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Chapter 5

Learning a Domain-Invariant
Embedding for Unsupervised Person
Re-identification

In Chapters 2, 3 and 4, we have proposed several methods to solve the challenges
of the lifelong learning theme. Unlike the core problem in lifelong learning that is
caused by the nature of the stream data, we move our research focus to a more gen-
eral situation where models are supposed to learn on the data lacking annotations,
e.g., unsupervised domain adaptation (UDA). In this chapter, therefore, we aim to
study what information the unlabeled data can provide in UDA ReID (RQ 4).

Although recent ReID works have achieved human-level accuracy on several ReID
benchmarks, their successes heavily depend on large pre-labeled datasets for deep
model training. These methods are not always suitable for real-world applications
since practical scenarios often lack labeled data. In order to tackle this drawback,
we propose a novel domain-invariant embedding network (DIEN) to learn a domain-
invariant embedding (DIE) feature by introducing a multi-loss joint learning with
recurrent top-down attention (RTDA) mechanism. Furthermore, we propose an im-
proved triplet loss to enable the model to utilize both source-domain (labeled) data
and target-domain (unlabeled) data. We compare our method with recent compet-
itive algorithms and also evaluate the effectiveness of the proposed modules.

This chapter is based on the following publication:

• Pu, N, Georgiou T., Bakker, E. M., and Lew, M. S. “Learning a Domain-Invariant Embed-
ding for Unsupervised Person Re-identification.”. International Joint Conference on Neural
Networks, 2019.
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5. LEARNING A DOMAIN-INVARIANT EMBEDDING FOR UNSUPERVISED
PERSON RE-IDENTIFICATION

5.1 Introduction

In recent years, rerson re-identification (ReID) in large-scale surveillance systems
has been one of the most challenging and hottest topics of computer vision. The
ReID technology helps us to match pedestrian images that include the same person
and are captured by different cameras at different locations or the same cameras at
different time.

In order to overcome various changes in appearance and environment, current deep
learning based person ReID models focus on learning robust features automatically
(e.g., end-to-end learning) instead of handcrafted features. Most existing ReID
works focus on supervised methods. They utilize deep CNNs [141, 142, 143, 144]
to extract robust feature representations. Nevertheless, these methods achieve sig-
nificant performance improvements only when a large amount of labeled training
data is available. In real ReID scenarios, by using mature pedestrian detection
technology, we can conveniently obtain very large ReID datasets but without labels
[145]. Labeling data is expensive and time-consuming. So, if we can transfer the
ReID capability of a deep neural network that trained on a fully labeled dataset,
to perform ReID on another unlabeled dataset, we may make accurate ReID more
tractable. Usually, related works treat two different datasets as a source domain
(fully labeled) and target domain (without label). It is well-known that ReID mod-
els trained on one domain often fail to generalize well to another [146]. Some re-
searchers handle this problem by utilizing Unsupervised Domain Adaption (UDA)
method [146, 147, 148, 149, 150, 151]. And other works treat it as a transfer learning
problem [152]. Both approaches need to make use of the unlabeled data to alleviate
this drawback. In general, we can regard this problem as a domain shift or dataset
shift [153] and thus apply a domain adaptation method to solve it. However, in unsu-
pervised domain adaptation person ReID the two datasets do not share class labels
(person identity), which is different from in traditional domain adaptation method.
The challenge lies in how to obtain semantically meaningful domain-invariant fea-
tures with good robustness for each identity. That is the main goal of our work
presented in this paper.

To address above mentioned problems, we proposed a Domain-Invariant Embedding
Network (DIEN), taking advantage of both source-domain (labeled) data and target-
domain (unlabeled) data by using a novel proposed centering constrained cross-
domain triplet loss (CCCDTL) function, to learn a domain-invariant embedding
(DIE) feature for cross-domain Person ReID. Due to the supervision of the source
domain and the auxiliary information of the target domain, the DIE feature is not
only very discriminative, but is also robust under domain shift.

To further improve the discriminative power of DIE feature and the supervised in-
formation propagation, we introduce a new Recurrent Top-Down Attention (RTDA)
module to recurrently find the region of interest on feature maps and re-weight each
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5.1 Introduction

channel of the feature maps to enable knowledge distillation. This is achieved by
multi-loss joint learning and iteratively updating the parameters of the attention
module. After finishing DIE feature learning, our model can perform cross-domain
ReID by directly retrieving DIE features of the query image and the gallery images.

T=0 T=1 T=2 T=3

Figure 5.1: Grad-CAM [154] visualization results for different Ts.
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5.2 Related Work

The main novel contributions of our paper can be summarized as follows:

• We propose a novel centering constrained cross-domain triplet loss (CCCDTL)
function to achieve cross-domain learning. By using this loss function, our
model can make full use of labeled and unlabeled data simultaneously.

• Our proposed DIE Network (DIEN) is a new end-to-end deep domain adap-
tation model. It is capable of learning domain-invariant embedding (DIE)
features and recurrently refine learned feature by the Recurrent Top-Down
Attention (RTDA) module proposed in this paper.

