, we require the following strengthened notion of S-sound protocols.

Definition 4.20. Π is called S-sound∗ if there exists an efficient algorithm
E∗
S(I, x1, . . . , xℓ) that takes as input an instance I ∈ L and strings x1, . . . , xℓ ∈

48 Using the language from secret sharing, we consider an arbitrary access structure S, while
the k-soundness case corresponds to a threshold access structure.

49 The restriction for S to be in Smin, rather than in S, is only to avoid an exponentially
sized input while asking ES to be efficient. When C is constant in size, we may admit any
S ∈ S.
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X , and outputs a witness for I whenever there exists S ∈ S with V (c, (xi)i∈c) =
1 for all c ∈ S, and outputs ⊥ otherwise.

S-sound Σ-protocols may— and often do— have the property that a dis-
honest prover can pick any set Ŝ = {ĉ1, . . . , ĉm} ̸∈ S of challenges ĉi ∈ C and
then prepare x̂1, . . . , x̂ℓ in such a way that V (c, (x̂i)i∈c) = 1 if c ∈ Ŝ, i.e., after
having committed to x̂1, . . . , x̂ℓ the prover can successfully answer challenge c
if c ∈ Ŝ. We call this a trivial attack. The following captures the largest success
probability of such a trivial attack, maximized over the choice of Ŝ:

pStriv :=
1

|C| max
Ŝ ̸∈S

|Ŝ| . (39)

When there is no danger of confusion, we omit the superscript S. Looking
ahead, our result will show that for any prover that does better than the trivial
attack by a non-negligible amount, online extraction is possible. For special
sound Σ-protocols, ptriv = 1/|C|, and for k-sound Σ-protocols, ptriv = (k −
1)/|C|. Furthermore, our definition of S-soundness allows a straightforward
parallel repetition lemma on the combinatorial level providing an expression
for ptriv of parallel-repeated Σ-protocols.

Lemma 4.21. Let Π be an S-sound Σ-protocol. Then pS
∨r

triv =

pStriv

�r.
Proof. To prove the lemma, we simplify

pS
∨r

triv =
1

|C|r max
Ŝ ̸∈S∨r

|Ŝ| = 1

|C|r max
Ŝ⊂Cr:
∀i:Ŝi ̸∈S

|Ŝ| = 1

|C|r

 
max
Ŝ ̸∈S

|Ŝ|
!r

=
�
pStriv

�r
.

⊓⊔

S-soundness for general Σ-protocols Let S be a non-empty, monotone
increasing set of subsets S ⊆ C, and Smin := {S ∈ S |S◦ ⊊ S ⇒ S◦ ̸∈ S}.
Definition 4.22. A Σ-protocol Σ is called S-sound if there exists an efficient
deterministic algorithm ES(x, a, S, {zc}c∈S) that takes as input an instance x,
a first message a, a subset S ⊆ C of challenges, and responses zc for c ∈ S, and
it outputs a witness for x if S ∈ Smin and V(x, a, c, zc) for all c ∈ S.

The common notion of a special-sound Σ-protocol is then the special case
of a S-sound Σ-protocol with S := {S ⊆ C | |S| ≥ 2}, and similarly a k-sound
(t-sound in Chapter 3) Σ-protocol is a S-sound Σ-protocol with S := {S ⊆
C | |S| ≥ k}. The quantity

pStriv :=
1

|C| max
Ŝ ̸∈S

|Ŝ|
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then again captures the “trivial” attack that may potentially (and typically
does) apply to a S-sound Σ-protocol, where the dishonest prover prepares a
first message a so that he has valid responses z ready for all the challenges c in
some arbitrarily chosen set Ŝ ̸∈ S.

Remark 4.23. We note that Wikström [Wik18] also considers a general notion
of special soundness (but then for multi-round protocols); however, the notion
in [Wik18] is more restrictive in that it requires some matroid structure on top.
For instance, the r-fold parallel repetition of a k-sound protocol does not fit
into the formalism by Wikström.

4.5.3 Online Extractability in the QROM

We are now ready to define our extractor and prove that it succeeds. Equipped
with the results from the previous section, the intuition is very simple. Given a
(possibly dishonest) prover P, running the considered Σ-protocol in the QROM,
we use the simulator S to answer P ’s queries to the random oracle but also to
extract the commitments a1, . . . , aℓ, and if the extracted x̂1, . . . , x̂ℓ satisfy the
verification predicate V for sufficiently many challenges, we can compute a
witness by applying E∗

S.
The following relates the success probability of this extraction procedure to

the success probability of the (possibly dishonest) prover.

Theorem 4.24. Let Π be an S-sound∗ commit-and-open Σ-protocol where the
first message consists of ℓ commitments. Then it admits an online extractor E
in the QROM that succeeds with probability

Pr[E succeeds] ≥ 1

1− ptriv


Pr[PRO succeeds]− ptriv − ε

�
where

ε = 8
√
2 ℓ(2q + ℓ+ 1)/

√
2n +

40e2(q + ℓ+ 1)3Γ ′(f) + 2

2n

and ptriv is defined in Equation (47). For q ≥ ℓ+ 1, the bound simplifies to

ε ≤ 34ℓq/
√
2n + 2365q3/2n .

Furthermore, the running time of E is bounded as TE = TP1 + TE∗
S
+ O(q21),

where TP1 and TE∗
S

are the respective runtimes of P1 and E∗
S.

Recall that ptriv = (k − 1)/|C| for k-soundness, giving a corresponding
bound.
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Proof. We begin by describing the extractor E . In a first step, using S.RO to
answer P ’s queries, E runs the prover P until it announces a1, . . . , aℓ, and then it
uses S.E to extract x̂1, ..., x̂ℓ. I.e., E acts as S in Corollary 4.18 for the function
f(x, h) = h and runs the game GP

S to the point where S.E outputs x̂1, ..., x̂ℓ on
input a1, . . . , aℓ. As a matter of fact, for the purpose of the analysis, we assume
that GP

S is run until the end, with the challenge c chosen uniformly at random,
and where P then outputs xi for all i ∈ c (and ⊥ for i ̸∈ c) at the end of GP

S ; we
also declare that P additionally outputs c and a1, . . . , aℓ at the end. Then, upon
having obtained x̂1, ..., x̂ℓ, the extractor E runs E∗

S on x̂1, ..., x̂ℓ to try to compute
a witness. By definition, this succeeds if Ŝ := {ĉ ∈ C |V (ĉ, (x̂i)i∈ĉ) = 1} is in
S.

It remains to relate the success probability of E to that of the prover PRO.
By the first statement of Corollary 4.18, writing xc = (xi)i∈c, RO(xc) =
(RO(xi))i∈c, ac = (ai)i∈c, etc., we have

Pr[PRO succeeds] = Pr
PRO

[V (c,xc) = 1 ∧RO(xc) = ac]

≤ Pr
GP

S
[V (c,xc) = 1 ∧ hc = ac] + δ1

(40)

with δ1 = 8
√
2 ℓ(q + ℓ)/

√
2n. Omitting the subscript GP

S now,

Pr[V (c,xc) = 1 ∧ hc = ac]

≤Pr[V (c,xc) = 1 ∧ hc = ac ∧ xc = x̂c] + Pr[hc = ac ∧ xc ̸= x̂c]

≤Pr[V (c, x̂c) = 1] + Pr[∃ j ∈ c : xj ̸= x̂j ∧ hj = aj ]

≤Pr[V (c, x̂c) = 1] + δ2

(41)

with δ2 = 8
√
2 ℓ(q+1)/

√
2n+ 40e2(q+ℓ+1)3Γ ′(f)+2

2n , where the last inequality is by
the second statement of Corollary 4.18, noting that, by choice of f , the event
hj = aj is equal to f(xj , hj) = aj . Recalling the definition of Ŝ,

Pr[V (c, x̂c) = 1] = Pr[c ∈ Ŝ] ≤ Pr[Ŝ ∈ S] + Pr[c ∈ Ŝ | Ŝ ̸∈ S] Pr[Ŝ ̸∈ S] (42)
≤ Pr[E succeeds] + ptriv(1− Pr[E succeeds])

where the final inequality exploits that c is chosen at random and independent
of x̂1, . . . , x̂ℓ, and thus is independent of the event Ŝ ̸∈ S. Combining (40), (41)
and (42), we obtain

Pr[PRO succeeds] ≤ Pr[E succeeds] + ptriv(1− Pr[E succeeds]) + δ1 + δ2

and solving for Pr[E succeeds] gives the claimed bound. ⊓⊔
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4.5.4 Tightness

The bound given by Theorem 4.24 is tight in the sense that the extraction
success probability is proportional to the advantage of a malicious prover over
the trivial success probability, up to a negligible additive error term. On top,
the additive error term is asymptotically tight: ε remains negligible in n for
q = 2αn with any α < 1

3 , while with q = 2n/3 queries a collision in the hash
function can be found with constant success probability [BHT98; Zha15a] ,
breaking the binding property of the commitment scheme upon which typical
soundness proofs for commit-and-open Σ-protocols rely.

It is even not too hard to find relevant examples of commit-and-open Σ-
protocols where a collision-finding attack not only invalidates the soundness
proof but leads to an actual attack against extractability. Consider e.g. the Σ-
protocol ZKBoo that underlies the signature scheme Picnic. Here, the prover
commits to three messages m1,m2,m3 as ai = H(mi, ri) for random strings
r1, r2, r3, and where the mi’s are the respective views of the three parties in
an “in-the-head” execution of a 3-party-computation protocol. The challenge
space is C = {{1, 2}, {1, 3}, {2, 3}}, which means that the prover is then asked
to open two out of the three commitments. Now consider the following attack.
The attacker can easily find pairs (m1,m2), (m′

1,m3) and (m′
2,m

′
3), so that

each pair consists of two mutually consistent views of the considered 3-party-
computation protocol. Now the only thing the attacker has to do is to find
three collisions in the hash function of the form ai = H(mi, ri) = H(m′

i, r
′
i),

i = 1, 2, 3. This can be done using e.g. the BHT algorithm [BHT98] if ri are
sufficiently long. The attacker now sends (a1, a2, a3), receives a challenge and
responds with the appropriate preimages of the two commitments indicated by
the challenge.

4.5.5 Application to Fiat Shamir Signatures

Σ-protocols are commonly used to obtain non-interactive zero-knowledge proofs
and digital signatures via the Fiat Shamir (FS) transform. Here, the random
challenges are (possibly after a suitable number of parallel repetitions) replaced
by the hash of the first message in the 3-round protocol, thus making the
protocol non-interactive. To construct a digital signature scheme (DSS), the
message to be signed is included in the hash argument.50

50 For FS DSS, the relation R needs to admit an efficient generator of hard instances.
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The post-quantum security of FS signatures has recently drawn additional
attention. This is mainly because FS signatures are some of the most promising
candidates for replacing RSA and elliptic curve signatures, which can be broken
by quantum adversaries. Indeed, two out of the 6 round-3 candidate DSSs in the
NIST standardization process for post-quantum cryptographic schemes, CRYS-
TALS Dilithium [DKL+18a] and Picnic [CDG+17], are FS signature schemes.
In the QROM,51 the chain of arguments for reducing the UF-CMA security of
a FS signature scheme Sig[Σ] to the i) honest-verifier zero-knowledge, and ii)
(some variant of the) special soundness, properties of the underlying Σ-protocol
Σ as follows (also depicted in Figure 4.7).

• First, the UF-CMA security of Sig[Σ] is reduced to plain unforgeability
(UF-NMA), using the HVZK property of Σ [KLS18; GHHM21; BBD+23].

• The UF-NMA property of Sig[Σ] follows from the extractability of the Fiat
Shamir transformation FS[Σ] of Σ.

• The extractability of FS[Σ] is then reduced to the extractability of Σ (Chap-
ter 3).

• Finally, the extractability of Σ is reduced to the (variant of) special sound-
ness of Σ [Unr12].

UF-CMA
of Sig[Σ]

⇐=
UF-NMA
of Sig[Σ]

⇐=
Extractability

of FS[Σ]
⇐=

Extractability
of Σ

⇑
Spec. soundness

of Σ

Fig. 4.7. Chain of arguments for proving security of FS signatures.

Prior to this work, the last step (arguing extractability from special sound-
ness) has relied on Unruh’s rewinding lemma [Unr12], which after suitable gen-
eralization leads, e.g., to a 2k+1-th root loss for a k-sound Σ. For commit-and-
open Σ-protocols, Theorem 4.24 can replace Unruhs rewinding lemma when
working in the QROM, making the last step above tight up to unavoidable
additive errors.
51 The typical ROM reductions proceed similarly
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As an example, Theorem 4.24 implies a sizeable improvement over the cur-
rent best QROM security proof of Picnic2 [CDG+17; CDG+20]. Indeed, Un-
ruh’s rewinding lemma implies a 6-th root loss for the variant of special sound-
ness the underlying Σ-protocol possesses (Lemma 3.26), while Theorem 4.24 is
tight.

We note that for commit-and-open Σ-protocols, there is room for further
improvement by means of combining the last two steps and doing a direct
analysis of FS[Σ]. Indeed, [Cha21] suggested such an approach, but the analysis
provided there there still relies on some unproven assumption. In Chapter 5 we
solve this problem by giving a direct analysis wihtout any gaps.

Section 4.6

QROM-Security of Textbook Fujisaki-Okamoto

4.6.1 The Fujisaki-Okamoto Transformation

The Fujisaki-Okamoto (FO) transform [FO99] is a general method to turn any
public-key encryption scheme secure against chosen-plaintext attacks (CPA)
into a key-encapsulation mechanism (KEM) that is secure against chosen-
ciphertext attacks (CCA). We can start either from a scheme with one-way
security against CPA attacks (OW-CPA) or from one with indistinguishability
against CPA attacks (IND-CPA), and in both cases obtain an IND-CCA secure
KEM. We recall that a KEM establishes a shared key, which can then be used
for symmetric encryption.

Recall the formal definitions of a public-key encryption scheme, of a KEM
and of the notions of δ-correctness and γ-spreadness in Section 2.3. In addition,
we define a relaxed version of the latter property, weak γ-spreadness (see Defi-
nition 2.21), where the ciphertexts are only required to have high min-entropy
when averaged over key generation.52. The security games for OW-CPA secu-
rity of a public-key encryption scheme and for IND-CCA security of a KEM
are given in Figure 4.8.

The formal specification of the FO transformation, mapping a public-key
encryption scheme PKE = (Gen,Enc,Dec) and two suitable hash functions H

52 This seems relevant e.g. for lattice-based schemes, where the ciphertext has little (or even
no) entropy for certain very unlikely choices of the key (like being all 0)
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GAME OW-CPA
1: (pk, sk) ← Gen

2: m∗ $← M
3: c∗ ← Encpk(m

∗)
4: m′ ← A(pk, c∗)
5: return m′ == m∗

GAME IND-CCA-KEM
6: (pk, sk) ← Gen

7: b
$← {0, 1}

8: (K∗
0 , c

∗) ← Encaps(pk)

9: K∗
1

$← K
10: b′ ← ADecaps(c∗,K∗

b )
11: return b′ == b

Decaps(c ̸= c∗)
12: K := Decapssk(c)
13: return K

Fig. 4.8. Games for OW-CPA security of a PKE and IND-CCA security of a KEM. In the
latter, A is not allowed to query c∗ to Decaps.

and G (which will then be modeled as random oracles) into a key encapsulation
mechanism FO[PKE, H,G] = (Gen,Encaps,Decaps), is given in Figure 4.9.

Gen
1: (sk, pk) ← Gen
2: return (sk, pk)

Encaps(pk)

3: m
$← M

4: c ← Encpk(m;H(m))
5: K := G(m)
6: return (K, c)

Decapssk(c)
7: m := Decsk(c)
8: if m = ⊥ or Encpk(m;H(m)) ̸= c

return ⊥
9: else return K := G(m)

Fig. 4.9. The KEM FO[PKE, H,G], obtained by applying the FO transformation [FO99] to
PKE.

4.6.2 Post-Quantum Security of FO in the QROM

Our main contribution here is the following security result for the FO transfor-
mation in the QROM. In contrast to most of the previous works on the topic,
our result applies to the standard FO transformation, without any adjustments.
Next to being CPA secure, we require the underlying public-key encryption
scheme to be so that ciphertexts have a lower-bounded amount of min-entropy
(resulting from the encryption randomness), captured by the aforementioned
spreadness property. This seems unavoidable for the FO transformation with
explicit rejection and without any adjustment, like an additional key confirma-
tion hash (as e.g. in [TU16]).

Theorem 4.25. Let PKE be a δ-correct public-key encryption scheme satisfy-
ing weak γ-spreadness. Let A be any IND-CCA adversary against FO[PKE, H,G],
making qD ≥ 1 queries to the decapsulation oracle Decaps and qH and qG
queries to H : M→ R and G : M→ K, respectively, where H and G are mod-
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eled as random oracles. Let q := qH + qG + 2qD. Then, there exists a OW-CPA
adversary B against PKE with

ADV[A]IND-CCA
kem ≤ 2q

q
ADVOW-CPA

pke [B] + 24q2
√
δ + 24q

√
qqD · 2−γ/4 .

Furthermore, B has a running time TB ≤ TA +O

qH · qD · Time[Enc] + q2

�
.

We start with a proof outline, which is somewhat simplified in that it
treats FO[PKE, H,G] as an encryption scheme rather than as a KEM. We
will transform the adversary A of the IND-CCA game into a OW-CPA adver-
sary against the PKE in a number of steps. There are two main challenges to
overcome. (1) We need to switch from the deterministic challenge ciphertext
c∗ = Encpk(m

∗;H(m∗)) that A attacks to a randomized challenge ciphertext
c∗ = Encpk(m

∗; r∗) that B is then supposed to attack. We do this switch by re-
programming H(m∗) to a random value right after the computation of c∗, which
is equivalent to keeping H but choosing a random r∗ for computing c∗. For rea-
sons that we explain later, we do this switch from H to its re-programmed
variant, denoted H⋄, in two steps, where the first step (from Game 0 to 1)
will be “for free”, and the second step (from Game 1 to 2) is argued using
the O2H lemma ([Unr14b], we use the version given in [AHU19], Theorem 3).
(2) We need to answer decryption queries without knowing the secret key. At
this point our extractable RO-simulator steps in. We replace H⋄, modelled as
a random oracle, by S, and we use its extraction interface to extract m from
any correctly formed encryption c = Encpk(m;H⋄(m)) and to identify incorrect
ciphertexts.

One subtle issue in the argument above is the following. The O2H lemma
ensures that we can find m∗ by measuring one of the queries to the random
oracle. However, given that also the decryption oracle makes queries to the
random oracle (for performing the re-encryption check), it could be the case that
one of those decryption queries is the one selected by the O2H extractor. This
situation is problematic since, once we switch to S to deal with the decryption
queries, some of these queries will be dropped (namely when S.E(c) = ∅). This
is problematic because, per-se, we cannot exclude that this is the one query that
will give us m∗. We avoid this problem by our two-step approach for switching
from H to H⋄, which ensures that the only ciphertext c that would bring us in
the above unfortunate situation is the actual (randomized) challenge ciphertext
c∗ = Encpk(m

∗; r∗), which is not submitted by the specification of the security
game.
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Game Setup G0-G8

1: (pk, sk) ← Gen �G0-G7

2: (b,m∗)
$← {0, 1} ×M �G0-G7

3: c∗ := Encpk(m
∗;H(m∗)) �G0-G7

4: input(pk, c∗ = Encpk(m
∗)) �G8

5: c⋄ := Encpk(m
∗;H⋄(m∗)) �G0-G6

6: K∗
0 := G(m∗) �G0-G2

7: K∗
1

$← K
8: j

$← JA ∪ JD(c⋄) �G3-G6

9: j
$← J �G7-G8

Main Phase G0-G2

10: b′ ← ADecaps,H,G(c∗,K∗
b ) �G0-G1

11: b′ ← ADecaps,H⋄,G⋄
(c∗,K∗

b ) �G2

12: return b′ == b

Main Phase G3-G8

13: m′ ← MADecaps,H⋄,G⋄
j (c∗,K∗

1 ) �G3

14: m′ ← MADecaps,S.RO,G⋄
j (c∗,K∗

1 ) �G4-G5

15: m′ ← EADecaps,S.RO,G⋄
j (c∗,K∗

1 ) �G6-G8

16: while i ∈ I do �G4

17: m̂i ← S.E(ci) �G4

18: return m′

Decaps(c ̸= c∗) G0-G5

19: m := Decsk(c) �G0-G5

20: if m = ⊥ return ⊥ �G0-G5

21: h := H(m), g := G(m) �G0

22: if c = c⋄ �G1

23: h := H(m), g := G(m) �G1

24: else �G1

25: h := H⋄(m), g := G⋄(m) �G1

26: h := H⋄(m), g := G⋄(m) �G2-G3

27: h := S.RO(m), g := G⋄(m) �G3-G5

28: if Encpk(m;h) ̸= c �G0-G5

29: return ⊥ �G0-G5

30: else return K := g �G0-G5

31: m̂ ← S.E(c) �G5

Decaps(c ̸= c∗) G6-G8

32: m := Decsk(c) �G6-G7

33: query S.RO(m) �G6-G7

34: m̂ ← S.E(c) �G6-G8

35: if m̂ = ⊥ return ⊥ �G6-G8

36: else return K := G⋄(m̂) �G6-G8

Fig. 4.10. Games 0 to 8. H and G are independent random oracles; H⋄ and G⋄ coincide
with H and G, respectively, except that H⋄(m∗) and G⋄(m∗) are freshly chosen. We consider
the oracle queries to H⋄ (respectively to S.RO later on) and to G⋄ to be labeled by indices
j ∈ J , where J = JA ∪ JD decomposes this set into those queries made by A and those
made by Decaps, respectively, and JD(c⋄) ⊆ JD consists of Decaps’ queries upon input c⋄.
Similarly, we consider the queries to Decaps to be indexed by i ∈ I, with ci then being the
corresponding ciphertext. Since A is not allowed to query c∗ to Decaps, we have ci ̸= c∗

∀ i ∈ I. For j ∈ J , MADecaps
j denotes the execution of ADecaps up to the query indexed by

j, and followed by measuring this query and outputting the result. EADecaps
j coincides with

MADecaps
j , except that if j ∈ JD then it outputs the corresponding m̂i instead. The colors

are meant to help the reader track (the use of) some variables and concepts that occur in
different places across the code.
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Proof (of Theorem 4.25). Games 0 to 8 below show how to turn A into B (see
also Figure 4.10). We first analyze the sequence of hybrids for a fixed key pair
(sk, pk). Let therefore ADVsk[A]

IND-CCA
kem be A’s advantage for key pair (sk, pk).

