
Studies into interactive didactic approaches for learning
software design using UML
Stikkolorum, D.R.

Citation
Stikkolorum, D. R. (2022, December 14). Studies into interactive didactic
approaches for learning software design using UML. Retrieved from
https://hdl.handle.net/1887/3497615
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3497615
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3497615


Chapter6
Uncovering Common Difficulties of
Students Learning Software Design

This Chapter further investigates the prelimary study that was conducted in
Chapter 5. It describes an online experiment with the aim to reveal common
difficulties and modelling strategies of students during class diagram design.

To gain more insight in their difficulties while performing a software design task,
the students were asked to register their arising questions using a form in WebUML
(Chapter 4). To gain more insight in the overall class design approach we compared
students that use Breadth First strategies with those that use Depth First strategies
in terms of grading overall assignment performance and diagram layout. Based
on statistical analysis and diagram observations we noticed i) students seem
to introduce noise by misunderstanding the assignment text ii) students have
difficulties in choosing the right abstractions iii) good layout seems to lead to
a good overall grade iv) the difference in grade between the Breadth First and
Depth First strategy groups is not significant, however comparing the number of
element moves, as possible measure for efficiency, indicates significant difference.
We suggest follow-up studies to investigate the results in more detail.

This chapter is based on the following publication: Dave R. Stikkolorum, Truong Ho-Quang, Bilal
Karashneh, and Michel R.V. Chaudron. Uncovering students’ common difficulties and strategies during
a class diagram design process: an online experiment. In Educators Symposium 2015, co-located with the
ACM/IEEE 18th International Conference on Model Driven Engineering Languages and Systems, 2015



92 Uncovering Common Difficulties of Students Learning Software Design

6.1 Introduction

Novice software designers, students or newly-qualified professionals, struggle with
different problems during their training tasks or first software development assign-
ments. Especially in the context of software design. Several studies show students’
difficulties that are related to UML syntax [80] (or other modelling languages) and
reasoning, in special abstraction skills [69][113][141]. Educators are all aware of the
different learning styles [67][154] students have. In order to adjust study programs
to be more suitable for different types of learning styles we need to understand why
students make the mistakes they make.

While doing an assignment, lecturers are not always present to give feedback on the
steps students take or questions they have. Furthermore, students will not always pro-
actively ask a question the moment they have one. We assume there is a relationship
between the questions they ask themselves during a modelling task and how the design
process takes form. Recording students’ questions would provide more insight into
their design processes - insight in students’ considerations while creating a design or
what typical decisions they make or think they have to make.

In Chapter 5 we described how students used our online UML editor WebUML1

during a class diagram design task. WebUML is capable of logging UML class design
activities (such as creating elements, movements, deletion etc.). We introduced our
way to categorise the approach into depth first (DF) and breadth first (BF) strategies.
These two strategies are part of a set of four strategies (see Table 6.1) that explains
students’ overall approach of making a software design. BF and DF were the dominant
approaches. Students seem to construct their design by building classes with detail
first and then associate (DF) or having an overall class framework first and then add
detail (BF).

In order to do more in-depth research on the design steps students take and the
problems they face we extended WebUML with a ‘register-your-question-button’ to
record questions and comments students have during their modelling task.

A part of the students’ approach probably consists of how they organise their diagrams,
the quality of the layout. In this chapter we want to follow up on our previous study
on a large scale to show whether the strategies we identified are common. We used 98
student-pairs to achieve this. Our main research questions were:

• RQ1: Do students have typical questions that arise during the development
process of a software design?

1https://webuml.drstikko.nl

https://webuml.drstikko.nl


Related Work 93

Strategy name Activity sequence

Depthless Strategy: class→ associate

Depth First Strategy: class→ add detail → associate

Breadth First Strategy: class→ associate → add detail

Ad Hoc Strategy: no structured approach

Table 6.1: Different strategy types

• RQ2: Does the Breadth First or Depth First strategy leads to a better grade for a
class diagram design task?

• RQ3: Does the layout of the diagram influences the grade of a student’s work?

The remainder of this chapter is organised as follows: in Section 6.2 we explore related
work, in Section 6.3 we explain the method we used. After showing the results in
Section 6.4 we discuss them in Section 6.5. Validity threats are discussed in Section 6.6.
We conclude and identify future work in Section 6.7.