In addition, for a fixed pair (sk, pk), let δsk be the maximum probability of
a decryption error and gsk be the maximum probability of any ciphertext, so
that E

�
δsk

�
≤ δ and E

�
gsk

�
≤ 2−γ , with the expectation over (sk, pk)← Gen

(we can assume without loss of generality that pk is included in sk).
Game 0 is the IND-CCA game for KEMs, except that we replace the random

oracles G and H with a single random oracle F , by setting H(x) := F (0||x) and
G(x) := F (1||x).53 When convenient, we still refer to F (0∥·) as H and F (1∥·)
as G. This change does not affect the view of the adversary nor the outcome of
the game; therefore,

Pr[b = b′ in Game 0] =
1

2
+ ADVsk[A]

IND-CCA
kem .

In Game 1, we introduce a new oracle F ⋄ by setting F ⋄(0∥m∗) := r⋄ and
F ⋄(1∥m∗) := k⋄ for uniformly random r⋄ ∈ R and k⋄ ∈ K, while letting
F ⋄(b∥m) := F (b∥m) for m ̸= m∗ and b ∈ {0, 1}. We note that while the joint
behavior of F ⋄ and F depends on the choice of the challenge message m∗, each
one individually is a purely random function, i.e., a random oracle. In line with
F , we write H⋄ for F ⋄(0∥·) and G⋄ for F ⋄(1∥·) when convenient.

Using these definitions, Game 1 is obtained from Game 0 via the following
modifications. After m∗ and c∗ have been produced and before A is executed,
we compute c⋄ := Encpk(m

∗; r⋄) = Encpk(m
∗;H⋄(m∗)), making a query to H⋄

to obtain r⋄. Furthermore, for every decapsulation query by A, we let Decaps
use H⋄ and G⋄ instead of H and G for checking correctness of the queried
ciphertexts ci and for computing the key Ki, except when ci = c⋄ (which we
may assume to happen at most once), in which case Decaps still uses H and
G. We claim that

Pr[b = b′ in Game 1] = Pr[b = b′ in Game 0] =
1

2
+ ADVsk[A]

IND-CCA
kem .

Indeed, for any decryption query ci, we either have Decsk(ci) =: mi ̸= m∗

and thus F ⋄(b∥mi) = F (b∥mi), or else mi = m∗; in the latter case we then
either have ci = c⋄, where nothing changes by definition of the game, or else
53 These assignments seem to suggest that R = K, which may not be the case. Indeed, we

understand here that F : M → {0, 1}n with n large enough, and F (0||x) and F (1||x) are
then cut down to the right size.
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Encpk(m
∗;H(m∗)) = c∗ ̸= ci ̸= c⋄ = Encpk(m

∗;H⋄(m∗)), and hence the re-
encryption check fails and Ki := ⊥ in either case, without querying G or G⋄.
Therefore, the input-output behavior of Decaps is not affected.

In Game 2, all oracle calls by Decaps (also for ci = c⋄) and all calls by A
are now to F ⋄. Only the challenge ciphertext c∗ = Encpk(m

∗;H(m∗)) is still
computed using H, and thus with randomness r∗ = H(m∗) that is random and
independent of m∗ and F ⋄. Hence, looking ahead, we can think of c∗ as the
input to the OW-CPA game that the to-be-constructed attacker B will attack.
Similarly, K∗

0 = G(m∗) is random and independent of m∗ and F ⋄, exactly as
K∗

1 is, which means that A can only win with probability 1
2 .

By the O2H lemma ([AHU19], Theorem 3), the difference between the re-
spective probabilities of A in guessing b in Game 1 and 2 gives a lower bound
on the success probability of a particular procedure to find an input on which
F and F ⋄ differ, and thus to find m∗. Formally,

2(qH + qG + 2)
q
Pr[m′ = m∗ in Game 3]

≥ |Pr[b′ = b in Game 1]− Pr[b′ = b in Game 2]|

=
1

2
+ ADVsk[A]

IND-CCA
kem − 1

2

= ADVsk[A]
IND-CCA
kem

where Game 3 is identical to Game 2 above, except that we introduce and
consider a new variable m′ (with the goal that m′ = m∗), obtained as follows.
Either one of the qH+qG queries from A to H⋄ and G⋄ is measured, or one of the
two respective queries from Decaps to H⋄ and G⋄ upon a possible decryption
query c⋄ is measured, and, in either case, m′ is set to be the corresponding
measurement outcome. The choice of which of these qH + qG + 2 queries to
measure is done uniformly at random.54

We note that, since we are concerned with the measurement outcome m′

only, it is irrelevant whether the game stops right after the measurement, or
it continues until A outputs b′. Also, rather than actually measuring Decaps’
classical query to H⋄ or G⋄ upon decryption query ci = c⋄ (if instructed to do
so), we can equivalently set m′ := mi = Decsk(c

⋄).
For Game 4, we consider the function f : M × R → C, (m, r) 7→

Encpk(m; r), and we replace the random oracle H⋄ with the extractable RO-
simulator S from Theorem 4.12. Furthermore, at the very end of the game, we
54 If this choice instructs to measure Decaps’s query to H⋄ or to G⋄ for the decryption query

c⋄, but there is no decryption query ci = c⋄, m′ := ⊥ is output instead.
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invoke the extractor interface S.E to compute m̂i := S.E(ci) for each ci that A
queried to Decaps in the course of its run. By the first statement of Theorem
4.12, given that the S.E queries take place only after the run of A,

Pr[m′ = m∗ in Game 4] = Pr[m′ = m∗ in Game 3] .

Furthermore, applying Proposition 4.13 for R′ := {(m, c) : Decsk(c) ̸= m}, we
get that the event

P † :=
�
∀i : m̂i = mi ∨ m̂i = ∅

�

holds except with probability ε1 := 128(qH + qD)
2ΓR/|R| for ΓR as in Propo-

sition 4.13, which here means that ΓR/|R| = δsk. Thus

Pr[m′ = m∗ ∧ P † in Game 4] ≥ Pr[m′ = m∗ in Game 4]− ε1 .

In Game 5, we query S.E(ci) at runtime, that is, as part of the Decaps
procedure upon input ci, right after S.RO(m) has been invoked as part of the
re-encryption check (line 27 of Figure 4.10). Since S.RO(m) and S.E(ci) now
constitute two subsequent classical queries, it follows from the contraposition
of 4.b of Theorem 4.12 that except with probability 2 · 2−n, m̂i = ∅ implies
Encpk(mi;S.RO(mi)) ̸= ci. Applying the union bound, we find that P † implies

P :=
�
∀i : m̂i = mi ∨ (m̂i = ∅ ∧ Encpk(mi;S.RO(mi)) ̸= ci)

�

except with probability qD · 2 · 2−n. Furthermore, By 2.c of that same Theorem
4.12, each swap of a S.RO with a S.E query affects the final probability by at
most 8

p
2Γ (f)/|R| = 8

√
2gsk. Thus

Pr[m′ = m∗ ∧ P in Game 5] ≥ Pr[m′ = m∗ ∧ P † in Game 4]− ε2

with ε2 := 2qD ·

(qH + qD) · 4

√
2gsk + 2−n

�
.

In Game 6, Decaps uses m̂i instead of mi to compute Ki. That is, it sets
Ki := ⊥ if m̂i = ∅ and Ki := G⋄(m̂i) otherwise. Also, if instructed to output
m′ := mi where ci = c⋄, then the output is set to m′ := m̂i instead. In all
cases, Decaps still queries S.RO(mi), so that the interaction pattern between
Decaps and S.RO remains as in Game 5.

Here, we note that if the event

Pi :=
�
m̂i = mi ∨ (m̂i = ∅ ∧ Encpk(mi;S.RO(mi)) ̸= ci)

�

holds for a given i then the above change will not affect Decaps’ response
Ki, and thus also not the probability for Pi+1 to hold as well. Therefore, by
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induction, Pr[P in Game 6] = Pr[P in Game 5], and since conditioned on
the event P the two games are identical, we have

Pr[m′ = m∗ ∧ P in Game 6] = Pr[m′ = m∗ ∧ P in Game 5].

In Game 7, instead of obtaining m′ by measuring a random query of A
to either S.RO or G, or outputting m̂i with ci = c⋄, here m′ is obtained
by measuring a random query of A to either S.RO or G, or outputting m̂i

for a random i ∈ {1, . . . , qD}, where the former case is chosen with probability
(qH+qG)/(qH+qG+2qD) and the latter with probability 2qD/(qH+qG+2qD).
Since conditioned on the first case being chosen or the latter with i = i⋄,
Game 7 coincides with Game 6, we have

Pr[m′ = m∗ in Game 7] ≥ qH + qG + 2

qH + qG + 2qD
· Pr[m′ = m∗ in Game 6] .

In Game 8, we observe that the response to the query S.RO(m∗), intro-
duced in Game 1 in order to compute c⋄, and the responses to the queries that
Decaps makes to S.RO on input mi do not affect the game anymore, and thus
we can drop all these queries, or, equivalently, move them to the very end of
the execution of the game. Invoking once again 2.c of Theorem 4.12, we then
get

Pr[m′ = m∗ in Game 8] ≥ Pr[m′ = m∗ in Game 7]− ε3 ,

for ε3 = (qD + 1) · qH · 8√2gsk.
With these queries now dropped, we observe that Game 8 works without

knowledge of the secret key sk, and thus constitutes a OW-CPA attacker B
against PKE, which takes as input a public key pk and an encryption c∗ of
a random message m∗ ∈ M, and outputs m∗ with the given probability, i.e,
ADVsk[B]

OW-CPA
pke ≥ Pr[m′ = m∗ in Game 8]. We note that the oracle G⋄ can

be simulated using standard techniques.
Backtracking all the above (in)equalities and setting ε23 := ε2 + ε3, qHG :=

qH + qG etc. and q := qH + qG + 2qD, we get the following bound:

ADVsk[A]IND-CCA
kem ≤ 2(qHG + 2)

r
qHG + 2qD
qHG + 2


ADVsk[B]

OW-CPA
pke + ε3

�
+ ε1 + ε2

≤ 2(qHG + 2qD)

q
ADVsk[B]

OW-CPA
pke + ε23 + 2(qHG + 2)

√
ε1

≤ 2q
�q

ADVsk[B]
OW-CPA
pke +

√
ε23 +

√
ε1

�
.
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Additionally,

√
ε23 =

r
2qD ·

�
4

(qH + qD) + (qD + 1)qH

�p
2gsk + 2−n

�

≤6√qHqD ·
�
g
1/4
sk + 2−n/2

�

≤12√qqD · g1/4sk ,

where we have used the fact that 2−n ≤ gsk ≤ 1 in the last line. Taking
the expectation over (sk, pk) ← Gen, applying Jensen’s inequality and using
qH + qD ≤ q once more, we get the claimed bound. Finally, we note that the
runtime of B is given by TB = TA + TDecaps + TG + TS , where apart from its
oracle queries Decaps runs in time linear in qD, and S can be simulated in
time

TS = O

qRO · qE · Time[f ] + q2RO

�
= O


qH · qD · Time[Enc] + q2

�

by Theorem 4.12, and similarly for G. ⊓⊔

4.6.3 A gap in the security proof from [Zha19a] for the FO
transformation

In his seminal paper [Zha19a], Zhandry introduced the so-called compressed-
oracle technique, a ground-breaking method that led to many new results in
post-quantum cryptography, quantum query complexity and beyond. One of
the most important features of the compressed-oracle methodology is that it
allows the approximate recovery of several features of the classical ROM, that
were previously believed lost when moving to the QROM.

The new, “virtually classical” ways of reasoning about quantum access to a
random oracle are very intuitive. This fact bears a certain risk that the reach
of classical intuition in the compressed-oracle framework is overestimated. In
the following, we describe a gap in the security proof for the Fujisaki-Okamoto
(FO) transformation given in [Zha19a], which was likely caused by following
the classical intuition too closely.

One step in security reductions for the FO transformation is the simulation
of the decryption or decapsulation oracle without making use of the secret
key. This simulation is done by accessing (either actively by programming, or
passively by preimage awareness) the adversary’s random-oracle interface. For
proofs in the QROM, the adversary’s queries cannot be compiled into a list
in a straight-forward manner (due to the no-cloning principle, if you will). If
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a reduction collects information about an adversary’s QROM queries during
runtime, be it by directly accessing the adversary’s query input or output, or
by acting on the compressed-oracle register, it needs to be analyzed to which
degree the information-collection operation can be noticed by the adversary.

In the security proof for the FO transformation in [Zha19a], the replacement
of the decryption oracle by a simulated version happens gradually in Hybrids
2 to 4 (Lemma 43 and 44 in the full version of [Zha19a]). In more detail,
in Hybrid 2 a (purified) “test” is performed on the state of the compressed
oracle before the reply to the decryption query is prepared and sent, and then
uncomputed again right afterwards; since (due to Lemma 39 of [Zha19a]) the
uncomputation almost commutes with the re-encryption check performed as
part of the preparation of the reply, this “test” and its uncomputation have
negligibe effect. In Hybrid 3, the result of the “test” is then used in the derivation
of the reply to the decryption query by setting the reply to ⊥ in case the “test”
fails. Finally, in Hybrid 4, it is declared that the (simulated) decryption oracle
“scans over the inputs of the [compressed oracle] database for G, looking for
inputs [of a certain form]. For each one, we will check if [it encrypts to the
queried ciphertext]”; the first database entry where the check succeeds is then
used to answer the query.

Using a more formal language, in each of these hybrids the reply to the de-
cryption query is obtained by means of applying a measurement to the state of
the compressed oracle (where the measurement depends on the queried cipher-
text c, and on the secret key in Hybrids 2 and 3). In Hybrid 2, the measurement
consists of the “test”, the (ordinary) derivation of the oracle response, and the
uncomputation of the “test”. At the other end, in Hybrid 4, it consists of all
the “scanning” and “checking” etc. By the nature of quantum measurements,
in both steps, from Hybrid 2 to 3 and from Hybrid 3 to 4, both the reply of
the (simulated) decryption oracle and the post-measurement state of the com-
pressed oracle (and thus the future behavior of the compressed oracle) may
change. While in the proof in [Zha19a] it is argued for both steps, from Hybrid
2 to 3 and from Hybrid 3 to 4, that the reply of the (simulated) decryption
oracle does (almost) not change, for neither of the two steps is it argued that
the post-measurement state is not (much) affected. As a matter of fact, Hybrids
3 and 4 are described in such a “virtually classical” way that there is ambiguity
to translate them into proper descriptions of quantum measurements, necessary
to analyze the effect on the post-measurement state.

It seems to us that completing the proof in [Zha19a], which requires to
rigorously specify the respective quantum measurements in Hybrids 3 and 4
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and to analyze the resulting disturbance of the state of the compressed oracle,
is non-trivial. Given the informal description of the hybrids, we find it hard
to judge whether it is “only” a question of filling in the gaps, or whether the
claimed indistinguishability of the hybrids is actually false (our proof uses a
different sequence of hybrids).

Exactly the same problem exists in follow-up work by Katsumata,
Kwiatkowski, Pintore and Prest [KKPP20], who follow the FO proof outline
from [Zha19a].
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Section 5.1
Introduction

Some interactive proofs come with amazing properties like zero-knowledge,
which intuitively allows a prover to convince a verifier that she knows the
witness to an NP-statement without giving away any information about this
witness. Such zero-knowledge proofs of knowledge are some of the most fascinat-
ing objects in cryptography, and possibly in all of theoretical computer science.
One might suspect that their “magic” is rooted in the fact that the prover and
verifier run an interactive protocol with each other, and that this interaction
causes the verifier to be convinced. Surprisingly, if the interactive proof is of
suitable form, e.g. a Σ-protocol (a 3-round public-coin protocol, Section 2.2.1),
the Fiat-Shamir transformation [FS87] (Section 2.2.3) provides a natural way
to remove the interaction from such protocols while preserving (most of) the
security properties, resulting in non-interactive zero-knowledge proofs (NIZKs).
The idea is to compute the challenge c as a hash c = H(a) of the first message,
rather than letting the verifier choose c. If the original Σ-protocol has additional
soundness properties, the resulting NIZK after the Fiat-Shamir transformation
is ideally suited to be turned into a digital-signature scheme, simply by hashing
the message m to be signed together with the first message a in order to ob-
tain the challenge c. The (former) candidates Picnic [CDG+17] and Dilithium
[DKL+18b] in the NIST post-quantum cryptography competition follow this
design paradigm.

This intuitive preservation of security properties under the Fiat-Shamir
transformation can be formalized in the random-oracle model (ROM), where
the hash function H is treated as a uniformly random function, and the security
reduction gets enhanced access to anybody who queries the random oracle, by
seeing which values are queried, and by possibly returning (random-looking)
outputs. While this situation is conveniently easy to handle in a non-quantum
world, complications arise in the context of post-quantum security. When study-
ing the security of these non-quantum protocols against attackers equipped with
large-enough quantum computers, it is natural to assume that such attackers
have access to the public description of the employed hash function, and can
therefore compute it in superposition on their quantum computers. Therefore,
the proper notion of post-quantum security for random oracles is the quantum-
accessible random-oracle model (QROM) as introduced in [BDF+11]. Due to
the difficulty of recording adversarial random-oracle queries in superposition
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(explained in more detail in Section 1.1.3), establishing post-quantum security
in the QROM has turned out to be quite a bit more difficult compared to the
regular ROM.

Previous results in [DFMS19] (Chapter 3) (and concurrently in [LZ19b]) es-
tablish that for any interactive Σ-protocol Π that is a proof of knowledge, the
non-interactive FS[Π] is a proof of knowledge in the QROM. [DFM20] simpli-
fied the technical proof and extended these results to multi-round interactive
proofs (Section 3.5). However, the most desirable property from such a proof of
knowledge is online extractability. Indeed, online extractability avoids rewind-
ing, which typically causes a significant loss in the security reduction (see later
for a comparison) and has other disadvantages. Thus, online extractability al-
lows for the tightest security reductions.

Chailloux was the first to aim for showing online extractability of the Fiat-
Shamir transformation in the QROM when considering the relevant class of
commit-and-open (C&O) Σ-protocols and modelling the hash function used for
the commitments (and for computing the challenge) as a random oracle. In-
deed, the Fiat-Shamir transformation of such C&O Σ-protocols are known to
be online extractable in the classical ROM (see e.g. discussion in [Fis05]). In a
first attempt [Cha19], Chailloux tried to lift the argument to the quantum set-
ting by means of Zhandry’s compressed-oracle technique [Zha19a] (Section 2.4),
which offers a powerful approach for re-establishing ROM results in the QROM,
that has been successful in many instances. Unfortunately, this first attempt
contained a subtle flaw, which turned out to be unfixable, and despite changing
the technical approach, the latest version [Cha21] of this work still contains a
gap in the proof, which is put as an assumption.1

In Chapter 4 we established online extractability of interactive C&O Σ-
protocols Π in the QROM; the result applies as soon as Π satisfies some lib-
eral notion of special soundness, which is typically satisfied. As pointed out
in Section 4.5.5, one can use previous results from [DFMS19; LZ19a; DFM20]
to reduce the extractability of the resulting non-interactive protocol FS[Π] to
1 Informally, quoting from [Cha21], the considered Assumption 2 is that the random oracle

can be replaced with a random function of a particular form “without harming too much
the studied scheme”. More formally, the security loss caused by the considered replacement
is assumed to remain bounded by a given function of the number of oracle queries. This
assumption is rather ad-hoc and non-standard in that it is very much tailored to the
scheme and its proof. Furthermore, even though Assumption 2 is an assumption that could
potentially be proven in future work, it is hard to judge whether proving the assumption
is actually any easier than proving the security of the considered scheme directly, avoiding
Assumption 2—as a matter of fact, in this work we show that the latter is feasible, while
Assumption 2 remains open.
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the extractability of the interactive protocol Π. However, the resulting extrac-
tion error still scales as O(ε/q2), which results in a prohibitive loss for digital-
signature schemes (see Table 1), leaving open the main question originally posed
by Chailloux:

How to establish tight security reductions of the Fiat-Shamir transfor-
mation for commit-and-open Σ-protocols in the QROM?

As the technical quantum details of Zhandry’s compressed-oracle technique are
rather complicated and only accessible for experts, a recent article by Chung,
Fehr, Huang and Liao [CFHL21] attempts to give a comprehensive exposition
of Zhandry’s technique. In addition, they establish a framework that allows re-
searchers without extensive quantum knowledge to still deploy the compressed-
oracle technique (in certain cases), basically by reasoning about classical quanti-
ties only. In short, the punchline of [CFHL21] is that, if applicable, one can prove
quantum query complexity lower bounds (think of collision finding, for instance)
by means of the following recipe, which is an abstraction of the technique devel-
oped in a line of works started by Zhandry [Zha19a; LZ19a; CGLQ20; HM21].
First, one considers the corresponding classical query complexity problem, an-
alyzing it by simulating the random oracle using lazy sampling and showing
that the database, which keeps track of the oracle queries and the responses, is
unlikely to satisfy a certain property (e.g. to contain a collision) after a bounded
number of queries. Then, one lifts the analysis to the quantum setting by plug-
ging certain key observations from the classical analysis into generic theorems
provided by the [CFHL21] framework.

Contributions. In this chapter, we extend the framework from [CFHL21],
and use it in a conceptually new way to establish strong and tight security
statements for a large, popular class of non-interactive zero-knowledge proofs
and digital signature schemes. In broad strokes, our contributions are threefold.

Online extractability for a class of NIZKs in the QROM. We prove on-
line extractability of the Fiat-Shamir transformation in the QROM for (a large
class of) C&O Σ-protocols. This solves the problem considered and attacked
by Chailloux. In more detail, we prove that if the considered C&O Σ-protocol
satisfies some very liberal notion of special soundness, then the resulting NIZK
is a proof of knowledge with online extractability in the QROM, i.e., when the
hash function used for the commitments and the Fiat-Shamir transformation
is modeled as a quantum-accessible random oracle.
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Our security reduction is tight: Whenever a prover outputs a valid proof,
the online-extractor succeeds, except with a small probability accounting for
collision and preimage attacks on the involved hash functions. For previous re-
ductions, the guaranteed extraction success probability was at least by a factor
of q2 smaller than the succes probability of the prover subjected to extraction
(see Table 1). This is our main technical contribution, see Theorem 5.17. Our
result also applies to a variant of the Fiat-Shamir transformation where a digi-
tal signature scheme (DSS) is constructed. It thereby, for the first time, enables
a multiplicatively tight security reduction for, e.g., DSS based on the MPC-in-
the-head paradigm [IKOS07a], like Picnic [CDG+17], Banquet [BSK+21] and
Rainier [DKR+21], in the QROM.

A more efficient Unruh transformation. When a Σ-protocol does not have
the mentioned C&O structure, a non-interactive proof of knowledge with online
extractability in the QROM can be obtained using the Unruh transformation
[Unr15b]. For technical reasons, the Unruh transformation requires the hash
function to be length preserving, which may result in large commitments, and
thus large NIZKs and digital signature schemes. We revisit this transformation
and show, by a rather direct application of our main result above, that the online
extractability of the Unruh transform still holds when using a compressing
hash function. The crucial observation is that the Unruh transformation can be
viewed as the composition of a pre-Unruh transformation, which makes use of
hash-based commitments and results in a C&O protocol, and the Fiat-Shamir
transformation. By applying our security reduction, we obtain the tight online
extractability without requiring the hash function to be length preserving.

More efficient NIZKs via Merkle tree based commitments. In real-
world constructions based on C&O protocols, like e.g., the Picnic digital signa-
ture scheme, commitments and their openings are responsible for a significant
fraction of the signature/proof size. For certain parameters, this cost can be
reduced by using a collective commitment mechanism based on Merkle trees.
This was observed in passing, e.g. in [Fis05], and is exploited in the most recent
versions of Picnic. We formalize Merkle-tree-based C&O protocols and extend
our main result to NIZKs constructed from them (see Theorem 5.23). Applica-
tions of this result include a security reduction of Picnic 3, the newest version
of the Picnic digital signature scheme, that is significantly tighter than existing
ones: An adversary against the Picnic 3 signature scheme in the QROM with
success probability ε can now be used to break the underlying hard problem
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with probability ε, up to some additive error terms, while previous reductions
yielded at most ε5/q10, where q is the number of random oracle queries. We
outline this reduction in Section 5.5.3.

We compare our reductions in detail to existing techniques in Table 1.

2-s⇒PoK PoKFS⇒NIZK-PoK,
PoKFS⇒UF-NMA DSS

2-sFS⇒NIZK-PoK,
2-sFS⇒UF-NMA DSS

Unruh rewinding [Unr12]
+ generic FS [DFMS19] O(ε3) O(ε/q2) O(ε3/q6)

Σ-protocol OE [DFMS22a]
+ generic FS [DFMS19] ε− g(q, r, n) O(ε/q2) O(ε/q2)− g(q, r, n)

this work:
NIZK OE - - ε − h(q, r, n)

Table 1. Comparison of the losses of different reductions for the construction of a NIZK
proof of knowledge (NIZK-PoK) from a special-sound (Merkle tree based) C&O protocol
with constant challenge space size C using r-fold parallel repetition and the Fiat-Shamir
transformation. “OE” stands for online extraction, 2-s for special soundness, UF-NMA for
plain unforgeability and DSS for digital signature scheme. If the content of a cell in row
“security property A ⇒ security property B” is f(ε), this means that an adversary breaking
property B with probability ε yields an adversary breaking property A with probabilty f(ε).
Grey text indicates results that do not apply to Merkle-tree-based C&O protocols like the
one used to construct the digital signature schemes Picnic 2 [CDG+20] and Picnic 3 [KZ20].
The additive error terms are g(q, r, n) = C−r + O(rq2−n/2) + O(q32−n) and h(q, r, n) =
O(q32−n) + O(q2C−r), where n is the output length of the random oracles, and q is the
number of adversarial (quantum) queries to the random oracle. Finally, we note that the
constants hidden by the big-O in h(q, r, n) are reasonable, see Theorems 5.17 and 5.23.

Technical Overview. Our starting point is the fact that the compressed-
oracle technique (Section 2.4) can be appreciated as a variant of the classical
lazy-sampling technique that is applicable in the QROM. Namely, to some
extent and informally described here, the compressed-oracle technique gives
access to a database that contains the hash values that the adversary A, who has
interacted with the random oracle (RO), may know. In particular, up to a small
error, for any claimed-to-be hash value y output by A, one can find its preimage
x by inspecting the database (and one can safely conclude that A does not know
a preimage of y if there is none in the database). Recalling that a C&O Σ-
protocol Π (formally defined in Section 2.2.1) is an interactive proof where the
first message consists of hash-based commitments, and exploiting that typically
some sort of special soundness property ensures that knowing sufficiently many
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preimages of these commitments/hashes allows one to efficiently compute a
witness, constructing an online extractor for the Fiat-Shamir transformation
FS[Π] then appears straightforward: The extractor E simply runs the (possibly
dishonest) prover P ∗, answering random oracle queries using the compressed
oracle. Once P ∗ has finished and outputs a proof, E measures the compressed-
oracle database and classically reads off any preimages of the commitments
in the proof. Finally, E runs the special soundness extractor that computes
a witness from the obtained preimages. It is, however, not obvious that the
database contains the preimages of the commitments that are not opened in
the proof, or that these preimages are correctly formed. Intuitively this should
be the case: the random oracle used for the Fiat-Shamir transformation replaces
interaction in that it forces the prover to choose a full set of commitments before
knowing which ones need to be opened. The crux lies in replacing this intuition
by a rigorous proof.

The main insight leading to our proof is that the event that needs to be con-
trolled, namely that the prover succeeds yet the extractor fails, can be translated
into a property SUC (as in “adversarial SUCcess” ) of the compressed-oracle
database, which needs to be satisfied for the event to hold. It is somewhat of
a peculiar property though. The database properties that have led to query
complexity lower bounds in prior work, e.g. for (multi-)collision finding [LZ19a;
HM21; CFHL21] and similar problems [Zha19a; CGLQ20; BLZ21], require the
database to contain some particular input-output pairs (e.g. pairs that collide),
while the database property SUC additionally forbids certain input-output pairs
to be contained.

Indeed, the framework from [CFHL21] is almost expressive enough to treat
our problem. So, after a mild extension, we can apply it to prove that it is
hard for any query algorithm to cause the compressed-oracle database to have
property SUC. Analyzing the relevant classical statistical properties of SUC is
somewhat tedious but can be done (see the proof of Lemma 5.22). The resulting
bound on the probability for the database to satisfy SUC then gives us a bound
on the probability of the event that the prover succeeds in producing a valid
proof while at the same time fooling the extractor.

Whenever it is advantageous for communication complexity, a Merkle tree
can be used to collectively commit to all required messages in a C&O proto-
col. This collective commitment is one of the optimizations that improve the
performance of, e.g. Picnic 2 [CDG+20] over Picnic [CDG+17]. As the above-
described argument for the extractability of C&O protocols already analyses
iterated hashing (the hash-based commitments are hashed to compute the chal-
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lenge), it generalizes to Merkle-tree-based C&O protocols without too much
effort. We present this generalization in Section 5.5, and obtain similar bounds
(see Theorem 5.23).

Additional Related Work. Besides the already mentioned work above, we
note that Chiesa, Manohar and Spooner [CMS19] consider and prove security of
various SNARG constructions, while we consider the Fiat-Shamir transforma-
tion of C&O protocols with a form of special soundness. Similar to [CFHL21],
they also provide some tools for deducing security of certain oracle games
against quantum attacks by bounding a natural classical variant of the game.

Section 5.2

Preliminaries

Our main technical proofs rely on the recently introduced framework by Chung,
Fehr, Huang, and Liao [CFHL21] for proving query complexity bounds in the
QROM. This framework exploits Zhandry’s compressed-oracle technique but
abstracts away all the quantum aspects, so that the reasoning becomes purely
classical. We give here an introduction to a simplified, and slightly adjusted
version that does not consider parallel queries. We start with recalling (a par-
ticular view on) the compressed oracle. Along the way, we also give an improved
version of Zhandry’s central lemma for the compressed oracle.

Before getting into this, we fix the following standard notation. For any
positive integer ℓ > 0, we set [ℓ] := {1, 2, . . . , ℓ}, and we let 2[ℓ] denote the
power set of [ℓ], i.e., the set of all subsets of [ℓ]. We write {0, 1}≤ℓ for the set
of bit strings of size at most ℓ, including the empty string denoted ∅; similarly
for {0, 1}<ℓ. Concatenation of two bit strings v ∈ {0, 1}m and w ∈ {0, 1}n is
denoted by v∥w ∈ {0, 1}m+n. For any finite non-empty set Z, C[Z] denotes the
Hilbert space C|Z| together with a basis {|z⟩} labeled by the elements z ∈ Z.

Finally, we consider a hash function H : X → Y , to be modeled as a random
oracle. For concreteness and simplicity, we assume that all relevant variables are
encoded as bit strings, and that we can therefore choose H : {0, 1}≤B → {0, 1}n
for sufficiently large B and n.2

2 B and n may depend on the security parameter λ ∈ N. We will then assume that B and
n can be computed from λ in polynomial time (in λ).
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5.2.1 The Compressed Oracle —Seen as Quantum Lazy Sam-
pling

The compressed oracle technique was formally introduced in Section 2.4. In the
current chapter we use slightly different notation in order to better connect
with [CFHL21], whose framework we build upon. For purposes of exposition it
will also be useful to approach the technique explicitly from the perspective of
(quantum) lazy sampling. In this section we give a self-contained introduction
of the technique in the form that we will need it later on.

With the goal to analyze oracle algorithms that interact with a random
oracle H : X → Y , consider the set D of all functions D : X → Y ∪ {⊥}, where
⊥ is a special symbol. Such a function is referred to as a database. Later, we
will fix X = {0, 1}≤B and Y = {0, 1}n. For D ∈ D, x ∈ X and y ∈ Y ∪ {⊥},
D[x 7→y] denotes the database that maps x to y and otherwise coincides with
D, i.e., D[x 7→y](x) = y and D[x 7→y](x̄) = D(x̄) for all x̄ ∈ X \ {x}.

Following the exposition of [CFHL21], the compressed-oracle technique is a
quantum analogue of the classical lazy-sampling technique, commonly used to
analyze algorithms in the classical ROM. In the classical lazy-sampling tech-
nique, the (simulated) random oracle starts off with the empty database, i.e.,
with D0 = ⊥, which maps any x ∈ X to ⊥. Then, recursively, upon a query x,
the current database Di is updated to Di+1 := Di if Di(x) ̸= ⊥, and to
Di+1 := Di[x 7→ y] for a randomly chosen y ∈ Y otherwise. This construc-
tion ensures that |{x |Di(x) ̸= ⊥}| ≤ i; after i queries thus, using standard
sparse-encoding techniques, the database Di can be efficiently represented and
updated.

In the compressed-oracle quantum analogue of this lazy-sampling technique,
the (simulated) random oracle also starts off with the empty database, but now
considered as a quantum state |⊥⟩ in the |D|-dimensional state space C[D],
and after i queries the state of the compressed oracle is then supported by
databases |Di⟩ for which |{x |Di(x)=⊥}| ≤ i.3 Here, the update is given by a
unitary operator cO acting on C[X ] ⊗ C[Y] ⊗ C[D], i.e., on the query register,
the response register, and the state of the compressed oracle. With respect to
the computational basis {|x⟩} of C[X ] and the Fourier basis {|ŷ⟩} of C[Y], cO
is a control unitary, i.e., of the form cO =

P
x,ŷ |x⟩⟨x| ⊗ |ŷ⟩⟨ŷ| ⊗ cOx,ŷ, where

cOx,ŷ is a unitary on C[Y ∪ {⊥}], which in the above expression is understood
to act on the register that carries the value of the database at the point x. More
3 This means that the density operator that describes the state of the compressed oracle has

its support contained in the span of these |Di⟩.
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formally, cOx,ŷ acts on register Rx when identifying C[D] with
N

x∈X C[Y∪{⊥}]
by means of the isomorphism |D⟩ 7→N

x∈X |D(x)⟩Rx . We refer to Lemma 4.3
in the full version of [CFHL21] for the full specification of cOx,ŷ; it is not really
relevant here.

The compressed oracle is tightly related to the purified oracle, which initiates
its internal state with a uniform superposition

P
h |H⟩ ∈ C[D] of all functions

H : X → Y , and then answers queries “in superposition”. Indeed, at any point
in time during the interaction with an oracle quantum algorithm A, the joint
state of A and the compressed oracle coincides with the joint state of A and
the purified oracle after “compressing” the latter.4 Formally, identifying C[D]
with

N
x∈X C[Y∪{⊥}] again, the compression of the state of the purified oracle

works by applying the unitary Comp to each register Rx, where

Comp : |y⟩ 7→ (|y⟩+ 1p
|Y|

(|⊥⟩ − |0̂⟩)

for any y ∈ Y, and Comp : |⊥⟩ 7→ |0̂⟩. Here, |0̂⟩ is the 0̂-vector from the Fourier
basis {|ŷ⟩} of C[Y].

Similarly to the classical case, by exploiting a quantum version of the sparse-
encoding technique, both the internal state of the compressed oracle and the
evolution cO can be efficiently computed. Furthermore, for any classical func-
tion f : D → T that can be efficiently computed when given the sparse rep-
resentation of D ∈ D, the corresponding quantum measurement given by the
projections Pt =

P
D:f(D)=t |D⟩⟨D| can be efficiently performed when given the

sparse representation of the internal state of the compressed oracle. In partic-
ular, in Lemma 5.1 below, the condition y = D(x) for given x and y can be
efficiently checked by a measurement. See Section 2.4 for more details on this
technique.

In the classical lazy-sampling technique, if at the end of the execution of
an oracle algorithm A, having made q queries to the (lazy-sampled) RO, the
database Dq is such that, say, Dq(x) ̸= 0 for any x ∈ X , then A’s output is
unlikely to be a 0-preimage, i.e., an x that is hashed to 0 upon one more query.
A’s best chance is to output an x that he has not queried yet, and thus Dq(x) =
⊥, and then he has a 1/|Y|-chance that Dq+1(x) := Dq[x 7→ y](x) = 0, given
that y is randomly chosen. Something similar holds in the quantum setting,
with some adjustments. The general statement is given by the following result
by Zhandry.
4 The terminology is somewhat misleading here; the actual compression takes place when

invoking the sparse encoding (see below).
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Lemma 5.1 (Lemma 5 in [Zha19a]). Let R ⊆ X ℓ × Yℓ × Z be a relation,
and let A be an oracle quantum algorithm that outputs x ∈ X ℓ, y ∈ Yℓ and
z ∈ Z. Furthermore, let

p = p(A) := Pr[y=H(x) ∧ (x,y, z)∈R]

be the considered probability when A has interacted with the standard RO, ini-
tialized with a uniformly random function H, and let

p′ = p′(A) := Pr[y=D(x) ∧ (x,y, z)∈R]

be the considered probability when A has interacted with the compressed or-
acle instead and D is obtained by measuring its internal state (in the basis
{|D⟩}D∈D). Then

√
p ≤

p
p′ +

s
ℓ

|Y| .

Remark 5.2. This bound is particular useful in case Z = ∅ (or R does not
depend on its third input z), since then p′ is bounded by Pr[∃ x̃ : (x̃, D(x̃))∈R]
and the latter is determined solely by the evolution of the compressed oracle
(when interacting with A) and does not depend on the actual output of A.

In Section 5.2.3, Corollary 5.8, we will give an alternative such relation
between the success probability of an algorithm interacting with the actual RO,
and probabilities obtained by inspecting the compressed oracle instead. Strictly
speaking, the results of Lemma 5.1 and Corollary 5.8 are incomparable, but in
typical applications the latter gives a significantly better bound.

5.2.2 The Quantum Transition Capacity and Its Relevance

The above discussion shows that, in order to bound the success probability p of
an oracle algorithm A, it is sufficient to bound the probability of the database
D, obtained by measuring the internal state of the compressed oracle after the
interaction with A, satisfying a certain property (e.g., the property of there
existing an x such that D(x) = 0).

To facilitate that latter, Chung et al. [CFHL21] introduced a framework
that, in certain cases, allows to bound this alternative figure of merit by means
of purely classical reasoning. We briefly recall here some of the core elements
of this framework, which are relevant to us. Note that [CFHL21] considers the
parallel-query model, where in each of the q (sequential) interactions with the
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RO, an oracle algorithm A can make k queries simultaneously in parallel with
each interaction. Here, we consider the (more) standard model of one query per
interaction, i.e., setting k = 1. On the other hand, we state and prove a slight
generalization of Theorem 5.16 in [CFHL21] (when restricted to k = 1).

A subset P ⊆ D is called a database property. We say that D ∈ D satisfies P
if D ∈ P, and the complement of P is denoted ¬P = D \P. For such a database
property P, [CFHL21] defines

q⊥ q
=⇒ P

y
as the square-root of the maximal

probability of D satisfying P when D is obtained by measuring the internal
state of the compressed oracle after the interaction with A, maximized over all
oracle quantum algorithms A with query complexity q, i.e., in short

q⊥ q
=⇒ P

y
:= max

A

p
Pr[D ∈ P] . (43)

In the context of Lemma 5.1 for the case Z = ∅ (see Remark 5.2), we can define
the database property PR := {D∈D | ∃x∈X ℓ : (x, D(x))∈R} induced by R,
and thus bound

p′(A) ≤ Pr[(x, D(x))∈R] ≤ Pr[D ∈ PR] ≤
q⊥ q

=⇒ PR
y2 (44)

for any oracle quantum algorithm A with query complexity q.
Furthermore, Lemma 5.6 in [CFHL21] shows that for any target database

property P and for any sequence P0,P1, . . . ,Pq with ¬P0 = {⊥} and Pq = P,

q⊥ q
=⇒ P

y
≤

qX

s=1

q
¬Ps−1→ Ps

y
, (45)

where, for any database properties P and P′, the definition of the quantum
transition capacity

q
P→ P′y is recalled in Definition 5.3.

The nice aspect of the framework of [CFHL21] is that it provides means
to manipulate and bound quantum transition capacities using purely classical
reasoning, i.e., without the need to understand and work with the definition.
Indeed, for instance Theorem 5.4 below, which is a variant of Theorem 5.17
in (the full version of) [CFHL21], shows how to bound

q
P → P′y by means

of a certain classical probability; furthermore, to facilitate the application of
such theorems, [CFHL21] showed that the quantum transition capacity satisfies
several natural manipulation rules, like

q
P → P′y =

q
P′ → P

y
(i.e., it is

symmetric), and
q
P ∩ Q→ P′y ≤ min

�q
P→ P′y,

q
Q→ P′y	 and

min
�q

P→ P′y,
q
P→ Q′y	 ≤

q
P→ P′ ∪ Q′y ≤

q
P→ P′y +

q
P→ Q′y ,

(46)
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which allow to decompose complicated capacities into simpler ones. Therefore,
by means of the above series of inequalities with p from Lemma 5.1 on the left
hand side, it is possible (in certain cases) to bound the success probability of any
oracle quantum algorithm A in the QROM by means of the following recipe: (1)
Choose suitable transitions Ps−1 → Ps, (2) decompose the capacities

q
¬Ps−1→

Ps

y
into simpler ones using manipulation rules as above, and (3) bound the

simplified capacities by certain classical probabilities, exploiting results like
Theorem 5.4. We will closely follow this recipe.