6.2 Related Work

Leung and Bolloju [80] relate common mistakes novice modellers make to 3 quality
categories: syntax, pragmatic and semantic. And suggest this knowledge could be used
for training purposes. They don’t relate the categories to the design process or grading.
Although syntax is important, our study focuses more on the semantic category.

The visualisation of log files is close to the process of mining research. There are a
number of tools that provide different ways of presenting event-based logging. The
following two are most related to our visualiser.

Song et al. [125] introduced the tool Dotted Chart that displays the events of the
instances of a process as coloured dots on its time-lines. However, the tool is limited in
its ability to present different steps of processes (e.g., creation, movement, renaming of
a particular activity) on the same chart.

Claes et al. [26] followed up on the research in [125] and introduced a way to improve
the visualisation. The tool PPMChart visualises modelling operations of one modeller



94 Uncovering Common Difficulties of Students Learning Software Design

(one person) in the construction of a single process model as different coloured and
shaped dots in a horizontal time-lines chart. The authors concluded that this approach
of visualisation would provide audiences with different views at different levels of ab-
straction on the process modelling operations. However, the tool is not able to present
multiple logging files concurrently or to detect modellers’ patterns automatically.

Störrle addresses the relation between the understandability of a model and how well
a design is organised. Making a good layout seems to be correlated with cognitive load.
He mentions novice modellers benefit more than experts from good layout. The size of
the layout seems to stand out. The larger, the more difficult the design is to understand.
[144] [145]

Our approach of registering questions is arguably a ‘think-aloud’ [82] kind of approach.
We are not aware of other research that uses that approach.

6.3 Method

In this section we describe our experimental approach. First we show the overall
framework. Then we discuss the student participants and the class design task they
had to model. Furthermore we explain the tools we used for collecting the data
and performing the analysis. Subsequently, we discuss our approach in grading the
students’ models and analysing the results. More information is found in our technical
report [130]

6.3.1 Overall Framework

Figure 6.1 shows the overall framework that was used for our online experiment.

Data collection was done online through a class design assignment performed by
students from Uganda. The students were asked to submit their solution to a model
task by using the pre-discussed web-based UML editor (WebUML). Besides the model
file, students’ modelling activities and questions during the modelling session were
logged. After submitting their assignments the students’ diagrams were graded by
three experts in terms of overall task performance and layout.

The data analysis phase consisted of: i) an analysis of the registered student questions
ii) an analysis of students’ modelling strategies with a focus on the two emerged
approaches Breadth First and Depth First. We developed a string pattern matching
method to automatically detect the two approaches in the students’ logging files iii)



Method 95

Figure 6.1: Experimental framework

observation of students’ diagram solutions.

6.3.2 Participants

120 student-pairs were invited to perform a design task with our online class diagram
editor. The students involved were 3rd year Software Engineering students following a
Bachelor of Science degree program. They already followed courses in software design
principles, UML and programming. The task was graded but not used as part of the
course grade. The native language of the students is English. We did not choose to
work with pairs on purpose. This is the students’ university’s approach for practical
assignments.

6.3.3 Task

The students were asked to make a class design of a game that was presented online in
a pdf-file. The text was a short (153 words) one paragraph description and was written
in English:

The Modelling Task – a Tank Game2 In this task you will design a game with use of the
UML class diagram. You do not need to use packages in this assignment. The description of
the game is as follows: A player (user) controls a certain tank. This tank is a Panzer Tank, a

2text: B. Karasneh



96 Uncovering Common Difficulties of Students Learning Software Design

Centurion Tank or a Sherman Tank. They fire bullets and Tank shells. Bullets can be Metal,
Silver or Gold bullets.

A tank moves around a world (level). The aim is to destroy all other tanks in the world. After a
world has been completed the tank advances to the next world. A list of all the worlds visited is
kept.

An entire game consists of 8 levels. A world contains a maximum of 20 tanks that compete for
victory. Each tank remembers which tanks it has destroyed in the past. The score for each level
is kept by a scoreboard that gets notified by the individual tanks each time an opponent is shot.
The players control their tanks through an interface allowing for steering, driving (reverse /
forward), switching ammo and firing.

Figure 6.2: Form used to register students’ questions

Figure 6.3: Reminder and question button in WebUML

The students were asked to press a button whenever they ran into difficulties or had a
question or remark. With the web-form that popped up they were able to i) explain
how frustrated they were at the moment that the difficulty arose and ii) record the
question. Figure 6.2 shows this web-form.