In order to state and later use Theorem 5.4, we need to introduce the fol-
lowing additional concepts. As explained above, there is no need to actually
spell out the definition of the quantum transition capacity in order to use The-
orem 5.4; for completeness, and since it is needed for the proof of Theorem 5.4,
we do provide it below.

For any database D ∈ D and any x ∈ X ,

D|x := {D[x 7→y] | y ∈ Y ∪ {⊥}}

denotes the set of all databases that coincide with D outside of x. Furthermore,
for a database property P,

P|D|x := {y ∈ Y ∪ {⊥} | D[x 7→y] ∈ P} ⊆ Y ∪ {⊥}

denotes the set of values y for which D[x 7→ y] satisfies P. Following the con-
vention used in [CFHL21], we identify the subset P|D|x ⊆ Y ∪ {⊥} with the
projector P|D|x =

P
y |y⟩⟨y| acting on C[Y ∪ {⊥}], where the sum is over all

y ∈ P|D|x .

Definition 5.3 (Definition 5.5 of [CFHL21], case k = 1). Let P,P′ be
two database properties. Then, the quantum transition capacity (of order 1) is
defined as q

P→ P′y := max
x,ŷ,D

∥P′|D|x cOx,ŷ P|D|x∥

where the max is over all x ∈ X k, ŷ ∈ Ŷk, and D ∈ D.

The following is a variation of Theorem 5.17 in (the full version of) [CFHL21],
obtained by restricting k to 1. On the other hand, we exploit and include some
symmetry that is not explicit in the original statement. The proof is a small
adjustment to the original proof.
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Theorem 5.4. Let P and P′ be database properties with trivial intersection,
i.e., P ∩ P′ = ∅, and for every D ∈ D and x ∈ X let

Lx,D :=

(
P|D|x if ⊥ ∈ P′|D|x

P′|D|x if ⊥ ∈ P|D|x ,

with Lx,D being either of the two if ⊥ ̸∈ P|D|x ∪ P′|D|x .5 Then

q
P→ P′y ≤ max

x,D

q
10P

�
U ∈Lx,D

�
,

where U is uniform over Y, and the maximization can be restricted to D ∈ D
and x ∈ X for which both P|D|x and P′|D|x are non-empty.

Remark 5.5. Both, P|D|x and P′|D|x , and thus also Lx,D, do not depend on the
value of D(x), only on the values of D outside of x.

Proof. For any D ∈ D and x ∈ X , we observe that cOx,−ŷ = (cOx,ŷ)
† and hence

∥P′|D|x cOx,ŷ P|D|x∥ = ∥

P|D|x

�†
cOx,−ŷ


P′|D|x

�† ∥ = ∥P|D|x cOx,−ŷ P
′|D|x∥ ,

and so it is sufficient to argue for the case when Lx,D is set to P′|D|x . By the
disjointness requirement, as subsets of Y∪{⊥}, the complement of Lx,D = P′|D|x
is a superset of P|D|x . Thus, as projections acting on C[Y∪{⊥}], P|D|x ≤ I−Lx,D.
Therefore, the above norm is upper bounded by ∥Lx,D cOx,y (I− Lx,D)∥. Given
that ⊥ ̸∈ Lx,D, the square norm ∥Lx,D cOx,ŷ (I− Lx,D)∥2 can be upper bounded
exactly as in the proof of Theorem 5.17 in [CFHL21] by 10P

�
U ∈Lx,D

�
, giving

the claimed bound. ⊓⊔

5.2.3 An Improved Variant of Zhandry’s Lemma

We show here an alternative to Zhandry’s lemma (Lemma 5.1), which offers
a better bound in typical applications. To start with, note that Lemma 5.1
considers an algorithm A that not only outputs x = (x1, . . . , xℓ) but also y =
(y1, . . . , yℓ), where the latter is supposed to be the point-wise hash of x; indeed,
this is what is being checked in the definition of the probability p, along with
(x,y, z) ∈ R. This requirement is somewhat unnatural, in that an algorithm
A for, say, finding a collision, i.e., x1 ̸= x2 with H(x1) = H(x2), does not
5 By the disjointness requirement, ⊥ cannot be contained in both.
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necessarily output the (supposed to be equal) hashes y1 = H(x1) and y2 =
H(x2). Of course, this is no problem since one can easily transform such an
algorithm A that does not output the hashes into one that does, simply by
making a few more (classical) queries to the random oracle at the end of the
execution, and then one can apply Lemma 5.1 to this tweaked algorithm Ã.

We show below that if we anyway consider this tweaked algorithm Ã, which
is promised to query the random oracle to obtain and then output the hashes
of x = (x1, . . . , xℓ), then we can actually improve the bound and avoid the
square-roots in Lemma 5.1. On top, the proof is much simpler than Zhandry’s
proof for his lemma.

At the core is the following lemma; Corollary 5.8 below then puts it in a
form that is comparable to Lemma 5.1 and shows the improvement.

Lemma 5.6. Let A be an oracle quantum algorithm that outputs x =
(x1, ..., xℓ) ∈ X ℓ and z ∈ Z. Let Ã be the oracle quantum algorithm that runs
A, makes ℓ classical queries on the outputs xi to obtain y = H(x), and then
outputs (x,y, z). When Ã interacts with the compressed oracle instead, and at
the end D is obtained by measuring the internal state of the compressed oracle,
then, conditioned on Ã’s output (x,y, z),

Pr[y=D(x)|(x,y, z)] ≥ 1− 2ℓ

|Y| .

Proof. Consider first Ã interacting with the purified (yet uncompressed) oracle.
Conditioned on Ã’s output (x,y, z), the state of the oracle is then supported
by |H⟩ with H(xi) = yi for all i ∈ {1, . . . , ℓ}, i.e., the registers labeled by
x1, ..., xℓ are in state |y1⟩ · · · |yℓ⟩. Given that the compressed oracle is obtained
by applying Comp to all the registers, we thus have that

Pr[yi=y′i|(x,y, z)] =
��⟨yi|Comp|yi⟩

��2 =
���⟨yi|

�
|yi⟩+ 1√

|Y|
(|⊥⟩ − |0̂⟩)

����
2

=
���1− 1√

|Y|
⟨yi|0̂⟩

���
2
=

���1− 1
|Y|

���
2
≥ 1− 2

|Y| .

Applying union bound concludes the claim. ⊓⊔

The following generalization of Lemma 5.6 follows immediately by enhancing
A so that it computes and outputs all the values x that need to be queried in
order to compute FH(z), and then apply Lemma 5.6 above.
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Corollary 5.7. Let A be an oracle quantum algorithm that produces an arbi-
trary output z ∈ Z, and let F be an arbitrary classical ℓ-query oracle algorithm.
Let Ã := F ◦A be the oracle quantum algorithm that first runs A to obtain z,
then F to obtain y := FH(z), and finally outputs (y, z). When Ã interacts with
the compressed oracle instead, and at the end D is obtained by measuring the
internal state of the compressed oracle, then, conditioned on Ã’s output (y, z),

Pr[y=FD(z)|(y, z)] ≥ 1− 2ℓ

|Y| .

The following corollary of Lemma 5.6 is put in a form that can be nicely com-
pared with Lemma 5.1, understanding that typically Lemma 5.1 is applied
to Ã.

Corollary 5.8. Let R ⊆ X ℓ×Yℓ×Z be a relation. Let A be an oracle quantum
algorithm that outputs x ∈ X ℓ and z ∈ Z, and let Ã be as in Lemma 5.6. Let

p◦(A) := Pr[(x, H(x), z) ∈ R]

be the considered probability when A has interacted with the RO. Furthermore,
let p(Ã) and p′(Ã) be defined as in Lemma 5.1 (but now for Ã). Then

p◦(A) = p(Ã) ≤ p′(Ã) +
2ℓ

|Y| .

For convenience, we recall that

p′(Ã) = Pr[y=D(x) ∧ (x,y, z)∈R] ≤ Pr[(x, D(x), z)∈R] .

Proof. The equality holds by construction of Ã. For the first inequality, we
observe that

p′(Ã) = Pr[y=D(x)|(x,y, z)∈R] Pr[(x,y, z)∈R]

≥

1− 2ℓ

|Y|
�
Pr[(x,y, z)∈R] ≥


1− 2ℓ

|Y|
�
p(Ã) ≥ p(Ã)− 2ℓ

|Y| ,

where the first inequality is by Lemma 5.6. The second and last inequality in
the statement holds trivially by definition of p′. ⊓⊔
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Section 5.3

Some Background on (Non-)Interactive Proofs

Let {Iλ}λ∈N and {Wλ}λ∈N be two families of sets, with the members being
labeled by the security parameter λ ∈ N. Let Rλ ⊆ Iλ ×Wλ be a relation that
is polynomial-time computable in λ. w ∈Wλ is called a witness for inst ∈ Iλ if
Rλ(inst, w), and Lλ := {inst ∈ Iλ | ∃w ∈Wλ : Rλ(inst, w)}.

Below, we recall some concepts in the context of interactive and non-
interactive proofs for such families {Rλ}λ∈N of relations. We start by discussing
the aspired security definition for non-interactive proofs.

5.3.1 Non-interactive Proofs and Online Extractability

An non-interactive proof in the random-oracle model for a family {Rλ}λ∈N of
relations consists of a pair (P ,V) of oracle algorithms, referred to as prover and
verifier, both making queries to the random oracle H : X → Y. The prover P
takes as input λ ∈ N and an instance inst ∈ Lλ and outputs a proof π ∈ Πλ, and
V takes as input λ ∈ N and a pair (inst,π) ∈ Iλ ×Πλ and outputs a Boolean
value, 0 or 1, or accept or reject. The verifier V is required to run in time
polynomial in λ, while, per-se, P may have unbounded running time.6

By default, we require correctness and soundness, i.e., that for any λ ∈ N
and any inst ∈ Lλ

Pr
�
VH(λ, inst,π) : π ← PH(λ, inst)

�
≥ 1− εcor(λ),

while for any λ ∈ N and any oracle quantum algorithm P∗ (a dishonest prover)
with query complexity q

Pr
�
inst ̸∈ Lλ ∧ VH(λ, inst,π) : (inst,π)← P∗H(λ)

�
≤ εsnd(λ, q, n)

for certain εcor and εsnd, respectively referred to as correctness error and sound-
ness error. The fact that the instance inst, for which P∗ tries to forge a proof,
is not given as input to P∗ but is instead chosen by P∗ is referred to as P∗

being adaptive.
6 Alternatively, one may consider a witness w for inst to be given as additional input to P,

and then ask P to be polynomial-time as well.
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We now move towards defining online extractability (for adaptive P∗). For
that purpose, let P∗ be a dishonest prover as above, except that it poten-
tially outputs some additional auxiliary (possibly quantum) output Z next to
(inst,π). We then consider an interactive algorithm E , called online extractor,
which takes λ ∈ N as input and simulates the answers to the oracle queries in
the execution of VH ◦ P∗H(λ), which we define to run (inst,π, Z) ← P∗H(λ)
followed by v ← VH(λ, inst,π); furthermore, at the end, E outputs w ∈ Wλ.
We denote the execution of VH ◦ P∗H(λ) with the calls to H simulated by E ,
and considering E ’s final output w as well, as (inst,π, Z; v;w)← VE ◦ P∗E(λ).

Definition 5.9. A non-interactive proof in the (quantum-accessible) random-
oracle model (QROM) for {Rλ}λ∈N is a proof of knowledge with online extract-
ability (PoK-OE) against adaptive adversaries if there exists an online extractor
E, and functions εsim (the simulation error) and εex (the extraction error), with
the following properties. For any λ ∈ N and for any dishonest prover P∗ with
query complexity q,

δ

[(inst,π, Z, v)]VH◦P∗H(λ), [(inst,π, Z, v)]VE◦P∗E (λ)

�
≤ εsim(λ, q, n)

and

Pr
�
v = accept ∧ (inst, w) ̸∈ R : (inst,π, Z; v;w)← VE ◦P∗E(λ)

�
≤ εex(λ, q, n) .

Furthermore, the runtime of E is polynomial in λ + q + n, and εsim(λ, q, n)
and εex(λ, q, n) are negligible in λ whenever q and n are polynomial in λ.

Remark 5.10. In the classical definition of a proof of knowledge, the extractor
E interacts with P∗ only, and the verifier V is not explicitly involved, but
would typic´ally be run by E . Here, in the context of online extractability,
it is necessary to explicitly go through the verification procedure, which also
makes oracle queries, to determine whether a proof is valid, i.e., for the event
v = accept to be well defined.

5.3.2 S-soundness of C&O Σ-Protocols

C&O protocols are a subclass of Σ-protocols for which the first message a
consists of (hash based) commitments y1, . . . , yℓ for messages m1, . . . ,mℓ ∈M,
and possibly and additional string a◦. The challenge c is chosen uniformly at
random from a subset C ⊆ 2[ℓ] of indices, which point to the messages the
prover opens in its response z = mc = (mi)i∈c. In this chapter we consider the

171



5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

hash based version where yi = H(mi), and we model the hash function H as
a random oracle. See Section 2.2.1 for a complete formal specification of C&O
protocols.

We briefly recall the notions of S-soundness and S-soundness∗ as developed
in Section 4.5.2, which offer a convenient general notion of special soundness,
or more generally k-soundness for C&O protocols.

Here and below, given a C&O protocol Π with challenge space C ⊆ 2[ℓ],
we let S ⊆ 2C be an arbitrary non-empty, monotone increasing set of subsets
S ⊆ C, where the monotonicity means that S ∈ S ∧ S ⊆ S ′ ⇒ S′ ∈ S. We
then also set Smin := {S ∈ S | S◦ ⊊ S ⇒ S◦ ̸∈ S} to be the minimal sets in
S.

For simplicity, the reader can consider S = Tk := {S ⊆ C | |S| ≥ k} for some
threshold k, and thus Smin = {S ⊆ C | |S| = k}. This then corresponds to the
notion of k-soundness for C&O protocols, which in turn means that the witness
can be computed from valid responses to k (or more) distinct challenges for a
given first message y1, . . . , yℓ, assuming the messages m1, . . . ,mℓ to be uniquely
determined by their commitments.

Definition 5.11. A C&O protocol Π is S-sound if there exists an efficient de-
terministic algorithm ES(inst,m1, . . . ,mℓ, a◦, S) that takes as input an instance
inst ∈ I, messages m1, . . . ,mℓ ∈ M ∪ {⊥}, a string a◦, and a set S ∈ Smin,
and outputs a witness for inst if V (inst, c,mc, a◦) for all c ∈ S.7

We note the clash in terminology with Definition 4.22. However, the current
definition applies exclusively to C&O Σ-protocols in the (Q)ROM, whereas Def-
inition 4.22 applies exclusively to Σ-protocols in the standard model; so there
should be no confusion. The two definitions are of course related: a S-sound
C&O Σ-protocol becomes a S-sound plain Σ-protocol when the commitments
are instantiated with a perfectly binding commitment scheme (rather than with
a hash function).

A slightly stronger condition than S-soundness is the following variant,
which differs in that the extractor needs to work as soon as there exists a
set S as specified, without the extractor being given S as input. We refer to
Section 4.5.2 for a more detailed discussion of this aspect. As explained there,
whether S is given or not often makes no (big) difference.

For instance, when Smin consists of a polynomial number of sets S then
the extractor can do a brute-force search to find S, and so S-soundness∗ is
7 The restriction for S to be in Smin, rather than in S, is to avoid an exponentially sized

input while asking ES to be efficient.
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then implied by S-soundness. Also, the r-fold parallel repetition of a S-sound
protocol, which by default is a S∨r-sound protocol (see Section 4.5.2), is auto-
matically S∨-sound∗ if Smin is polynomial in size: the extractor can then do a
brute-force search in every repeated instance.

Definition 5.12. A C&O protocol Π is S-sound∗ if there exists an efficient
deterministic algorithm E∗

S(inst,m1, . . . ,mℓ, a◦) that takes as input an instance
inst ∈ I and strings m1, . . . ,mℓ ∈ M ∪ {⊥} and a◦, and it outputs a witness
for inst if there exists S ∈ S such that V (inst, c,mc, a◦) for all c ∈ S.

As for plain Σ-protocols, we define

pStriv :=
1

|C| max
Ŝ ̸∈S

|Ŝ| , (47)

capturing the “trivial” attack of picking a set Ŝ = {ĉ1, . . . , ĉm} ̸∈ S of chal-
lenges ĉi ∈ C and then prepare m̂ = (m̂1, . . . , m̂ℓ) and a◦ in such a way that
V (inst, c, m̂c, a◦) holds if c ∈ Ŝ. After committing to m̂1, . . . , m̂ℓ, the prover
can successfully answer to challenges c ∈ Ŝ.

5.3.3 The Fiat-Shamir Transformation of (C&O) Σ-Protocols

The Fiat-Shamir (FS) transformation [FS87] turns arbitrary Σ-protocols into
non-interactive proofs in the random oracle model by setting the challenge c ∈ C
to be the hash of the instance and the first message a. For this transformation to
work smoothly, it is typically assumed that |C| is a power of 2 and its elements
are represented as bit strings of size log |C|, so that one can indeed set c to be
(the first log |C| bits of) the hash H(inst, a). The assumption on |C| is essentially
without loss of generality (WLOG), since one can always reduce the size of |C|
to the next lower power of 2, at the cost of losing at most 1 bit of security.
However, for a C&O Σ-protocol, where a challenge space C is a (typically
strict) subset of 2[ℓ], there is not necessarily a natural way to represent c ∈ C as
a bitstring of size log |C|. Therefore, we will make it explicit that the challenge-
set c ∈ C ⊂ 2[ℓ] is computed from the “raw randomness” H(inst, y1, . . . , yℓ, a◦) in
a deterministic way as c = γ ◦H(inst, y1, . . . , yℓ, a◦) for an appropriate function
γ : Y → C, mapping a uniformly random hash in Y to a random challenge-set
in C. Obviously, for H(inst, y1, . . . , yℓ, a◦) to be defined, in addition to M ⊆ X
we also need that I × Yℓ ⊆ X , which again just means that B needs to be
large enough. We write FS[Π] for the Fiat-Shamir transformation of a (C&O)
Σ-protocol Π.
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Remark 5.13. Additionally, we need that n is sufficiently large, so that there
is a sufficient amount of randomness in the hash value H(inst, y1, . . . , yℓ) in
order to be mapped to a random c ∈ C. The canonical choice for γ is then the
function that the interactive verifier applies to his local randomness to compute
the random challenge c ∈ C. To simplify the exposition, we assume that n is
indeed sufficiently large. Otherwise, one can simply set Y := {0, 1}n′ instead,
for sufficiently large n′, and then let yi be H(mi) truncated to the original
number n of bits again. This truncation has no effect on our results.

Remark 5.14. We assume WLOG that the two kinds of inputs to H, i.e., mi

and (inst, y1, . . . , yℓ, a◦), are differently formatted, e.g., bit strings of different
respective sizes or prefixes (this is referred to as domain separation). In other
words, we assume that M and I × Yℓ are disjoint.

Remark 5.15. When considering the adaptive security of a Fiat-Shamir trans-
formation FS[Π] of a C&O protocol Π for a relation R, the additional string
a◦, which may be part of the first message a of the original protocol Π, may
WLOG be considered to be part of the instance inst instead.

Indeed, any dishonest prover P∗ against FS[Π], which (by Definition 5.9)
outputs an instance inst and a proof π = (a◦, y1, . . . yℓ), can alternatively be
parsed as a dishonest prover that outputs an instance inst′ = (inst, a◦) and a
proof π′ = (y1, . . . yℓ). Thus, P∗ can be parsed as a dishonest prover against
FS[Π ′], where the C&O protocol Π ′ works as Π, except that a◦ is considered as
part of the instance, rather than as part of the first message, and thus Π ′ is a
C&O protocol for the relation ((inst, a◦), w) ∈ R′ :⇔ (inst, w) ∈ R.8 Therefore,
security (in the sense of Definition 5.9) for FS[Π ′] implies that of FS[Π ].

Section 5.4

Online Extractability of the FS-Transformation:
The Case of Ordinary C&O Protocols

We now consider the Fiat-Shamir transformation FS[Π] of an ordinary C&O
protocol Π. Our goal is to show that FS[Π] admits online extraction. We note
8 We do not specify the local computation of the honest prover P ′ in Π ′ = (P ′,V ′), i.e.,

how to act when a◦ is part of the input, and in general it might not be efficient, but this
is fine since we are interested in the security against dishonest provers.
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that by exploiting Remark 5.15, we may assume WLOG that the first message
of Π consists of the commitments y1, . . . , yℓ only, and no additional string a◦.
In Section 5.5, we then consider the case of Merkle-tree-based C&O protocols.

Our analysis of the online extractability of FS[Π ] uses the framework of
Chung et al. [CFHL21], discussed and outlined in Section 5.2. Thus, at the core
of our analysis is a bound on a certain quantum transition capacity. This is
treated in the upcoming subsection.

5.4.1 Technical Preface

We first introduce a couple of elementary database properties (related to CoL-
lisions and the SiZe of the database) that will be useful for us:

CL := {D | ∃x ̸=x′ : D(x)=D(x′) ̸=⊥} and SZ≤s := {D |#{z|D(z) ̸=⊥} ≤ s}.