The web-form was not meant for getting answers from a lecturer or assistant instantly,
but only for registering the student’s questions and/or difficulties. The online editor
reminded the student every 5 minutes in a non-intrusive way: a message on the left
side of the screen appeared and the question icon was highlighted (Figure 6.3). The
experiment was part of a regular practical class of two hours, but they were allowed to



Method 97

use more time. The students were asked to upload their work when they were finished.

6.3.4 Instrumentation

For the experiment we used three of our own tools. They were meant for creating the
class designs, logging the activities and analysing the log files.

Modelling & Logging tool: WebUml is an online class diagram editor. WebUML is
capable of logging students’ activities in a comma separated file (explained in [136])
and saves the last version of the diagram in a xmi file and a png picture file. The
files are compressed in a zip file and uploaded with an upload button. WebUML was
designed to address a larger number of students independent of location or time. For
this experiment we extended the log capabilities with the addition to register student
questions. Students can register questions by filling in a form (explained in Subsection
6.3.3)

Analysis tools: For visual analysis we use LogViz3. LogViz is capable of displaying the
designers’ activities in WebUML over time. We can compare different log files (in this
case different student-pairs) and measure times between activities. The tool is able to
auto-classify the log files by the students’ design strategies (Depth First, Breadth First,
Depthless and Ad-hoc).

For gathering statistics, such as the number of creations we use StatLog4. StatLog reads
WebUML’s log files, counts all design activity occurrences in the logs and saves a table
with the data that was found.

The registered student questions that were recorded in the log files were filtered out
using general command line tools and regular expressions and then combined into one
file.

6.3.5 Assignment Evaluation

The students’ work was evaluated in three ways: i) every model was graded for overall
task performance ii) every model was graded for layout quality iii) every activity log
was automatically labelled with a strategy.

Grading: the grading was done during 4 grading sessions by 3 experts having more
than 6 years of experience in software design and education. The experts considered

3LogViz - https://gitlab.com/truonghoquang/LogVisualizer
4StatLog - https://gitlab.com/stikkolorum/StatLog

https://gitlab.com/truonghoquang/LogVisualizer
https://gitlab.com/stikkolorum/StatLog


98 Uncovering Common Difficulties of Students Learning Software Design

two aspects to grade: i) task grade, how well does the diagram reflect the problem of
the assignment? ii) the layout, how well is the diagram organised? For both of the
grades a rubric was used (see Table 6.2).

Table 6.2: Class Diagram Rubric for Grading Design Modelling

Grade Judgement, criteria description
1 The student does not succeed to produce a UML diagram related to the task. He/she is not

able to identify the important concepts from the problem domain (or only a small number of
them) and name them in the solution/diagram. The diagram is poor and not/poorly related
to problem description with a lot of errors: high number of wrong uses of UML elements
mostly no detail in the form of attributes or operations.

2 The student is not able to capture the majority of the task using the UML notation. Most
of the concepts from the problem domain are not identified. The detail, in the form of at-
tributes or operations, linked to the problem domain is low. Some elements of the diagram
link to the assignment, but too much errors are made: misplaced operation / attributes non
cohesive classes few operation or attributes are used.

3 The student is able to understand the assignment task and to use UML notions to partly
solve the problem. The student does not succeed to identify the most important concepts. A
number of logical mistakes could have been made.
Most of the problem is captured (not completely clear) with some errors: missing labels on
associations missing a couple important classes / operations / attributes Logical mistakes
that could have been made: wrong use of different types of relationships wrong (non logical)
association of classes.

4 The student captures the assignment requirements well and is able to use UML notations in
order to solve the problem. Almost all important concepts from the problem are identified.
Some (trivial) mistakes have been made: Just one or two important classes / operations /
attributes are missing Design could have been somewhat better (e.g. structure, detail) if the
richness of the UML (e.g. inheritance) was used.

5 Student efficiently and effectively used the richness of UML to solve the assignment. The
problem is clearly captured from the description. concepts from the domain / task are
identified and properly named The elements of the problem are represented by cohesive,
separate classes (supports modularity) with a single responsibility In the problem domain
needed attributes and operations are present Multiplicity is used when appropriate Naming
is well done (consistent and according to UML standard) Aggregation / Composition /
Inheritance is well used No unnecessary relationships (high coupling) are included.