Next, for an instance inst ∈ I, we want to specify the database property that
captures a cheating prover that succeeds in producing an accepting proof while
fooling the extractor. For the purpose of specifying this database property,
we introduce the following notation. For a given database D ∈ D and for a
commitment y ∈ Y, we define D−1(y) to be the smallest x ∈ X with D(x) =
y, with the convention that D−1(y) := ⊥ if there is no such x, as well as
D−1(⊥) := ⊥. We note that by removing collisions, we ensure that there is at
most one such x; thus, taking the smallest one in case of multiple choices is not
important but only for well-definedness.

The database property of interest can now be defined as

SUC :=

�
D

����
∃y ∈ Yℓ and inst ∈ I so that m := D−1(y) satisfies

V (inst, c,mc) for c := γ ◦D(inst,y) and

inst, E∗(inst,m)

�
̸∈ R

�
.

(48)
Informally, assuming no collisions (i.e., restricting to D ̸∈ CL), the database

property SUC captures whether a database D admits a valid proof π = (y,mc)
for an instance inst for which the (canonical) extractor, which first computes
m by inverting D and then runs E∗, fails to produce a witness.

Our (first) goal is to show that
q
⊥ q

=⇒ SUC ∪ CL
y

is small, capturing that
it is unlikely that after q queries the compressed database contains collisions
or admits a valid proof upon which the extractor fails. Indeed, we show the
following, where pStriv is the trivial cheating probability of Π as defined in (47).

Lemma 5.16.
q
⊥ q

=⇒ SUC∪ CL
y
≤ 2eq3/22−n/2 + q

q
10max


qℓ · 2−n, pStriv

�
.
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The formal proof is given below; we first give some informal outline here. In
a first step, by using (45) and union-bound-like properties of the transition
capacity, and additionally exploiting a bound from [CFHL21] to control the
transition capacity of CL, we reduce the problem to bounding the quantum
transition capacity

q
SZ≤s\SUC→ SUC

y
for s < q. Informally, this capacity is

a measure of the “likelihood” — but then in a quantum-sense — that a database
D ∈ D that is bounded in size and not in SUC turns into a database D′ that is
in SUC, when D is updated to D′ = D[x 7→U ] with U uniformly random in Y.

We emphasize that in the considered quantum setting, the state of the com-
pressed oracle at any point is a superposition of databases, and a query is made
up of a superposition of inputs; nevertheless, due to Theorem 5.4, the above
classical intuition is actually very close to what needs to be shown to rigorously
bound the considered quantum transition capacity. Formally, as will become
clear in the proof below, we need to show that for any database D ∈ SZ≤s\SUC
and for any x ∈ X with D(x) = ⊥, the probability that D[x 7→ U ] ∈ SUC is
small. Below, this probability is bounded in the Case 2 and Case 3 parts of the
proof, where the two cases distinguish between x being a “commit query” or a
“challenge query”.

Informally, for D with D(x) = ⊥, if x is a “commit query” then assigning a
value to D(x) can only make a difference, i.e., turn D ̸∈ SUC into D[x 7→u] ∈
SUC, if u is a coordinate of some y ∈ Yℓ for which D(inst,y) ̸= ⊥ for some inst.
Indeed, otherwise, D[x 7→u] does not contribute to a valid proof π that did not
exist before. Thus, given the bound s < q on the size of D, this happens with
probability at most qℓ/2n for a random u. Similarly, if x is a “challenge query”,
i.e. of the form x = (inst,y), then assigning a value u to D(x) can only make
a difference if V (inst, c,mc) is satisfied for c = γ(u) and m = D−1(y), while
E∗(inst,m) is not a witness for inst. However, for a random u, this is bounded
by pStriv.

But then, on top of the above, due to the quantum nature of the quantum
transition capacity,9 Theorem 5.4 requires to also show the “reverse”, i.e., that
for any D ∈ SUC and for any x ∈ X with D(x) ̸= ⊥, the probability that
D[x 7→U ] ∈ SZ≤s\SUC is small; this is analyzed in Case 1 below.

Thus, by exploiting the framework of [CFHL21], the core of the reasoning
is purely classical, very closely mimicking how one would have to reason the
classical setting with a classical RO. Due to the rather complex definition of
SUC, the formal argument in each case is still somewhat cumbersome.
9 At the core, this is related to the reversibility of quantum computing and the resulting

ability to “uncompute” a query.
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Proof. We first observe that, by (45) (which is Lemma 5.6 in [CFHL21]) and
basic properties of the quantum transition capacity as in (46),

q
⊥ q

=⇒ SUC ∪ CL
y
≤

q−1X

s=0

q
SZ≤s\SUC\CL→ SUC ∪ CL ∪ ¬SZ≤s+1

y

≤
q−1X

s=0

q
SZ≤s\SUC\CL→ ¬SZ≤s+1

y
+

q
SZ≤s\SUC\CL→ CL

y

+
q
SZ≤s\SUC\CL→ SUC

y�

≤
q−1X

s=0

q
SZ≤s→ ¬SZ≤s+1

y
+

q
SZ≤s\CL→ CL

y
+

q
SZ≤s\SUC→ SUC

y�
.

(49)

The first term,
q
SZ≤s→ ¬SZ≤s+1

y
, vanishes, while the second term was shown

to be bounded as
q
SZ≤s\CL→ CL

y
≤ 2e

p
(s+ 1)/|Y| ≤ 2e

p
q/2n (50)

in Example 5.28 in [CFHL21]. Thus, it remains to control the third term, which
we will do by means of Theorem 5.4 with P := SZ≤s \ SUC and P′ := SUC.

To this end, we consider arbitrary but fixed D ∈ D and input x ∈ X . By
Remark 5.5, we may assume that D(x) = ⊥. Furthermore, for P|D|x to be non-
empty, it must be that D ∈ SZ≤s, i.e., D is bounded in size. We now distinguish
between the following cases for the considered D and x.

Case 1: D ∈ SUC. In particular, ⊥ ∈ SUC|D|x = P′
D|x . So, Theorem 5.4

instructs us to set := PD|x , where we leave the dependency of on D and x
implicit to simplify notation. Given that D ∈ SUC, we can consider inst and y
as promised by the definition of SUC in (48), i.e., such that V (inst, c,mc) and
inst, E∗(inst,m)

�
̸∈ R for

c := γ ◦D(inst,y) and mi := D−1(yi) ,

where it is understood that m = (m1, . . . ,mℓ). Recall that D(x) = ⊥; thus,
by definition of the mi’s, it must be that x ̸= mi for all i, and the fact that
V (inst, c,mc) is satisfied for c as defined implies that x ̸= (inst,y). Furthermore,

u ∈ L ⇐⇒ D[x 7→u] ∈ P =⇒ D[x 7→u] ̸∈ SUC =⇒ u ∈ {y1, . . . , yℓ} ,

where the last implication is easiest seen by contraposition: Assume that u ̸∈
{y1, . . . , yℓ}. Then, also recalling that x ̸= mi, we have that mi = D−1(yi) =

177



5. Efficient NIZKs and Signatures from Commit-and-Open Protocols

D[x 7→ u]−1(yi). But also c = γ ◦ D(inst,y) = γ ◦ D[x 7→ u](inst,y). Together,
this implies that the defining property of SUC is also satisfied for D[x 7→u], i.e.,
D[x 7→u] ∈ SUC, as was to be shown. Thus, we can bound

P [U ∈ ] ≤ P [U ∈{y1, . . . , yℓ}] ≤
ℓ

|Y| . (51)

Case 2: D ̸∈ SUC, and x is a “commit query”, i.e., x = m ∈M. In particular,
⊥ ̸∈ P′|D|x (by the assumption that D(x) = ⊥) and so in light of Theorem 5.4
we may choose L := P′|D|x . We then have

u ∈ L ⇐⇒ D[x 7→u] ∈ P′ = SUC =⇒ ∃ inst,y, i : D(inst,y) ̸= ⊥ ∧ u = yi .
(52)

This final implication can be seen as follows. By definition of SUC, the assump-
tion D[x 7→ u] ∈ SUC implies the existence of inst and y = (y1, . . . , yℓ) with
V (inst, c,mc) and


inst, E∗(inst,m)

�
̸∈ R for

c := γ ◦D[x 7→u](inst,y) = γ ◦D(inst,y) and mi := D[x 7→u]−1(yi) ,

where the equality in the definition of c exploits that x is not a “challenge”
query. With the goal to reach a contradiction, assume that u ̸= yi for all i.
This assumption implies that D[x 7→u](x) = u ̸= yi. But also D(x) = ⊥ ̸= yi,
and hence for all ξ ∈ X and i ∈ {1, . . . , ℓ}: D(ξ) = yi ⇔ D[x 7→ u](ξ) = yi.
Therefore, mi = D[x 7→ u]−1(yi) = D−1(yi) for all i, and the above then
implies that D ∈ SUC, a contradiction. Thus, there exists i for which u = yi;
furthermore, D(inst,y) ̸= ⊥ given that V (inst, u,mc) is satisfied for c = γ ◦
D(inst,y). This shows the claimed implication.

Thus, we can bound

P [U ∈ ] ≤ P [ ∃ inst,y, i : D(inst,y) ̸= ⊥ ∧ u = yi] ≤
sℓ

|Y| ≤
qℓ

|Y| . (53)

Case 3: D ̸∈ SUC, and x is a “challenge query”, i.e., x = (inst,y) ∈ I ×Y ℓ. Set
m = (m1, . . . ,mℓ) for mi := D−1(yi). Again, we have that⊥ ̸∈ SUC|D|x = P′

D|x ,
and so by Theorem 5.4 we may set := P′

D|x . Here, we can argue that

u ∈ L ⇐⇒D[x 7→u] ∈ P′ = SUC

=⇒ V (inst, u,mγ(u)) and

inst, E∗(inst,m)

�
̸∈ R ,

where the final implication can be seen as follows. By definition of SUC, the
assumption D[x 7→u] ∈ SUC implies the existence of inst′ and y′ = (y′1, . . . , y

′
ℓ)
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with V (inst′, u,m′
c) and E∗(inst′,m′) ̸= w for

c := γ ◦D[x 7→u](inst′,y′) and m′
i := D[x 7→u]−1(y′i) = D−1(y′i) ,

where the very last equality exploits that x is not a “commit” query. With
the goal to come to a contradiction, assume that (inst′,y′) ̸= (inst,y) = x.
Then, c = γ ◦D[x 7→u](inst′,y′) = γ ◦D(inst′,y′), and the above then implies
that D ∈ SUC, a contradiction. Thus, (inst′,y′) = (inst,y) = x. In particular,
m′ = m and c = γ ◦D[x 7→u](inst′,y′) = γ ◦D[x 7→u](x) = γ(u). Hence, the
claimed implication holds.

Thus, we can bound

P [U ∈ ] ≤ P [V (inst, γ(U),mγ(U)) ∧ E∗(inst,m) ̸= w]

≤ P [V (inst, γ(U),mγ(U)) ∧ S := {c |V (inst, c,mc)} ̸∈ S]

≤ P [γ(U) ∈ S := {c |V (inst, c,mc)} ̸∈ S]

≤ max
S ̸∈S

P [γ(U) ∈ S]

≤ pStriv . (54)

By Theorem 5.4, we now get

q
SZ≤s\SUC\CL→ SUC

y
≤ max

x,D

q
10P

�
U ∈Lx,D

�

≤
√
10

s
max

�
ℓ

|Y| ,
qℓ

|Y| , p
S
triv

�

≤
√
10
q

max

qℓ · 2−n, pStriv

�
,

where we have used Equations (51), (53) and (54) in the second inequality.
Combining with Equations (50) and (49) yields the desired bound. ⊓⊔

5.4.2 Online Extractability of the Fiat-Shamir Transformation

We are now ready to state and proof the claimed online-extractability result
for the Fiat-Shamir transformation of (ordinary) C&O protocols.

Theorem 5.17. Let Π be a S-sound∗ ordinary C&O protocol with challenge
space Cλ and ℓ = ℓ(λ) commitments, and set κ = κ(λ) := maxc∈Cλ |c|. Then,
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FS[Π] is a proof of knowledge with online extractability in the QROM (as in
Definition 5.9), with εsim(λ, q, n) = 0 and

εex(λ, q, n) ≤ 2(κ+ 1) · 2−n +

�
2eq3/22−n/2 + q

q
10max


qℓ · 2−n, pStriv

��2

≤ (22ℓ+ 60)q32−n + 20q2pStriv .

The runtime of the extractor is dominated by running the compressed oracle,
which has complexity O(q2) · poly(n,B), and running E∗.

We note that the above bound on εex is asymptotically tight, except for the
factor ℓ. Indeed, the binding property of the hash-based commitment can be in-
validated by means of a collision finding attack, which succeeds with probability
Ω(q3/2n). Furthermore the trivial soundness attack, which potentially applies
to a S-sound∗ C&O protocol Π, can be complemented with a Grover search,
yielding an attack against FS[Π] that succeeds with probability Ω(q2pStriv). The
non-tightness by a factor of ℓ is very mild in most cases. In particular, the num-
ber of commitments ℓ is polynomial in λ and thus in n. For the most common
case of a parallel repetition of a protocol with a constant number of commit-
ments, using a hash function with output length linear in λ (e.g. n = 3λ) results
in ℓ = O(n) = O(λ).

Proof. We consider an arbitrary but fixed λ ∈ N. For simplicity, we assume that
|c| is the same for all c ∈ Cλ, and thus equal to κ = κ(λ). If it is not, we could
always make the prover output a couple of dummy outputs mi to match the
upper bound on |c|. Let P∗ be a dishonest prover that, after making q queries
to a random oracle H, outputs (inst,π) = (inst,y,m◦) plus some (possibly
quantum) auxiliary output Z. In the experiment VE ◦ P∗E(λ), our extractor
E works as follows while simulating all queries to H (by P∗ and V) with the
compressed oracle:

1. Run P∗(λ) to obtain (inst,π, Z) where π = (y,m◦) with m◦ =
(m1, . . . ,mκ).

2. Run V(λ, inst,π) to obtain v. In detail: obtain h0 := H(inst,y) and hj :=
H(mj) for j ∈ {1, . . . ,κ}, and set v := accept if and only if the pair
consisting of x =


(inst,y),m1, . . . ,mκ

�
and h = (h0, h1, . . . , hκ) satisfies

the relation R̃, defined to hold if and only if

(h1, . . . , hκ) = yc ∧ V (inst, c,m◦) where c := γ(h0) .

3. Measure the internal state of the compressed oracle to obtain D.
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4. Run E∗(inst,m) on input inst and m := D−1(y) to obtain w.

Note that in the views of both P∗ and V , the interaction with H and the
interaction with E differ only in that their oracle queries are answered by a
compressed oracle instead of a real random-oracle in the latter case. This sim-
ulation is perfect and therefore εsim(λ, q, n) = 0.

Considering P∗ as the algorithm A in Lemma 5.6, the additional classical
oracle queries that V performs in V ◦P∗ then match up with the algorithm Ã,
with h0, . . . , hκ here playing the role of y1, . . . , yℓ in Lemma 5.6. Thus,

Pr
�
h ̸= D(x)

�
≤ 2(κ(λ) + 1) · 2−n .

Therefore, we can bound the figure of merit εex as

εex(λ, q, n) = Pr
�
v = accept ∧ (inst, w) /∈ R

�
= Pr

�
(x,h) ∈ R̃ ∧ (inst, w) /∈ R

�

≤ Pr
�
x, D(x)

�
∈ R̃ ∧ (inst, w) /∈ R

�
+ 2(κ(λ) + 1) · 2−n

≤Pr[

x,D(x)

�
∈R̃∧(inst,w) /∈R|D ̸∈SUC∪CL]+Pr[D∈SUC∪CL]+2(κ(λ)+1)·2−n.

Using the definition of R̃, understanding that c := γ ◦D(inst,y), we can write
the first term as

Pr
�
D(m◦) = yc ∧ V (λ, inst, c,m◦) ∧ (inst, w) /∈ R |D ̸∈ SUC ∪ CL

�

≤ Pr
�
V (λ, inst, c,mc) for m := D−1(y) ∧ (inst, w) /∈ R |D ̸∈ SUC ∪ CL

�

≤ Pr
�
D ∈ SUC |D ̸∈ SUC ∪ CL

�

= 0 ,

where the first equality exploits that D(m) = y iff m = D−1(y) for D ̸∈ CL.
We may thus conclude that

εex(λ, q, n) ≤ (2κ(λ) + 1) · 2−n + Pr
�
D ∈ SUC ∪ CL

�

≤ (2κ(λ) + 1) · 2−n +
q
⊥ q

=⇒ SUC ∪ CL
y2

,

where the last inequality is by definition (43) of
q
⊥ q

=⇒ ·
y
. The claimed bound

now follows from Lemma 5.16. ⊓⊔

5.4.3 The Unruh-Transformation with a Compressing Hash
Function

We conclude this section by showing an improvement to the Unruh transfor-
mation [Unr15b], which follows directly from our result above. At the core of
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the Unruh transformation is a generic technique to transform any Σ-protocol
into a C&O protocol. In [Unr15b], this transformation is presented in combi-
nation with parallel repetition and the Fiat-Shamir transformation as a means
to construct (online-extractable) NIZK proofs of knowledge in the QROM. The
entire transformation was later dubbed the Unruh transformation.

In fact, the Unruh transformation was the first NIZK proof of knowledge in
the QROM; the QROM security of the Fiat-Shamir transformation was only
established several years later [DFMS19; LZ19a]. Despite being significantly less
efficient than the Fiat-Shamir transformation, the Unruh transformation is still
useful in certain cases because it puts weaker requirements on the underlying
Σ-protocol.

Here, to allow for a modular analysis, we consider the first step of the Unruh
transformation, i.e., the transformation from a Σ-protocol into a C&O protocol,
as an individual transformation, which we refer to as the pre-Unruh transfor-
mation, formally defined below. We stress that we allow the random oracle H
to be compressing, i.e. |Y| < |X |, while the extraction technique of [Unr15b] re-
quired H to be a length-preserving RO. This obviously has a significant positive
impact on the efficiency of the Unruh transformation.

Let Σ = (P◦,V◦) be a Σ-protocol. We write a◦ ← P◦ to denote the first
message in Π◦ as produced by P◦ (for a given instance inst). Furthermore, we
write z(a◦, c) for P◦’s response then upon receiving challenge c ∈ C.10

Definition 5.18 (Pre-Unruh transformation). Let Σ = (P◦,V◦) be a Σ-
protocol as above. Then, the pre-Unruh-transformation pU[Σ] = (P ,V) of Π◦
is the C&O protocol with first message

a := (a◦, (yi)i∈C)

where a◦ ← P◦ and for each i ∈ C, yi := H(zi) for zi := z(a◦, i)), and with
response z := zc upon challenge c ∈ C. To verify, V runs V◦ on (a◦, c, z) and
checks if H(z) = yc; if both are true, it accepts, otherwise it rejects.

Clearly, pU[Σ] is only efficient if Σ has at most polynomially many possible
challenges (which can always be obtained by restricting the challenge space).
As mentioned, the resulting C&O protocol can then be repeated in parallel
and made non-interactive using the Fiat-Shamir transformation. We will now
provide a fairly straightforward corollary to conclude the security of the more
10 We note that z(a◦, c) may be a randomized function of a◦ and c. Furthermore, z(a◦, c) is

typically computed by P◦ by means of the randomness used to produce a◦.
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efficient variant of the (full) Unruh transformation that allows for a compress-
ing RO, given by the composition of the pre-Unruh transformation introduced
above, parallel repetition and the Fiat-Shamir transformation. In the following,
denote the r-fold parallel repetition of a (C&O) Σ-protocol Π by Πr and use
the notation Unrr[Σ] := FS [pU[Σ]r] for the Unruh transformation with r-fold
parallel repetition.

Remark 5.19. A proof in Π = Unrr[Σ] can be generated in time TΠ
P = rTΣ

P +
(ℓ0r+1)TH , and verified in time TΠ

V = rTΣ
V +(1+r)TH , where TΣ

P , TΣ
V and TH

are the prover and verifier runtime of Σ, and the time required for computing
one hash, respectively.

It is straightforward to verify that the pre-Unruh transformation does not harm
most security properties of the Σ-protocol. In particular, it tightly preserves
soundness and honest-verifier zero-knowledge (in the QROM). It also preserves
S-soundness in a certain sense.

Proposition 5.20. Let Σ be an S-sound Σ-protocol with challenge space size
ℓ = ℓ(λ) with extractor runtime T . Then Π := pU[Σ] is S-sound as a C&O
protocol with extractor runtime T ′ ≤ T+O(ℓ). Furthermore, suppose that mem-
bership in S is checkable in time TS. Then Π is S-sound∗ with extractor run-
time T ′′ ≤ T ′+ℓ2TS+ℓTV , where TV is the runtime of Π’s verification predicate
V.

Proof. Let EΣ be the extractor for Σ guaranteed to exist by Definition 4.22.
Note that for Π = pU[Σ] regarded as a C&O protocol, for each challenge exactly
one of the commitments has to be opened. For such protocols, we use c and
{c} interchangeably (where c is a challenge in Π). We define an extractor EΠ
as follows. On input (inst,m1, ...,mℓ, a◦, S), run w = EΣ(inst, a◦, S, {mc}c∈S),
then output w. The only runtime overhead of EΠ results from having to parse
its input and preparing the input for EΣ .

We continue to define an S-soundness∗ extractor E∗
Π for Π as follows. On

input (inst,m1, ...,mℓ, a◦), compute bc = V(inst, a◦, c,mc) for all c ∈ C, and set
Ŝ = {c ∈ C | bc = 1}. Using at most ℓ(ℓ + 1)/2 membership tests for S, find
S ⊆ Ŝ such that S ∈ Smin. Finally, run w = EΠ(inst,m1, ...,mℓ, a◦, S) and
output w. The runtime statement is straightforward. ⊓⊔

Using Proposition 5.20 above and Lemma 5.3 from [DFMS22a] to argue
S∨r-soundness∗ of the parallel repetition of pU[Π], and using Theorem 5.17
to argue online extractability of its Fiat-Shamir transformation, we obtain the
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online-extractability of the Unruh transformation with computationally bind-
ing commitments, i.e., when using a compressing hash function for the commit-
ments.

Corollary 5.21. Let Σ be an S-sound Σ-protocol with challenge space size ℓ0.
Then Π := Unrr[Σ] = FS[pU[Σ]r] is a proof of knowledge with online extracta-
bility in the QROM (as in Definition 5.9) with εsim = 0 and

εex(λ, q, n) ≤ (22rℓ0 + 60)q32−n + 20q2
�
pStriv

�r
. (55)

The online extractor for Π runs in time TΠ
E ≤ rT

pU[Σ]
E + O(q2) · poly(n,B),

where T
pU[Σ]
E is the runtime of pU[Σ]’s S-soundness∗ extractor as given in

Proposition 5.20.

Section 5.5

Online Extractability of the FS-Transformation: The
Case of Merkle-tree-based C&O Protocols

For an ordinary C&O protocol with reasonable concrete security (e.g., 128 bits),
the number of commitments ℓ might be considerable. In this case, the commu-
nication complexity of the protocol (and thus the size of the non-interactive
proof system, or digital-signature scheme, obtained via the Fiat-Shamir trans-
formation) can be reduced by using a Merkle tree to collectively commit to
the ℓ strings mi. Such a construction is mentioned in [Fis05], and it is used in
the construction of the digital-signature schemes Picnic2 and Picnic3 [KKW18;
CDG+20; KZ20; CDG+19]. The Merkle-tree-based C&O mechanism shrinks
the commitment information from ℓ · n to n, at the expense of increasing the
cost of opening |c| values mi by an additive term of about ⪅ |c| · n · log ℓ.

The cost of opening can, in fact, be slightly reduced again, by streamlining
the opening information. When opening several leaves of a Merkle tree, the
authentication paths overlap, so opening requires a number of hash values less
than h per leaf, where h is the height of the tree. This overlap was observed and
exploited in the octopus authentication algorithm which constitutes one of the
optimizations of the stateless hash-based signature scheme gravity-SPHINCS
[AE18], as well as in Picnic2 and Picnic3 [CDG+20; KZ20]. In the following
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section, we formalize tree-based collective commitment schemes with “octopus”
opening.

5.5.1 Merkle-tree-based C&O Protocols

As was noted in Section 2.2.1, we can consider C&O protocols with a different
choice of commitment scheme, compared to the default choice of committing
by element-wise hashing. Here, we discuss a particular choice of an alternative
commitment scheme, which gives rise to more efficient C&O protocols in certain
cases when ℓ is large. Informally, we consider C&O protocols where m1, . . . ,mℓ

is committed to by using a Merkle tree, and individual mi’s are opened by
announcing the corresponding authentication paths.

To make this more formal, we introduce the following notation. For simplic-
ity, we assume that ℓ is a power of 2, and thus ℓ = 2h for h ∈ N. We then
consider the full binary tree Tree = {0, 1}≤h of depth h, where the vertices are
identified by bit strings. The root is denoted by ∅; the i-th leave is denoted by
lf(i) ∈ {0, 1}h and is given by the binary representation of i ∈ [ℓ]. The authen-
tication path for the i-th leaf is the subtree that consists of all the ancestors of
lf(i) and their siblings:

Auth(i) := Anc(lf(i)) ∪ {sib(v) | ∅ ̸= v ∈ Anc(lf(i))} ,
where Anc(v) := {u ∈ Tree | ∃w : u∥w = v} and sib(u∥b) := u∥(1 − b) for any
b ∈ {0, 1}. Finally, for any subset c ⊆ {1, . . . , ℓ}, we let Auth(c) :=

S
i∈c Auth(i)

be the union of the authentication paths of the considered leaves, and we define
the octopus Octo(c) to be the restriction of Auth(c) to its leaves, but excluding
the leaves lf(i) for i ∈ c, i.e.,

Octo(c) := leaves(Auth(c)) \ {lf(i) | i ∈ c}
where, for any subtree T of Tree, leaves(T ) := {v ∈ T | (v∥0), (v∥1) ̸∈ T}.

Extending on the above notation, for a given hash function H : X → Y,
where X = {0, 1}≤B and Y = {0, 1}n for sufficiently large B, we define the
Merkle tree of m = (m1, ...,mℓ) ∈ X ℓ to be the labeled binary tree that has
its leaves lf(1), . . . , lf(ℓ) labeled by H(m1), ..., H(mℓ), respectively, and each
internal vertex is labeled by the hash of the labels of its two children. Formally,

MTreeH(m) :=
�

v, lv(m)
� �� v ∈ Tree

	

with the labeling lv(m) recursively defined as

lv(m) := H

lv∥0(m)∥lv∥1(m)

�
for v ∈ {0, 1}<h
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and
llf(i)(m) := H(mi) for i ∈ {1, . . . , ℓ} ,

where we leave the dependency of the labeling on H, i.e., lv = lHv , implicit. We
also write MRootH(m) then for the root label l∅(m). In the same spirit, we write
MAuthH(c,m) :=

�
v, lv(m)

� �� v ∈ Auth(c)
	

for the labeled authentication
path and MOctoH(c,m) :=

�
v, lv(m)

� �� v ∈ Octo(c)
	

for the labeled octopus,
using the same labeling function as for the Merkle tree.

y

H(m2) H(m3)H(m1) H(m4) H(m5) H(m6) H(m7) H(m8)

Fig. 5.1. The Merkle tree MTreeH(m) for m = (m1, . . . ,m8) with MRootH(m) = y. The
yellow vertices mark the octopus MOctoH({1},m), which is revealed (along with m1) when
opening the commitment y to m1.

A Merkle-tree-based C&O protocol is now defined to be a variation of a
C&O protocol, where the first message of the protocol, i.e., the commitment
of m = (m1, . . . ,mℓ), is computed as y = MRootH(m), and the response z
for challenge-set c then consists of the messages mc = (mi)i∈c together with
O = MOctoH(c,m). The verifier V then accepts if and only if mc and O “hash
down to” y and the predicate V (λ, inst, c,mc, a) is satisfied. More formally, the
former means that V computes MAuthH(c,m) from O ∪ {(lf(i), H(mi)) | i ∈ c}
in the obvious way, and then checks whether l∅(m) = y. This verification is
denoted by OctoVerifyH(c, y,mc, O), see Figure 5.2.

Looking ahead, we may also consider a variation where the verifier resamples
the challenge c if the resulting octopus is bigger than a given bound. Formally,
this means that the challenge space of the Merkle-tree-based C&O protocol is
restricted to those challenges c ∈ [ℓ] for which Octo(c) is not too large.
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VP
a◦, y = MRootH(m)

c

mc, O = MOctoH(c,m)

OctoVerifyH(c, y,mc, O) ∧ V (inst, c,mc, a◦)

c ← C ⊆ 2[ℓ]

Fig. 5.2. A Merkle-tree based C&O Σ-protocol, formally introduced in Section 5.5.1.

5.5.2 Online Extractability of the Fiat-Shamir Transformation

The analysis in Section 5.4 can be generalized to the case of FS-transformed
Merkle-tree-based C&O protocols. To that end, we generalize the notation from
that section as follows. Let Π be a Merkle-tree-based C&O protocol with num-
ber of messages to be committed equal to ℓ = 2h where h is the height of the
commitment Merkle tree.11

For a given database D ∈ D, recall from Section 5.4 the definition of D−1;
applied to a tuple y = (y1, . . . , yℓ) ∈ Yℓ of commitments, D−1 attempts to
recover the corresponding committed messages m1, . . . ,mℓ. Here, in a similar
spirit but now considering the Merkle-tree commitment, MRoot−1

D attempts to
recover the committed messages from the root label of the Merkle tree.

In more detail, for a commitment y ∈ Y = {0, 1}n we reverse engineer
the Merkle tree in the obvious way (see Figure 5.3 for an example); namely,
accepting a small clash in notation with the labeling function lv(m) defined for
a tuple m ∈Mℓ, we set the root label l∅(y) := y, and recursively define


lv∥0(y), lv∥1(y)

�
:= split ◦D−1


lv(y)

�
∈ Y × Y

for ∅ ̸= v ∈ {0, 1}≤h, where split maps any 2n-bit string, parsed as y1∥y2 with
y1, y2 ∈ {0, 1}n, to the pair (y1, y2) of n-bit strings, while it maps anything else
to (⊥,⊥). Then, accepting a small clash in notation again, we set

MTreeD(y) := {lv(y) | v ∈ {0, 1}≤h} ,

and finally

MRoot−1
D (y) :=


D−1


llf(1)(y)

�
, . . . , D−1


llf(ℓ)(y)

��
.

11 As in the previous section we assume that ℓ is a power of 2 for ease of exposition.
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Following the strategy we used in Section 5.4, we define the database property

SUC :=

�
D

����
∃ y ∈ Y and inst ∈ I so that m := MRoot−1

D (y) satisfies
V (inst, c,mc) for c := γ ◦D(inst, y) and


inst, E∗(inst,m)

�
̸∈ R

�
,

and our first goal is to show that
q
⊥ q

=⇒ SUC ∪ CL
y

is small.

Lemma 5.22. Let Π be an S-sound C&O protocol with pStriv as defined in (47).
Then

q
⊥ q

=⇒ SUC ∪ CL
y
≤ 2eq3/22−n/2 + q

q
10max


qℓ · 2−n+1, pStriv

�
.

The proof works exactly as the proof of Lemma 5.16, accounting for some
syntactic differences due to the Merkle tree commitment. In particular, where
in Case 1 and 2 of the proof of Lemma 5.16 we have to exclude U from falling on
one of the hash values y1, . . . , yℓ in order to keep the m that was constructed
from the database intact, we now have a similar restriction for U , but with
respect to the whole tree MTreeD(y).

Proof. As in the proof of of Lemma 5.16, we can bound

q
⊥ q

=⇒ SUC ∪ CL
y
≤

q−1X

s=0

q
SZ≤s\CL→ CL

y
+

q
SZ≤s\SUC→ SUC

y�
(56)

and use that
q
SZ≤s\CL→ CL

y
≤ 2e

p
(s+ 1)/2n ≤ 2e

p
q/2n . (57)

Thus, it remains to control the second term, which we will do again by means
of Theorem 5.4 with P := SZ≤s\ SUC and P′ := SUC.

To this end, we consider arbitrary but fixed D ∈ D and input x ∈ X . By
Remark 5.5, we may assume that D(x) = ⊥. Furthermore, for P|D|x to be non-
empty, it must be that D ∈ SZ≤s, i.e., D is bounded in size. We now distinguish
between the following cases for the considered D and x.

Case 1: D ∈ SUC. In particular, ⊥ ∈ SUC|D|x = P′
D|x . So, Theorem 5.4

instructs us to set := PD|x , where we leave the dependency of on D and x
implicit. Given that D ∈ SUC, we can consider inst and y as promised by the
definition of SUC above, i.e., such that V (inst, c,mc) and (inst, E∗(inst,m)) /∈ R
for

c := γ ◦D(inst, y) and m := MRoot−1
D (y) . (58)
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Note that, since D(x) = ⊥ and V (inst, c,mc) holds, which in particular means
that c must be defined, it must be that x ̸= (inst, y). Therefore

γ ◦D(inst, y) = γ ◦D[x 7→ u](inst, y) . (59)

Our goal now is to show the final implication in

u ∈ L ⇐⇒ D[x 7→u] ∈ P =⇒ D[x 7→u] ̸∈ SUC =⇒ u ∈ MTreeD(y) .

We will do this by showing that u /∈ MTreeD(y) implies

MRoot−1
D (y) = MRoot−1

D[x7→u](y) . (60)

Indeed, the contraposition u /∈ MTreeD(y) ⇒ D[x 7→ u] ∈ SUC of the claimed
implication then follows from the fact that (59) and (60) together imply that
c and m remain unchanged when replacing D by D[x 7→ u] in (58), and so
D[x 7→u] ∈ SUC as well.

Towards showing (60), exploiting again that D(x) = ⊥, it follows by defini-
tion of the reverse engineered labeling function lv(y) that x ̸= (lv||0(y), lv||1(y))
for any v with lv||0(y) ̸= ⊥ ̸= lv||1(y), i.e., x is not equal to any pair of siblings
in MTreeD(y) with non-⊥ labeling (see Figure 5.3). Due to a similar reasoning,
x ̸= mi for any i. It now follows by definition of the reverse engineered Merkle
tree and of MRoot−1 that if u /∈ MTreeD(y) then MTreeD(y) = MTreeD[x7→u](y)

and MRoot−1
D (y) = MRoot−1

D[x7→u](y), as claimed.
Thus, we can bound

P [U ∈ ] ≤ P [U ∈MTreeD(y)] ≤
2 · 2h − 1

|Y| =
2ℓ− 1

|Y| . (61)

Case 2: D ̸∈ SUC, and x is a “commit query”, i.e., x = m ∈ M or x =
(lv∥0, lv∥1) for two labels lv∥0, lv∥1 ∈ Y. In particular, ⊥ ̸∈ P′|D|x (given that
D(x) = ⊥) and so in the light of Theorem 5.4 we may choose L := P′|D|x . We
then have

u ∈ L ⇐⇒ D[x 7→u] ∈ P′ = SUC =⇒ ∃ inst, y : D(inst, y) ̸= ⊥∧u ∈ MTreeD(y)

where final implication can be seen as follows. By definition of SUC, the assump-
tion D[x 7→u] ∈ SUC implies the existence of inst and y with V (inst, c,mc) and
inst, E∗(inst,m)

�
̸∈ R for

c := γ ◦D[x 7→u](inst, y) = γ ◦D(inst, y) and m := MRoot−1
D[x7→u](y) ,
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⊥ ⊥

y

D(m5) D(m6) ⊥ ⊥

Fig. 5.3. Example of a reverse engineered Merkle tree MTreeD(y), with the ⊥-children of
the ⊥-labels omitted. Since D(x) = ⊥, x ̸= (lu(y), lw(y)) for any two siblings (u,w) in
MTreeD(y), i.e., nodes with the same color. Assuming that u ̸∈ MTreeD(y) then implies that
reprogramming D to D[x 7→ u] does not affect the reverse engineered Merkle tree.

where the equality in the definition of c exploits that x is not a “challenge”
query. The fact that V (inst, c,mc) is satisfied for this c thus implies that
D(inst, y) ̸= ⊥. Next, with the goal to reach a contradiction, assume that
u /∈ MTreeD(y). Then for all ⊥ ̸= h ∈ MTreeD(y) we have that D−1(h) =
D[x 7→u]−1(h) except if D(x) = h, but this cannot be since D(x) = ⊥. It fol-
lows that MTreeD(y) = MTreeD[x 7→u](y) and MRoot−1

D (y) = MRoot−1
D[x7→u](y).

The above then implies that D ∈ SUC, a contradiction.
Thus, we can bound

P [U ∈ ] ≤ P [ ∃ inst, y : D(inst, y) ̸= ⊥∧U ∈ MTreeD(y)] ≤
s(2ℓ− 1)

|Y| ≤ q(2ℓ− 1)

|Y| .

(62)

Case 3: D ̸∈ SUC, and x is a “challenge query”, i.e., x = (inst, y) ∈ I × Y.
Set m := MRoot−1

D (y). Again, we have that ⊥ ̸∈ SUC|D|x = P′
D|x , and so by

Theorem 5.4 we may set := P′
D|x . Here, we can argue that

u ∈ L ⇐⇒D[x 7→u] ∈ P′ = SUC

=⇒ V (inst, γ(u),mγ(u)) and

inst, E∗(inst,m)

�
̸∈ R ,

where the final implication can be seen as follows. By definition of SUC,
the assumption D[x 7→ u] ∈ SUC implies the existence of inst′ and y′ with
V (inst′, c,m′

c) and

inst′, E∗(inst′,m′)

�
̸∈ R for

c := γ ◦D[x 7→u](inst′, y′) and m′ := MRoot−1
D[x7→u](y

′) = MRoot−1
D (y′) ,
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where the very last equality exploits that x is not a “commit” query. With
the goal to come to a contradiction, assume that (inst′, y′) ̸= (inst, y) = x.
Then, c = γ ◦D[x 7→u](inst′, y′) = γ ◦D(inst′, y′), and the above then implies
that D ∈ SUC, a contradiction. Thus, (inst′, y′) = (inst, y) = x. In particular,
m′ = m and c = γ ◦D[x 7→ u](inst′, y′) = γ ◦D[x 7→ u](x) = γ(u). Hence, the
claimed implication holds.

Thus, we can bound

P [U ∈ ] ≤ P [V (inst, γ(U),mγ(U)) ∧

inst, E∗(inst,m)

�
̸∈ R]

≤ P [V (inst, γ(U),mγ(U)) ∧ S := {c |V (inst, c,mc)} ̸∈ S]

≤ P [γ(U) ∈ S := {c |V (inst, c,mc)} ̸∈ S]

≤ max
S ̸∈S

P [γ(U) ∈ S]

≤ pStriv . (63)

By Theorem 5.4, we now get
q
SZ≤s\SUC\CL→ SUC

y
≤ max

x,D

q
10P

�
U ∈Lx,D

�

≤
√
10

s
max

�
2ℓ− 1

|Y| ,
q(2ℓ− 1)

|Y| , pStriv

�

≤
√
10
q

max

qℓ · 2−n+1, pStriv

�
,

where we have used Equations (61), (62) and (63) in the second inequality.
Combining with Equations (57) and (56) yields the desired bound. ⊓⊔

Similarly to Theorem 5.17, we now obtain the following.

Theorem 5.23. Let Π be an S-sound∗ Merkle-tree-based C&O protocol with
challenge space Cλ. Then FS[Π] is a proof of knowledge with online extractability
in the QROM (as in Definition 5.9), with εsim(λ, q, n) = 0 and

εex(λ, q, n) ≤ 2(κ log ℓ+ 1) · 2−n+

�
2eq3/22−n/2+ q

q
10max


qℓ · 2−n+1, pStriv

��2

≤ (22ℓ log ℓ+ 60) q32−n + 20q2pStriv

where κ = κ(λ) := maxc∈Cλ |c| and ℓ is the number of leaves of the Merkle-tree-
based commitment. The running time of the extractor is dominated by running
the compressed oracle, which has complexity O(q2)·poly(n,B), and by computing
MRoot−1

D (y) and running E∗.
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Here again the proof follows exactly the outline of its counterpart from Section
5.4.2, with some minor alterations to cope with the formalism of a Merkle-
tree based C&O Σ-protocol. The difference in the bound is simply due to the
difference between Lemmas 5.16 and 5.22.

Proof. We consider an arbitrary but fixed λ ∈ N. Let P∗ be a dishonest prover
that, after making q queries to a random oracle H, outputs and instance inst
and a proof π = (y,m◦, O) plus some (possibly quantum) auxiliary output Z,
where O is an authentication octopus as defined in Section 5.5.1. For simplicity,
we assume that |c| is the same for all c ∈ Cλ, and thus equal to κ. If it is not, we
could always make the prover output a couple of dummy outputs mi to match
the upper bound on |c|. In the experiment VE ◦ P∗E(λ), our extractor E works
as follows while simulating all queries to H (by P∗ and V) with the compressed
oracle:

1. Run P∗(λ) to obtain (inst,π, Z) with π = (y,m◦, O).
2. Compute v ← VH(inst,π), given by the truth value of

OctoVerifyH(c, y,m◦, O) ∧ V (inst, c,m◦) with c := γ(H(inst, y)) .

3. Measure the internal state of the compressed oracle to obtain D.
4. Run E∗ on input MRoot−1

D (y) to obtain w.

Note that in the views of both P∗ and V , the interaction with H and the
interaction with E differ only in that their oracle queries are answered by a com-
pressed oracle instead of a real random oracle in the latter case. This simulation
is perfect and therefore εsim(λ, q, n) = 0.

Considering P∗ as the algorithm A in Corollary 5.7, the composition V ◦P∗

then matches up with the algorithm Ã for F = V . Thus, noting that κ(log ℓ+1)
is an upper bound on the amount of queries that OctoVerify makes,

Pr
�
v ̸= VD(inst,π)

�
≤ 2(κ log ℓ+ 1) · 2−n .