The rubric consisted of a 5 point scale and the experts agreed on the rubric before the
experiment started. In advance of the actual grading, a set of possible ideal solutions
was discussed for calibration. The grading was done in two steps: first the assessors
graded all diagrams separately, then they discussed the differences in grading and
gave the diagram the final marks (task, layout) after consensus. Grading was done in
batches of 25 class diagrams.

Student’s strategy: students’ strategies were automatically classified using a string
pattern matching approach. Extracted from the log files, the creation activities of
class diagram elements were constructed as a string of the 4 letters: C (represents
CLASS), O (represents OPERATION), A (represents ATTRIBUTE) and R (represents



Results 99

Figure 6.4: String fetched from the log to determine a student’s strategy

associations/relationships between classes). Figure 6.4 shows an example of such a
creation string. As an example, we show the regular expressions of the two most used
strategies in Table 6.3. A log is labelled as the strategy that matches the longest string
in the creation string.

Strategy Activity order Regular Expression

Breadth First class → associate → add detail [C]+[R∣C]+[O∣A]+
Depth First class → add detail → associate [C]+[O∣A]+[R∣C]+

Table 6.3: Regular expressions used to fetch a strategy from the log file

6.4 Results

In this section we present the results of our online experiment. First we explain the
overall response and the questions students asked. Then we present the statistics of
the class design log files combined with the experts’ grades and modelling strategies
that were identified. Finally, we summarise the observations that were made during
the grading process of the class diagram designs.

6.4.1 Recorded Log Files - Overall Response

We recorded useful log files of 98 student-pairs. Although 100+ student-pairs partici-
pated in the experiment, some files were corrupted or incomplete.

6.4.2 Registered Questions

Out of the total response (N=98) 31 questions from 24 different student-pairs were
registered during the experiment. From 7 student-pairs we received 2 questions. 1 pair
asked 3 questions. The others asked 1 question. We divided the questions into the
following 5 categories (questions can fit in multiple categories):



100 Uncovering Common Difficulties of Students Learning Software Design

Category Occurrences Example question from respondents

Task 7 How many users are allowed to play at a given time?
Comprehension
Tool Usage 16 How do I draw associations?
Tool Feedback 9 Why doesn’t the tool support adjusting of the class

in the event when the operation name is too long to
fit in the fixed size?

UML/OO 3 Could the different types of tanks be modeled as
Comprehension specializations of the tank class or as an attribute

in the Tank class?
Notation/Syntax 7 How do you represent inheritance?

Table 6.4: Categories of questions students asked

• Task Comprehension: how well the student understood the task

• Tool Usage: Questions about the usage of the online tool.

• Tool Feedback: Remarks about or suggestions for improvement of the tool.

• UML/OO comprehension: Related to the UML and/or object orientation com-
prehension of the student.

• UML Syntax/Notation: questions about graphical representations of UML or
other elements the student wanted to draw.

Each question was rated in sense of relevancy to the task on a 1 to 5 scale (no relevance
- high relevance). For 1 question it was impossible to determine the relevance because
of the unclear wording of the question. Both category overview and relevance rates are
shown in tables 6.4 and 6.5. Most questions (16) were related on how to perform certain
actions in the tool (Tool Usage). The lowest number was related to the comprehension
of OO concepts and/or UML.

On the ‘feeling’ indicator 22 student-pairs responded neutral, 7 student-pairs felt
bad/angry while recording questions, 2 pairs felt happy. Remarkable is that questions
about UML syntax only links to neutral or positive feelings. They don’t relate to angry
feelings.



Results 101

Relevance
index

Occurrence Example question from respondents

1 2 How do you connect many arrows together for inheri-
tance?

2 8 It is hard to delete an attribute once its written
3 7 Is a scoreboard an attribute?
4 9 Where should we note our assumptions?
5 4 If scoreboard falls under class, what attributes can it take in

this case?

Table 6.5: Relevancy of recorded questions

6.4.3 Statistics of the Logs and Evaluation Data

The log files consist of the recorded user data: time spent (in minutes) and the different
modelling activities (in frequencies) such as creating UML elements (classes, attributes
etc.). The dataset was extended with a number for the grade and a number for the
layout evaluation. Table 6.6 shows the statistics summary of the logged data and
evaluation grades. The total time row contains some extreme values. This is due to
some students uploaded their work late in the evening or the next morning or due to
technical errors. If we discard these cases we find a range from 11 - 400 minutes with
mean = 92.66, sd = 83.06 and N=87.

Statistic N Mean St. Dev. Min Max

grade 98 3.06 0.84 1 4
layout 98 3.27 0.65 2 5
totaltime 98 1,215,771 5,267,869 11 23,819,063
creates 98 70.54 28.71 16 168
sets 98 42.36 17.07 3 96
adds 98 25.59 15.18 3 87
moves 98 77.08 63.44 7 364
removes 98 11.10 11.05 0 71
readings 98 3.09 5.18 0 36
modellings 98 2.91 5.15 0 36
comments 98 0.32 0.65 0 3

Table 6.6: Descriptives of all logged variables and evaluation



102 Uncovering Common Difficulties of Students Learning Software Design

6.4.4 Modelling Strategies

The extracted creation strings from the logs that were mentioned in Subsections 6.3.4
and 6.3.5 were explored using the regular expressions and manual analysis. We
identified the two major groups: Depth First (N=43) and Breadth First (N=45). Also, a
number of student approaches could be described as: ‘Ad Hoc’ (N=5) - they don’t use
a clearly observable pattern - and a ‘Both’ (N=2) group that seems to switch between
Depth First and Breadth First. Some logs were labelled with ‘U’ (N=3). In this case
there was no complete pattern recorded or just missing.

6.4.5 Group Comparison

To compare the performance of the student-pairs (the grade) grouped by the strategy
they use (Depth First, Breadth First) we performed a Wilcoxon rank sum test5 . We
only compared the groups Breadth First (N=45) and Depth First(N=43). Although the
mean of BF (grade=3.13) is higher than DF (grade=2.88) the Wilcoxon test did not show
a significant difference between the two strategy groups (W = 1122, p = 0.1735).

If we compare the student-pairs in terms of the amount of moves grouped by strategy
the Wilcoxon test does indicate a significant difference between BF and DF strategy
student-pairs (W = 1354.5, p = 0.0013, meanBF = 92.38, meanDF = 59.26)

6.4.6 Correlation

At first glance no remarkable correlations were found in the dataset of the experiment.
However, excluding very poor models did yield an interesting correlation. During the
grading process we came across several class diagrams that were poor in the sense of
a low number of classes and did not use richness of the UML (such as inheritance).
These kind of diagrams most of the time scored high (≥3) on layout. There cannot be a
lot of things wrong with the layout of poor diagrams, except from the alignment. The
examination of the subset (N=66) that excluded such cases resulted in a correlation
coefficient of 0.32 (p=0.009) between layout and grade. Which can be seen as a moderate
positive correlation.

5https://stat.ethz.ch/R-manual/R-devel/library/stats/html/wilcox.test.html

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/wilcox.test.html


Results 103

6.4.7 Student Diagram Observations

During the process of grading the diagrams we discussed the common mistakes or
additions students seem to make. In this subsection we summarise our observations.

Mistakes or Unidentified Elements Reflexive associations (self associations): the task
description should have triggered the students to use a reflexive association or with
the help of an intermediate class. It seemed common not to notice this.

Wrong use of UML elements: a typical mistake for students is to use the wrong element
for a certain purpose, such as using aggregation or composition when inheritance was
meant.

Misplaced operations or attributes: students seem to have difficulties to identify the
responsibility of a class and only save this class for this purpose (cohesion).

Forgotten elements: information that appears in the task is not represented in the solution
(such as classes, operations, attributes etc.).

Concept as attribute instead of class: students have difficulties deciding between classes
and attributes (abstraction).

‘Loose’ classes: a number of diagrams consisted of classes that did not have any relation
with another class.

Addition of Elements Sometimes students felt the need to include non standard
notation in the attribute fields, such as code notation or numbers instead of using
the multiplicity element. Although it was not needed to include types (such as Int or
String) a number of students added this to an attribute or operation. They also tend to
include an ‘id’ as part of the class attributes. Although expected, from experience in
classrooms, students seemed not to use too many associations per class (high coupling).

Grading While grading, some criteria seemed to be more important than others. For
example, missing a clear relationship between two main classes was considered as a
major design flaw, while the misdirection of relationships or missing a label are not
considered as a big problem. At the moment our rubric does not contain this distinction



104 Uncovering Common Difficulties of Students Learning Software Design

per level although the experts used it unconsciously.