Therefore, we can bound bound the figure of merit εex as

εex(λ, q, n) = Pr
�
v = 1 ∧ (inst, w) /∈ R

�

≤ Pr
�
VD(inst,π) ∧ (inst, w) /∈ R

�
+ 2(κ log ℓ+ 1) · 2−n

≤ Pr[VD(inst,π) ∧ (inst, w) /∈ R |D ̸∈ SUC ∪ CL]

+ Pr[D ∈ SUC ∪ CL] + 2(κ log ℓ+ 1) · 2−n .
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Using the definition of VD(inst,π), understanding that c := γ ◦ D(inst, y),
we can write the first term as

Pr
�
OctoVerifyD(c, y,m◦, O) ∧ V (inst, c,m◦) ∧ (inst, w) /∈ R |D ̸∈ SUC ∪ CL

�

≤ Pr
�
V (inst, c,mc) for m := MRoot−1

D (y) ∧ (inst, w) /∈ R |D ̸∈ SUC ∪ CL
�

≤ Pr
�
D ∈ SUC |D ̸∈ SUC ∪ CL

�

= 0 ,

where the first equality exploits that D(m) = h iff m = D−1(h) for D ̸∈ CL.
We may thus conclude that

εex(λ, q, n) ≤ 2(κ log ℓ+ 1) · 2−n · 2−n + Pr
�
D ∈ SUC ∪ CL

�

≤ 2(κ log ℓ+ 1) · 2−n +
q
⊥ q

=⇒ SUC ∪ CL
y2

,

where the last inequality is by definition of
q
⊥ q

=⇒ ·
y
. The claimed bound now

follows from Lemma 5.22. ⊓⊔

5.5.3 Discussion: Application to Picnic, and Limiting the Proof
Size

Application to Picnic. A prominent use case of C&O protocols is the con-
struction of digital signature schemes via the Fiat-Shamir transformation. An
important example is Picnic [CDG+17] currently under consideration as an al-
ternate candidate in the NIST standardization process for post-quantum cryp-
tographic schemes. On a high level, the design of Picnic can be described as
follows. A C&O Σ-protocol is constructed using the MPC-in-the-head paradigm
[IKOS07a]. Then, the Fiat-Shamir transformation is applied in the usual way to
obtain a digital signature scheme. There are three evolutions of Picnic: Picnic-
FS, Picnic 2 and Picnic 3.12 Picnic-FS uses plain hash-based commitments,
while Picnic 2 and Picnic 3 use a Merkle-tree-based collective commitment.

All three evolutions enjoy provable post-quantum security when the hash
function used for the Fiat-Shamir transformation is modeled as a (quantum-
accessible) RO. The best reduction applying to all of them proceeds as follows.
First, Unruh’s rewinding lemma [Unr12] is used to construct a knowledge ex-
tractor for the underlying Σ-protocol based on an appropriate S-soundness no-
tion. Then, the generic QROM reduction for the Fiat-Shamir transformation
12 The original evolution also came with a variant using the Unruh transformation, Picnic-Ur.

We restrict our attention to the variants using the Fiat-Shamir transformation.
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from Theorem 3.7 is used to construct a knowledge extractor for the signa-
ture scheme in the QROM from the extractor for the Σ-protocol. Finally, the
technique from [GHHM21] is used for simulating the chosen-message oracle to
reduce breaking NMA (no-message attack) security to breaking CMA (chosen-
message attack) security. This final step connects to the previous one because
for the signature scheme the witness extracted from an NMA attacker is the
secret key.

The first two steps in this chain of reductions, i.e. Unruh’s rewinding and
Theorem 3.7, are, however, not tight: The former loses at least a fifth power in
the Picnic case, and the latter a factor of q2, where q is the number of random
oracle queries. This means that an NMA attacker with success probability ϵ
can be used to break the underlying hard problem with probability Ω(ϵ5/q10)
(or worse, depending on the Picnic variant).

For Picnic-FS (only), when in addition modeling the hash function used for
the commitments as a RO, Unruh’s rewinding can be replaced with the tight
online extraction technique from Chapter 4. The remaining loss due to the
Fiat-Shamir reduction is of order ϵ/q2, up to some additive terms accounting
for search and collision finding in the RO, a sizable improvement over the above
but still not tight.

By analyzing the Fiat-Shamir transformation of a C&O protocol (with or
without Merkle tree commitments) directly, our results provide a tight alter-
native to the above lossy reductions. Using Theorems 5.17 (for Picnic-FS) and
5.23 (for Picnic 2 and Picnic 3) we can avoid all multiplicative/power losses
in the reduction for NMA security. An NMA attacker with success probabil-
ity ϵ can, in other words, be used to break the underlying hard problem with
probability ϵ, up to some unavoidable additive terms accounting for search and
collision finding in the RO.

An observation about octopus opening sizes. Depending on the param-
eters of the C&O protocol, the octopus opening information, MOcto(c,m) can
be significantly smaller than the concatenation of the individual authentication
paths. On the other hand, it is also variable in size (namely dependent on the
choice of the challenge c), and the variance can be significant (see e.g. the com-
putations for gravity SPHINCS in [AE18]). In the context of a digital signature
scheme constructed via the Fiat-Shamir transformation of a Merkle-tree-based
C&O protocol, like, e.g., Picnic 2 and Picnic 3, this leads to the undesirable
property of a variable signature size, where signatures can be quite a bit larger
in the worst case than on average. This might, e.g., lead to problems when look-
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ing for a drop-in replacement for quantum-broken digital signature schemes for
use in a larger protocol, where signatures need to be stored in a data field of
fixed size.

One option to mitigate this situation is to cut off the tail of the octopus size
distribution, i.e. to restrict the challenge space of the Merkle-tree-based C&O
protocol to the set of challenges whose octopus is not larger than some bound.
This can be done before applying the Fiat-Shamir transformation, e.g. using
rejection sampling. In that way, one obtains a digital signature scheme with
significantly reduced worst case signature size, at the expense of a tiny security
loss.

5.5.4 The Merkle-Tree-Based Unruh Transformation

The Merkle tree based commitment mechanism can replace plain random-oracle
based commitments in any ordinary C&O protocol, in particular in Π := pU[Σ]
for any Σ-protocol Σ. The result is a Merkle-tree-based C&O protocol and we
obtain a corollary analogous to Corollary 5.21.

Corollary 5.24. Let Σ be an S-sound Σ-protocol with challenge space size ℓ0.
Then FS[MPpUr[Σ]] is online-extractable with

εex ≤ (22rℓ0 log (rℓ0) + 60) q32−n + 20q2
�
pStriv

�r
(64)

where MPpUr[Σ] is the Merkle-tree-based, Parallel-repeated, pre-Unruh trans-
formation of Σ, i.e., the Merkle-tree-based C&O protocol obtained by replacing
the commitments of pU[Π]r with a Merkle-tree-based collective commitment.

195



Bibliography

Bibliography

[ABCP22] Shahla Atapoor, Karim Baghery, Daniele Cozzo, and Robi Peder-
sen. CSI-SharK: CSI-FiSh with Sharing-friendly Keys. Cryptol-
ogy ePrint Archive, Paper 2022/1189. https://eprint.iacr.
org/2022/1189. 2022. url: https://eprint.iacr.org/2022/
1189.

[ABG+20] Amit Agarwal, James Bartusek, Vipul Goyal, Dakshita Khurana,
and Giulio Malavolta. Post-Quantum Multi-Party Computation.
2020. arXiv: 2005.12904 [quant-ph].

[AE18] Jean-Philippe Aumasson and Guillaume Endignoux. “Improving
Stateless Hash-Based Signatures”. In: Topics in Cryptology – CT-
RSA 2018. Ed. by Nigel P. Smart. Cham: Springer International
Publishing, 2018, pp. 219–242. isbn: 978-3-319-76953-0.

[AFLT12] Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and
Mehdi Tibouchi. “Tightly-Secure Signatures from Lossy Identi-
fication Schemes”. In: Advances in Cryptology – EUROCRYPT
2012. Ed. by David Pointcheval and Thomas Johansson. Berlin,
Heidelberg: Springer, 2012, pp. 572–590. isbn: 978-3-642-29011-4.

[AHU19] Andris Ambainis, Mike Hamburg, and Dominique Unruh. “Quan-
tum Security Proofs Using Semi-classical Oracles”. In: Advances
in Cryptology – CRYPTO 2019. Ed. by Alexandra Boldyreva
and Daniele Micciancio. Cham: Springer International Publish-
ing, 2019, pp. 269–295. isbn: 978-3-030-26951-7.

[AMRS20] Gorjan Alagic, Christian Majenz, Alexander Russell, and
Fang Song. “Quantum-Access-Secure Message Authentication
via Blind-Unforgeability”. In: Advances in Cryptology – EURO-
CRYPT 2020. Ed. by Anne Canteaut and Yuval Ishai. Cham:
Springer International Publishing, 2020, pp. 788–817. isbn: 978-
3-030-45727-3.

[ARU14] A. Ambainis, A. Rosmanis, and D. Unruh. “Quantum Attacks on
Classical Proof Systems: The Hardness of Quantum Rewinding”.
In: 2014 IEEE 55th Annual Symposium on Foundations of Com-
puter Science. Oct. 2014, pp. 474–483. doi: 10.1109/FOCS.2014.
57.

[BBB+18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G.
Maxwell. “Bulletproofs: Short Proofs for Confidential Transac-

196



Bibliography

tions and More”. In: 2018 IEEE Symposium on Security and Pri-
vacy (SP). May 2018, pp. 315–334. doi: 10.1109/SP.2018.
00020.

[BBHT98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp.
“Tight Bounds on Quantum Searching”. In: Fortschritte der
Physik 46.4-5 (1998), pp. 493–505.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann,
Christian Schaffner, and Mark Zhandry. “Random Oracles in a
Quantum World”. In: Advances in Cryptology – ASIACRYPT
2011. Ed. by Dong Hoon Lee and Xiaoyun Wang. Berlin, Hei-
delberg: Springer, 2011, pp. 41–69. isbn: 978-3-642-25385-0.

[BDK+21] Shi Bai, Leo Ducas, Eike Kiltz, Lepoint Tancrede, Vadim Lyuba-
shevsky, Peter Schwabe, Gregor Seiler, and Damien Stehle.
CRYSTALS-Dilithium Algorithm Specifications and Supporting
Documentation (Version 3.1). https : / / pq - crystals .
org / dilithium / data / dilithium - specification - round3 -
20210208.pdf, retrieved on 19.03.2023. 2021.

[Beu20] Ward Beullens. “Sigma Protocols for MQ, PKP and SIS, and
Fishy Signature Schemes”. In: Advances in Cryptology – EURO-
CRYPT 2020. Ed. by Anne Canteaut and Yuval Ishai. Cham:
Springer International Publishing, 2020, pp. 183–211. isbn: 978-
3-030-45727-3.

[BG93] Mihir Bellare and Oded Goldreich. “On Defining Proofs of Knowl-
edge”. In: Advances in Cryptology — CRYPTO’ 92. Ed. by Ernest
F. Brickell. Berlin, Heidelberg: Springer, 1993, pp. 390–420. isbn:
978-3-540-48071-6.

[BGKM23] Loïc Bidoux, Philippe Gaborit, Mukul Kulkarni, and Victor Ma-
teu. “Code-based signatures from new proofs of knowledge for the
syndrome decoding problem”. In: Designs, Codes and Cryptogra-
phy 91.2 (2023), pp. 497–544.

[BHH+19] Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hüls-
ing, and Edoardo Persichetti. “Tighter Proofs of CCA Security
in the Quantum Random Oracle Model”. In: Theory of Cryptog-
raphy. Ed. by Dennis Hofheinz and Alon Rosen. Cham: Springer
International Publishing, 2019, pp. 61–90. isbn: 978-3-030-36033-
7.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. “Quantum crypt-
analysis of hash and claw-free functions”. In: LATIN’98: The-

197



Bibliography

oretical Informatics. Ed. by Cláudio L. Lucchesi and Arnaldo
V. Moura. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998,
pp. 163–169. isbn: 978-3-540-69715-2.

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren.
“CSI-FiSh: Efficient Isogeny Based Signatures Through Class
Group Computations”. In: Advances in Cryptology – ASI-
ACRYPT 2019. Ed. by Steven D. Galbraith and Shiho Mo-
riai. Cham: Springer International Publishing, 2019, pp. 227–247.
isbn: 978-3-030-34578-5.

[BLZ21] Jeremiah Blocki, Seunghoon Lee, and Samson Zhou. On the Se-
curity of Proofs of Sequential Work in a Post-Quantum World.
2021. arXiv: 2006.10972 [cs.CR].

[BMPS20] Jean-François Biasse, Giacomo Micheli, Edoardo Persichetti, and
Paolo Santini. “LESS is More: Code-Based Signatures Without
Syndromes”. In: Progress in Cryptology - AFRICACRYPT 2020.
Ed. by Abderrahmane Nitaj and Amr Youssef. Cham: Springer
International Publishing, 2020, pp. 45–65. isbn: 978-3-030-51938-
4.

[BR93] Mihir Bellare and Phillip Rogaway. “Random oracles are practi-
cal: A paradigm for designing efficient protocols”. In: Proceedings
of the 1st ACM conference on Computer and communications se-
curity. ACM. 1993, pp. 62–73.

[BSK+21] Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales,
Emmanuela Orsini, Peter Scholl, and Greg Zaverucha. “Banquet:
Short and Fast Signatures from AES”. In: Public-Key Cryptogra-
phy – PKC 2021. Ed. by Juan A. Garay. Cham: Springer Inter-
national Publishing, 2021, pp. 266–297. isbn: 978-3-030-75245-3.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and
Greg Zaverucha. “Post-Quantum Zero-Knowledge and Signatures
from Symmetric-Key Primitives”. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications
Security. CCS ’17. Dallas, Texas, USA: ACM, 2017, pp. 1825–
1842. isbn: 978-1-4503-4946-8. doi: 10.1145/3133956.3133997.

[CDG+19] Melissa Chase, David Derler, Steven Goldfeder, Jonathan Katz,
Vladimir Kolesnikov, Claudio Orlandi, Sebastian Ramacher,
Christian Rechberger, Daniel Slamanig, Xiao Wang, et al. “The

198



Bibliography

picnic signature scheme”. In: Submission to NIST Post-Quantum
Cryptography project (2019).

[CDG+20] Melissa Chase, David Derler, Steven Goldfeder, Jonathan Katz,
Vladimir Kolesnikov, Claudio Orlandi, Sebastian Ramacher,
Christian Rechberger, Daniel Slamanig, Xiao Wang, and Greg
Zaverucha. The Picnic Signature Scheme, Design Document v2.1.
2020. url: https://github.com/microsoft/Picnic/blob/
master/spec/design-v2.2.pdf.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. “Proofs
of Partial Knowledge and Simplified Design of Witness Hiding
Protocols”. In: Advances in Cryptology — CRYPTO ’94. Ed. by
Yvo G. Desmedt. Berlin, Heidelberg: Springer Berlin Heidelberg,
1994, pp. 174–187. isbn: 978-3-540-48658-9.

[CFHL21] Kai-Min Chung, Serge Fehr, Yu-Hsuan Huang, and Tai-Ning
Liao. “On the Compressed-Oracle Technique, and Post-Quantum
Security of Proofs of Sequential Work”. In: Advances in Cryptol-
ogy – EUROCRYPT 2021. Ed. by Anne Canteaut and François-
Xavier Standaert. Cham: Springer International Publishing, 2021,
pp. 598–629. isbn: 978-3-030-77886-6.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. “The random
oracle methodology, revisited”. In: Journal of the ACM 51.4 (July
2004), pp. 557–594. issn: 00045411. doi: 10 . 1145 / 1008731 .
1008734. arXiv: 0010019 [cs]. url: http://arxiv.org/abs/
cs/0010019.

[CGLQ20] Kai-Min Chung, Siyao Guo, Qipeng Liu, and Luowen Qian.
“Tight Quantum Time-Space Tradeoffs for Function Inversion”.
In: 2020 IEEE 61st Annual Symposium on Foundations of Com-
puter Science (FOCS). 2020, pp. 673–684. doi: 10 . 1109 /
FOCS46700.2020.00068.

[Cha19] André Chailloux. Tight quantum security of the Fiat-Shamir
transform for commit-and-open identification schemes with ap-
plications to post-quantum signature schemes. Cryptology ePrint
Archive, Report 2019/699, version 1 Jul 2019. https://eprint.
iacr.org/2019/699/20190701:091436. 2019.

[Cha21] André Chailloux. Tight quantum security of the Fiat-Shamir
transform for commit-and-open identification schemes with ap-
plications to post-quantum signature schemes. Cryptology ePrint

199



Bibliography

Archive, Report 2019/699, version 16 Mar 2021. https : / /
eprint.iacr.org/2019/699/20210316:124850. 2021.

[CHH+21] Kai-Min Chung, Yao-Ching Hsieh, Mi-Ying Huang, Yu-Hsuan
Huang, Tanja Lange, and Bo-Yin Yang. Isogeny-based Group Sig-
natures and Accountable Ring Signatures in QROM. Cryptology
ePrint Archive, Paper 2021/1368. 2021. url: https://eprint.
iacr.org/2021/1368.

[CHR+16] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona
Samardjiska, and Peter Schwabe. “From 5-Pass MQ-Based Iden-
tification to MQ-Based Signatures”. In: Advances in Cryptology –
ASIACRYPT 2016. Ed. by Jung Hee Cheon and Tsuyoshi Takagi.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 135–165.
isbn: 978-3-662-53890-6.

[CHR+18] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona
Samardjiska, and Peter Schwabe. “SOFIA: MQ-Based Signatures
in the QROM”. In: Public-Key Cryptography – PKC 2018. Ed.
by Michel Abdalla and Ricardo Dahab. Cham: Springer Interna-
tional Publishing, 2018, pp. 3–33. isbn: 978-3-319-76581-5.

[CHR+20] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona
Samardjiska, and Peter Schwabe. MQDSS Specfications version
2.1. https://repository.ubn.ru.nl/bitstream/handle/
2066/236576/236576.pdf, retrieved on 16.03.2023. 2020.

[CMS19] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. “Suc-
cinct Arguments in the Quantum Random Oracle Model”. In:
Theory of Cryptography. Ed. by Dennis Hofheinz and Alon Rosen.
Cham: Springer International Publishing, 2019, pp. 1–29. isbn:
978-3-030-36033-7.

[CMSZ19] Jan Czajkowski, Christian Majenz, Christian Schaffner, and Se-
bastian Zur. Quantum Lazy Sampling and Game-Playing Proofs
for Quantum Indifferentiability. Cryptology ePrint Archive, Re-
port 2019/428. https://eprint.iacr.org/2019/428. 2019.

[Dam10] Ivan Damgard. On Sigma-Protocols, Lecture notes, Faculty of Sci-
ence Aarhus University, Department of Computer Science. 2010.
url: http://www.cs.au.dk/~ivan/Sigma.pdf.

[DFG13] Özgür Dagdelen, Marc Fischlin, and Tommaso Gagliardoni. “The
Fiat-Shamir Transformation in a Quantum World”. In: Advances
in Cryptology - ASIACRYPT 2013. Ed. by Kazue Sako and

200



Bibliography

Palash Sarkar. Berlin, Heidelberg: Springer, 2013, pp. 62–81.
isbn: 978-3-642-42045-0.

[DFM20] Jelle Don, Serge Fehr, and Christian Majenz. “The Measure-and-
Reprogram Technique 2.0: Multi-round Fiat-Shamir and More”.
In: Advances in Cryptology – CRYPTO 2020. Ed. by Daniele Mic-
ciancio and Thomas Ristenpart. Cham: Springer International
Publishing, 2020, pp. 602–631.

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.
“Security of the Fiat-Shamir Transformation in the Quantum
Random-Oracle Model”. In: Advances in Cryptology – CRYPTO
2019. Ed. by Alexandra Boldyreva and Daniele Micciancio.
Cham: Springer International Publishing, 2019, pp. 356–383.

[DFMS22a] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.
“Online-Extractability in the Quantum Random-Oracle Model”.
In: Advances in Cryptology – EUROCRYPT 2022. Ed. by Orr
Dunkelman and Stefan Dziembowski. Cham: Springer Interna-
tional Publishing, 2022, pp. 677–706.

[DFMS22b] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.
“Efficient NIZKs and Signatures from Commit-and-Open Proto-
cols in the QROM”. In: Advances in Cryptology – CRYPTO 2022.
Ed. by Yevgeniy Dodis and Thomas Shrimpton. Cham: Springer
Nature Switzerland, 2022, pp. 729–757.

[DH76] W. Diffie and M. Hellman. “New directions in cryptography”. In:
IEEE Transactions on Information Theory 22.6 (1976), pp. 644–
654. doi: 10.1109/TIT.1976.1055638.

[DJ92] David Deutsch and Richard Jozsa. “Rapid Solution of Problems
by Quantum Computation”. In: Proceedings of the Royal Society
of London Series A 439.1907 (Dec. 1992), pp. 553–558. doi: 10.
1098/rspa.1992.0167.

[DKL+18a] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. “CRYSTALS-
Dilithium: A Lattice-Based Digital Signature Scheme”. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems
2018.1 (Feb. 2018), pp. 238–268. doi: 10.13154/tches.v2018.
i1.238- 268. url: https://tches.iacr.org/index.php/
TCHES/article/view/839.

[DKL+18b] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. “CRYSTALS-

201



Bibliography

Dilithium: A Lattice-Based Digital Signature Scheme”. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems
2018.1 (Feb. 2018), pp. 238–268. doi: 10.13154/tches.v2018.
i1.238- 268. url: https://tches.iacr.org/index.php/
TCHES/article/view/839.

[DKR+21] Christoph Dobraunig, Daniel Kales, Christian Rechberger,
Markus Schofnegger, and Greg Zaverucha. Shorter Signatures
Based on Tailor-Made Minimalist Symmetric-Key Crypto. Cryp-
tology ePrint Archive, Report 2021/692. https://ia.cr/2021/
692. 2021.

[Ell87] James Ellis. The history of Non-Secret Encryption. 1987. url:
https://cryptocellar.org/cesg/ellis.pdf.

[ES15] Edward Eaton and Fang Song. “Making Existential-unforgeable
Signatures Strongly Unforgeable in the Quantum Random-oracle
Model”. In: 10th Conference on the Theory of Quantum Compu-
tation, Communication and Cryptography. 2015, p. 147.

[Feh18] Serge Fehr. “Classical Proofs for the Quantum Collapsing Prop-
erty of Classical Hash Functions”. In: Theory of Cryptography
Conference - TCC2018, volume 11240 of Lecture Notes in Com-
puter Science (2018), pp. 315–338. eprint: 2018/887.

[Feh22] Serge Fehr. Multipartite Quantum Systems. University Lecture
Notes. 2022. url: https://homepages.cwi.nl/~fehr/QC2022/
Ch2.pdf.

[Fis05] Marc Fischlin. “Communication-Efficient Non-interactive Proofs
of Knowledge with Online Extractors”. In: Advances in Cryptol-
ogy – CRYPTO 2005. Ed. by Victor Shoup. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 152–168. isbn: 978-3-540-
31870-5.

[FJ20] Patrick Fischlin Marc and Harasser and Christian Janson. “Sig-
natures from Sequential-OR Proofs”. In: Advances in Cryptology
- EUROCRYPT 2020. Ed. by Anne Canteaut and Yuval Ishai.
Vol. 12107. Lecture Notes in Computer Science. Springer, 2020,
pp. 212–244. doi: 10.1007/978-3-030-45727-3\_8.

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson,
and Daniele Venturi. “On the Non-malleability of the Fiat-Shamir
Transform”. In: Indocrypt 2012. Vol. 7668 LNCS. 2012, pp. 60–79.
isbn: 9783642349300. doi: 10.1007/978-3-642-34931-7_5.

202



Bibliography

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. “How to Enhance the
Security of Public-Key Encryption at Minimum Cost”. In: Pub-
lic Key Cryptography. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1999, pp. 53–68. isbn: 978-3-540-49162-0.

[FS87] Amos Fiat and Adi Shamir. “How To Prove Yourself: Practical So-
lutions to Identification and Signature Problems”. In: Advances in
Cryptology — CRYPTO’ 86. Ed. by Andrew M. Odlyzko. Berlin,
Heidelberg: Springer, 1987, pp. 186–194. isbn: 978-3-540-47721-1.

[GHHM21] Alex B. Grilo, Kathrin Hövelmanns, Andreas Hülsing, and Chris-
tian Majenz. “Tight Adaptive Reprogramming in the QROM”. In:
Advances in Cryptology – ASIACRYPT 2021. Ed. by Mehdi Ti-
bouchi and Huaxiong Wang. Cham: Springer International Pub-
lishing, 2021, pp. 637–667. isbn: 978-3-030-92062-3.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. “ZK-
Boo: Faster Zero-Knowledge for Boolean Circuits”. In: 25th
USENIX Security Symposium (USENIX Security 16). Austin,
TX: USENIX Association, 2016, pp. 1069–1083. isbn: 978-1-
931971-32-4. url: https : / / www . usenix . org / conference /
usenixsecurity16 / technical - sessions / presentation /
giacomelli.

[GMR85] S Goldwasser, S Micali, and C Rackoff. “The Knowledge Com-
plexity of Interactive Proof-Systems”. In: Proceedings of the Sev-
enteenth Annual ACM Symposium on Theory of Computing.
STOC ’85. Providence, Rhode Island, USA: Association for Com-
puting Machinery, 1985, pp. 291–304. isbn: 0897911512. doi: 10.
1145/22145.22178. url: https://doi.org/10.1145/22145.
22178.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs That
Yield Nothing but Their Validity or All Languages in NP Have
Zero-Knowledge Proof Systems”. In: J. ACM 38.3 (July 1991),
pp. 690–728. issn: 0004-5411. doi: 10.1145/116825.116852.
url: https://doi.org/10.1145/116825.116852.

[GPS22] Shay Gueron, Edoardo Persichetti, and Paolo Santini. “Designing
a Practical Code-Based Signature Scheme from Zero-Knowledge
Proofs with Trusted Setup”. In: Cryptography 6.1 (2022). issn:
2410-387X. url: https://www.mdpi.com/2410-387X/6/1/5.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A Modu-
lar Analysis of the Fujisaki-Okamoto Transformation”. In: Theory

203



Bibliography

of Cryptography. Ed. by Yael Kalai and Leonid Reyzin. Cham:
Springer International Publishing, 2017, pp. 341–371. isbn: 978-
3-319-70500-2.

[HM21] Yassine Hamoudi and Frédéric Magniez. “Quantum Time-
Space Tradeoff for Finding Multiple Collision Pairs”. In: 16th
Conference on the Theory of Quantum Computation, Com-
munication and Cryptography (TQC 2021). Ed. by Min-Hsiu
Hsieh. Vol. 197. Leibniz International Proceedings in Informat-
ics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021, 1:1–1:21. isbn: 978-3-95977-198-
6. doi: 10.4230/LIPIcs.TQC.2021.1. url: https://drops.
dagstuhl.de/opus/volltexte/2021/13996.

[IKOS07a] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sa-
hai. “Zero-Knowledge from Secure Multiparty Computation”. In:
Proceedings of the Thirty-Ninth Annual ACM Symposium on
Theory of Computing. STOC ’07. San Diego, California, USA:
Association for Computing Machinery, 2007, pp. 21–30. isbn:
9781595936318. doi: 10.1145/1250790.1250794. url: https:
//doi.org/10.1145/1250790.1250794.

[IKOS07b] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
“Zero-knowledge from secure multiparty computation”. In: Pro-
ceedings of the thirty-ninth annual ACM symposium on Theory of
computing - STOC ’07 (2007), p. 21. issn: 07378017. url: http:
//portal.acm.org/citation.cfm?doid=1250790.1250794.

[Ker83] Auguste Kerckhoffs. “La cryptographie militaire”. In: Journal des
sciences militaires IX.Jan. (1883), pp. 5–83. url: http://www.
petitcolas.net/fabien/kerckhoffs/.

[KKPP20] Shuichi Katsumata, Kris Kwiatkowski, Federico Pintore, and
Thomas Prest. “Scalable Ciphertext Compression Techniques
for Post-quantum KEMs and Their Applications”. In: Advances
in Cryptology – ASIACRYPT 2020. Ed. by Shiho Moriai and
Huaxiong Wang. Cham: Springer International Publishing, 2020,
pp. 289–320. isbn: 978-3-030-64837-4.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. “Im-
proved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures”. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Secu-
rity. CCS ’18. Toronto, Canada: Association for Computing Ma-

204



Bibliography

chinery, 2018, pp. 525–537. isbn: 9781450356930. url: https:
//doi.org/10.1145/3243734.3243805.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. “A
Concrete Treatment of Fiat-Shamir Signatures in the Quantum
Random-Oracle Model”. In: Advances in Cryptology – EURO-
CRYPT 2018. Ed. by Jesper Buus Nielsen and Vincent Rijmen.
Cham: Springer, 2018, pp. 552–586. isbn: 978-3-319-78372-7.

[KM15] Neal Koblitz and Alfred J. Menezes. “The random oracle model: a
twenty-year retrospective”. In: Designs, Codes and Cryptography
77 (2015), pp. 587–610. doi: 10.1007/s10623-015-0094-2.

[KZ20] Daniel Kales and Greg Zaverucha. “Improving the Performance
of the Picnic Signature Scheme”. English. In: IACR Transactions
on Cryptographic Hardware and Embedded Systems 2020.4 (Sept.
2020). CHES 2020 : 2020 Annual Conference on Cryptographic
Hardware and Embedded Systems ; Conference date: 14-09-2020
Through 17-09-2020, pp. 154–188. issn: 2569-2925. doi: https:
//doi.org/10.13154/tches.v2020.i4.154-188.

[LWW04] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. “Linkable
Spontaneous Anonymous Group Signature for Ad Hoc Groups”.
In: Information Security and Privacy. Ed. by Huaxiong Wang,
Josef Pieprzyk, and Vijay Varadharajan. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 325–335. isbn: 978-3-540-
27800-9.

[Lyu09] Vadim Lyubashevsky. “Fiat-Shamir with Aborts: Applications to
Lattice and Factoring-Based Signatures”. In: Advances in Cryp-
tology – ASIACRYPT 2009. Ed. by Mitsuru Matsui. Berlin, Hei-
delberg: Springer, 2009, pp. 598–616. isbn: 978-3-642-10366-7.

[Lyu12] Vadim Lyubashevsky. “Lattice Signatures without Trapdoors”.
In: Advances in Cryptology – EUROCRYPT 2012. Ed. by David
Pointcheval and Thomas Johansson. Berlin, Heidelberg: Springer,
2012, pp. 738–755. isbn: 978-3-642-29011-4.

[LZ19a] Qipeng Liu and Mark Zhandry. “On Finding Quantum Multi-
collisions”. In: Advances in Cryptology – EUROCRYPT 2019. Ed.
by Yuval Ishai and Vincent Rijmen. Cham: Springer International
Publishing, 2019, pp. 189–218. isbn: 978-3-030-17659-4.

[LZ19b] Qipeng Liu and Mark Zhandry. “Revisiting Post-quantum Fiat-
Shamir”. In: Advances in Cryptology – CRYPTO 2019. Ed. by
Alexandra Boldyreva and Daniele Micciancio. Cham: Springer In-

205



Bibliography

ternational Publishing, 2019, pp. 326–355. isbn: 978-3-030-26951-
7.

[Mer78] Ralph C. Merkle. “Secure Communications over Insecure Chan-
nels”. In: Commun. ACM 21.4 (Apr. 1978), pp. 294–299. issn:
0001-0782. url: https://doi.org/10.1145/359460.359473.

[NC11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computa-
tion and Quantum Information: 10th Anniversary Edition. 10th.
New York, NY, USA: Cambridge University Press, 2011. isbn:
1107002176, 9781107002173.

[Pas03] Rafael Pass. “On Deniability in the Common Reference String
and Random Oracle Model”. In: Advances in Cryptology -
CRYPTO 2003. Ed. by Dan Boneh. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 316–337. isbn: 978-3-540-45146-4.

[Pas04] Rafael Pass. “Alternative variants of zero-knowledge proofs”. PhD
thesis. KTH Stockholm, 2004.

[PS96] David Pointcheval and Jacques Stern. “Security Proofs for Signa-
ture Schemes”. In: LNCS 1070 (1996), pp. 387–398. url: https:
//www.di.ens.fr/%7B~%7Dpointche/Documents/Papers/1996%
7B%5C_%7Deurocrypt.pdf.

[RCB22] Prasanna Ravi, Anupam Chattopadhyay, and Shivam Bhasin.
“Security and Quantum Computing: An Overview”. In: 2022
IEEE 23rd Latin American Test Symposium (LATS). 2022, pp. 1–
6. doi: 10.1109/LATS57337.2022.9936966.

[RSA78] R. L. Adleman Rivest, A. Shamir, and L. Adleman. “A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems”. In:
Commun. ACM 21.2 (Feb. 1978), pp. 120–126. issn: 0001-0782.
url: https://doi.org/10.1145/359340.359342.

[Sho94] P.W. Shor. “Algorithms for quantum computation: discrete log-
arithms and factoring”. In: Proceedings 35th Annual Symposium
on Foundations of Computer Science. 1994, pp. 124–134. doi:
10.1109/SFCS.1994.365700.

[Sim97] Daniel R. Simon. “On the Power of Quantum Computation”. In:
SIAM Journal on Computing 26.5 (1997), pp. 1474–1483. doi:
10.1137/S0097539796298637.

[SSH11] Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. “Public-
Key Identification Schemes Based on Multivariate Quadratic
Polynomials”. In: Advances in Cryptology – CRYPTO 2011. Ed.

206



Bibliography

by Phillip Rogaway. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2011, pp. 706–723. isbn: 978-3-642-22792-9.

[TDJ+22] Gang Tang, Dung Hoang Duong, Antoine Joux, Thomas Plan-
tard, Youming Qiao, and Willy Susilo. “Practical Post-Quantum
Signature Schemes from Isomorphism Problems of Trilinear
Forms”. In: Advances in Cryptology – EUROCRYPT 2022. Ed. by
Orr Dunkelman and Stefan Dziembowski. Cham: Springer Inter-
national Publishing, 2022, pp. 582–612. isbn: 978-3-031-07082-2.

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. “Post-Quantum
Security of the Fujisaki-Okamoto and OAEP Transforms”. In:
Theory of Cryptography. Ed. by Martin Hirt and Adam Smith.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 192–
216. isbn: 978-3-662-53644-5.

[Unr12] Dominique Unruh. “Quantum Proofs of Knowledge”. In: Ad-
vances in Cryptology – EUROCRYPT 2012. Ed. by David
Pointcheval and Thomas Johansson. Berlin, Heidelberg: Springer,
2012, pp. 135–152. isbn: 978-3-642-29011-4.

[Unr14a] Dominique Unruh. “Quantum Position Verification in the Ran-
dom Oracle Model”. In: Advances in Cryptology – CRYPTO 2014.
Ed. by Juan A. Garay and Rosario Gennaro. Berlin, Heidelberg:
Springer, 2014, pp. 1–18. isbn: 978-3-662-44381-1.

[Unr14b] Dominique Unruh. “Revocable Quantum Timed-Release Encryp-
tion”. In: Advances in Cryptology – EUROCRYPT 2014. Ed.
by Phong Q. Nguyen and Elisabeth Oswald. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 129–146. isbn: 978-3-642-
55220-5.

[Unr15a] Dominique Unruh. Computationally binding quantum commit-
ments. Cryptology ePrint Archive, Paper 2015/361. https://
eprint.iacr.org/2015/361. 2015. url: https://eprint.
iacr.org/2015/361.

[Unr15b] Dominique Unruh. “Non-Interactive Zero-Knowledge Proofs in
the Quantum Random Oracle Model”. In: Advances in Cryptol-
ogy - EUROCRYPT 2015. Ed. by Elisabeth Oswald and Marc
Fischlin. Berlin, Heidelberg: Springer, 2015, pp. 755–784. isbn:
978-3-662-46803-6.

[Unr16] Dominique Unruh. “Computationally Binding Quantum Commit-
ments”. In: Advances in Cryptology – EUROCRYPT 2016. Ed.

207



Bibliography

by Marc Fischlin and Jean-Sébastien Coron. Berlin, Heidelberg:
Springer, 2016, pp. 497–527. isbn: 978-3-662-49896-5.

[Unr17] Dominique Unruh. “Post-quantum Security of Fiat-Shamir”. In:
Advances in Cryptology – ASIACRYPT 2017. Ed. by Tsuyoshi
Takagi and Thomas Peyrin. Cham: Springer, 2017, pp. 65–95.
isbn: 978-3-319-70694-8.

[Wik18] Douglas Wikström. Special Soundness Revisited. Cryptology
ePrint Archive, Report 2018/1157. https://ia.cr/2018/1157.
2018.

[YZ21] Takashi Yamakawa and Mark Zhandry. “Classical vs Quantum
Random Oracles”. In: Advances in Cryptology – EUROCRYPT
2021. Ed. by Anne Canteaut and François-Xavier Standaert.
Cham: Springer International Publishing, 2021, pp. 568–597.
isbn: 978-3-030-77886-6.

[Zha12] Mark Zhandry. “How to Construct Quantum Random Functions”.
In: 2012 IEEE 53rd Annual Symposium on Foundations of Com-
puter Science. IEEE, Oct. 2012, pp. 679–687. isbn: 978-0-7695-
4874-6. doi: 10.1109/FOCS.2012.37. url: https://eprint.
iacr.org/2012/182.pdf.

[Zha15a] Mark Zhandry. “A note on the quantum collision and set equal-
ity problems”. In: Quantum Information and Computation 15.7-8
(2015), pp. 557–567.

[Zha15b] Mark Zhandry. “Secure identity-based encryption in the quantum
random oracle model”. In: International Journal of Quantum In-
formation 13.04 (2015), p. 1550014.

[Zha19a] Mark Zhandry. “How to Record Quantum Queries, and Applica-
tions to Quantum Indifferentiability”. In: Advances in Cryptology
– CRYPTO 2019. Ed. by Alexandra Boldyreva and Daniele Mic-
ciancio. Full Version (1 March 2019): https://eprint.iacr.
org/2018/276/20190301:184107. Cham: Springer International
Publishing, 2019, pp. 239–268. isbn: 978-3-030-26951-7.

[Zha19b] Mark Zhandry. “Quantum Lightning Never Strikes the Same
State Twice”. In: Advances in Cryptology – EUROCRYPT 2019.
Ed. by Yuval Ishai and Vincent Rijmen. Cham: Springer Inter-
national Publishing, 2019, pp. 408–438. isbn: 978-3-030-17659-4.

208
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Samenvatting

Het doel van dit proefschrift is om nieuwe technieken te presenteren voor
het geven van veiligheidsbewijzen voor cryptografische protocollen die opge-
wassen zijn tegen kwantumtegenstanders. De meeste resultaten vallen binnen
de context van een geïdealiseerd model dat het ‘quantum random-oracle model’
(QROM) wordt genoemd. Een bijzondere uitdaging is om – enkel uit de interac-
tie met het orakel – een stukje kennis te extraheren dat een tegenstander bezit,
zonder dat de effecten van de ineenstorting van de golffunctie, veroorzaakt door
de observatie van een kwantumtoestand, roet in het eten gooien.

In hoofdstuk 3 gaan we die uitdaging aan door de nieuwe ‘measure-and-
reprogram’ techniek te introduceren. We gebruiken deze techniek om het eerste
post-kwantum veiligheidsbewijs van de Fiat-Shamir transformatie te bewerk-
stelligen – zowel de standaard als de multi-ronde versies – waardoor een QROM
veiligheidsreductie mogelijk wordt voor een grote klasse van post-kwantum
handtekeningsystemen.

Het belangrijkste obstakel dat overwonnen moet worden is dat het observeren
van een van de queries van de tegenstander mogelijk zijn toestand verstoort,
waardoor het in het algemeen moeilijk is om het gedrag van de tegenstander
tijdens het verdere verloop te voorspellen. De toestand na de meting kan po-
tentieel slechts een verwaarloosbare overeenkomst hebben met het origineel, als
deze bestaat uit een superpositie over exponentieel veel query-inputs. In onze
analyse zijn we echter in staat om de verstoring veroorzaakt door de meting te
beperken. We breiden onze techniek uit naar multi-ronde Fiat-Shamir en laten
zien dat het opgelopen reductieverlies optimaal is in het algemene geval.

Waar in het vorige hoofdstuk extractie van een query-input mogelijk was ten
koste van enige (polynomiale) verstoring, en extractie in een interactief protocol
Π afhankelijk was van ‘terugspoelen’, laten we in hoofdstuk 4 zien dat zulke
nadelen niet altijd nodig zijn. We tonen aan dat in bepaalde gevallen – bijvoor-
beeld wanneer het eerste bericht van Π bestaat uit een hash-gebaseerde com-
mitment die we modelleren als een random-oracle – online extractie mogelijk is.
‘Online’ betekent in dit geval lineair (niet gebruik makend van ‘terugspoelen’)
en on-the-fly (tijdens de uitvoering van het protocol en zonder het te verstoren).
Terugspoelen veroorzaakt vaak een reductieverlies (omdat de tegenstander twee
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keer moet slagen) en uiteraard veroorzaakt een verstoring in de toestand van
de tegenstander ook een verlies. Indien mogelijk heeft online extractie dus de
voorkeur.

Onze eerste belangrijke toepassing is de zogenaamde ‘commit-and-open proto-
collen’. Deze protocollen vormen een subklasse van sigma-protocollen, waarbij
het eerste bericht een verzameling commitments is, en de challenge bepaalt
welke subset hiervan de prover moet openen in het derde bericht. De tweede
belangrijke toepassing is de Fujisaki-Okamoto transformatie, die ten grondslag
ligt aan veel KEM’s in de bekende NIST post-quantum competitie. We geven
het eerste volledige post-kwantum veiligheidsbewijs van de FO transformatie.

Tenslotte laten we in hoofdstuk 5 opnieuw online extractability zien voor
commit-and-open protocollen, maar nu van de Fiat-Shamir getransformeerde
niet-interactieve versie ervan. Hoewel de technieken uit hoofdstuk 3 en 4 gecom-
bineerd zouden kunnen worden om een veiligheidsreductie voor zulke proto-
collen te krijgen, zou deze strategie niet resulteren in online extractie vanwege de
verstoring die wordt veroorzaakt door de meting in de measure-and-reprogram
techniek, waardoor er een (2q + 1)2 multiplicatief verlies optreedt voor de suc-
ceskans van de reductie.

Onze veiligheidsreductie in dit hoofdstuk is optimaal: Als een prover een geldig
bewijs uitvoert, slaagt de online-extractor, behalve met een kleine kans, die
verband houdt met collision- en preimage-aanvallen op de betrokken hashfunc-
ties. Ons resultaat geldt ook voor een variant van de Fiat-Shamir transformatie
waar een digitaal handtekeningsysteem uitkomt. Het maakt daardoor voor het
eerst een multiplicatief optimale veiligheidsreductie in de QROM mogelijk voor
bijvoorbeeld de digitale handtekeningsystemen gebaseerd op het MPC-in-the-
head paradigma, zoals Picnic, Banquet en Rainier.
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