During our discussions we realized we could add some more layout criteria for layout
quality. From the experiment experience we propose: symmetry, the spread-out of the
elements and diagram size. We did not take these into account while grading layout.

6.5 Discussion

In this section we discuss the results by answering the research questions.

6.5.1 Do students have typical questions that arise during the development
process of a software design?

It is not in every student’s nature to ask questions and it is often considered as some-
thing to avoid. Because of the number of questions (31 registered by 24 student pairs),
we could not do any statistical analysis. We did identify typical categories: Task
Comprehension, Tool Usage, Tool Feedback, UML/OO comprehension, UML Syn-
tax/Notation. We observed that most of the questions were related to the tool. Tool
use is discussed widely and often considered difficult in use [2]. For some students
this likely seems to distract them from their tasks. We assumed our tool is very easy to
use. The students were able to use it without any training other than a little practice in
advance.

Students occasionally seem to seek for extra information that is not in the text, but at
the same time it is not needed for the solution. 5 out of 7 task related questions were
considered to be of low (2) relevance.

Surprisingly the number of questions related to UML/OO comprehension was low (3).
This could be explained by the fact that the students had prior knowledge and were
already in their 3rd academic year.

Based on the relevance number, most student-pairs seem to be capable of asking
relevant (index 3-5) questions. Which points out, that doing this by the means of an
online tool is a good approach.

Derived from our diagram observations, and supported by the students questions,
choosing between attributes or classes (which addresses OO comprehension) seems to
be a general difficulty for students.



Threats to Validity 105

6.5.2 Does the Breadth First or Depth First strategy leads to a better grade
for a class design task?

From the statistical analysis we cannot conclude one of the approaches leads to a better
grade. There is no significant difference. We are not yet convinced that both strategies
can lead to diagrams of the same quality. Deeper investigation must be done. We could
rerun the experiment with a different grade scale and see if it has a better spread. At
the moment in the 5 point scale grades set the grades 1 and 5 were not represented that
much which may has lead to the results we have now. Another option is to run the
experiment with professionals and investigate if there is a bigger share of BF or DF
strategies.

According to the statistical test there was a significant difference between the two
strategies in terms of number of movements. If we interpret this as a measure for
efficiency it suggests the DF could be more efficient than the BF approach.

In case both strategies can result in comparable quality models it still can be the case
certain strategies cause certain difficulties. In our dataset we have not enough questions
recorded to perform such an analysis.

6.5.3 Does the layout of the diagram influences the grade of a student’s
work?

Based on the moderate correlation of 0.32 we advise students to pay attention to create
a nice layout in their overall design approach. 32% of a grade can explained by the
layout. We assume a good layout not only helps the student to understand his/her
own model, but also provides the lecturer better insights.

6.6 Threats to Validity

Although we evaluated the model and layout according to a rubric, they are still
graded manually which introduces a bias. On one hand we tried to reduce this bias to
determine the grade through discussion. On the other hand this same discussion could
have lead to a milder evaluation.

To be sure the automated process of labelling the strategy worked the results were
checked by hand by two experts.



106 Uncovering Common Difficulties of Students Learning Software Design

We are aware of the fact we used pairs of students. The results might not represent
individual students.

6.7 Conclusion and Future Work

In this chapter we presented our approach to uncover students difficulties and strate-
gies while making a class design. We recorded the solutions, design activities and
questions students have in a log file. A small number of students registered their ques-
tions from which a majority was relevant to their assignment. Based on the questions
and diagram observations students introduce noise by adding unneeded elements and
have difficulties in choosing between attributes and classes as representation of certain
concepts from the assignment text.

In general the student-pairs clearly seem to use a DF or BF strategy but do not signifi-
cantly differ in terms of grades. Both strategies could profile students and different
profiles could lead to different difficulties during modelling. Reruns of the experiment
in different settings could gain more insight. Also, collecting more student questions
that are related to certain strategies could help us to explain our questions.

Comparing the amount of movements between BF and DF, the results suggest DF to
be more efficient than the BF strategy.

Based on the moderate correlation we found between grade and layout, we assume that
paying attention to a nice layout helps students to perform better on their modelling
assignments.

In future research we continue to explore students’ strategies and difficulties. Based
on the results of the experiment in this chapter and future research we aim to develop
educational programs in the field of software design that fit students’ profiles better.