5.2 Related Work

5.2.1 Person Re-Identification (ReID)

Supervised Learning for ReID: Most existing ReID models [141, 142, 143] are
trained using supervised learning strategies. For example, in order to handle body
parts misalignment, Suh et al. [141] propose a two-stream network to learn a part-
aligned representation for person ReID by using a bilinear-pooling layer. Further,
He et al. [142] present a Deep Spatial feature Reconstruction (DSR) method to
address the partial person ReID problem. Recently, Conditional Random Fields
(CRFs) are exploited to mine second-order relationships of mini-batch training data
in [143], which dramatically improves the performance of deep neural networks for
ReID. Although those methods achieve a significant increasing performance on re-
cent datasets, namely Market-1501 [155] and DukeMTMC-ReID [156], these meth-
ods may not be practical since collecting a large amount of annotated training data
depends on lots of manpower and time.

Unsupervised Learning for ReID: To alleviate the above limitation, researchers
also focus on person ReID using unlabeled training data [149, 157]. As an example,
Li et al. [157] take full advantage of the information of cameras in the target
domain, treating multiple one-person images from different cameras as a tracklet.
Another typical work introduces a progressive unsupervised learning (PUL) method
[149], which utilized a clustering method to select representative samples to modify
the pre-trained model. PUL aimed at transferring pre-trained deep representations
to an unseen domain by a Self-paced Learning. Nevertheless, due to the lack of
label information for images across different cameras, unsupervised learning based
methods typically can not perform as well as the supervised methods do.

5.2.2 Unsupervised Domain Adaptation for ReID

Unsupervised domain adaptation (UDA) has been studied widely in various com-
puter vision tasks [150, 153, 158] and recently faces new challenges in person ReID
[148].
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Center of target-

domain samples

Center of source-

domain samples

a) b) c) d)

Figure 5.3: Graph a) and b) reprents different effect of Triple loss in [10] and our
CCCDTL. The t-SNE of the pre-train features and learned DIE features are drawn in
scatter c) and d) respectively (blue and green point donates target and source data
respectivel).

From a UDA perspective, most related works are concetrated around Domain-
Invariant Feature Learning [150]. Some recent works leverage an auto-encoder to
achieve knowledge distillation [151] so as to learn a domain-invariant representation
with significant generalization. In order to increase reasonable cues for person ReID
and decrease the influence of camera variance, Zhong et al. utilize CamStyle [147]
to generate camera-style images [148] as extra training data. In [159], Wang et al.
employed both the attribute and identity labels to encode an embedding feature
to promote unsupervised cross-dataset or cross-domain ReID. Due to the success
of generation models, now many cross-domain tasks are dominated by GAN-based
methods such as Similarity Preserving Generative Adversarial Network (SPGAN)
[146] and Person Transfer Generative Adversarial Network (PTGAN) [152]. Both of
them showed that using data augmentation methods strengthens the ReID ability
of a deep neural network on the target domain thus improving the performance and
closing the domain gap.

In this paper, we follow the general setting of unsupervised domain adaptation as
used in [148]. Specifically, we provide labeled source training images and unlabeled
target training images as training data and evaluate the performance of the proposed
model on the target testing database.

5.2.3 Attention Mechanism

It is well known that attention plays an important role in human perception [160].
Recently, there have been several attempts [144, 161] to incorporate attention pro-
cessing, to improve the performance of CNNs in Person ReID tasks. For example, Li
et al. [161] designed a new two-stream model to learn both local and global features
by hard and soft attention interactive learning. By refining the feature maps, their
network not only performs well but is also robust to noisy inputs.

Unlike the attention-based methods in[144, 161], our proposed Recurrent Top-Down
Attention (RTDA) leads deep neural network to recurrently update parameters and
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5.3 Proposed Method

take the high-level feedback signal into feature extraction instead of extracting fea-
ture vectors based on one-pass of the data through the network forward.

5.3 Proposed Method

5.3.1 Network Architecture Overview

In our deep domain-invariant embedding neural network, we deploy five blocks of
ResNet-50 [162] as a primary feature extractor and follow the training strategy
in [148] which fine-tunes on the ImageNet pre-trained model. We construct our
backbone network by replacing Global Average Pooling (GAP) layer and the last
1,000-dim fully connected (FC) layer with two pooling layers and a 2,048-dim FC
layer followed by batch normalization (BN) [163] and PReLU [164], as shown in
Fig.5.2.

Inspired by CBAM [165], we use both average-pooled and max-pooled features to
keep the distinctive object clues gathered by max-pooling. Specifically, we concate-
nate the two outputs of the global max pooling and global average pooling and feed
them to the next FC layer. The output of this FC layer is a 2,048-dim feature vector,
which we call the “domain-invariant embedding” (DIE).

For the purposes of strengthening the information flow and distilling the DIE feature,
Recurrent Top-Down Attention (RTDA) is exploited to recurrently re-weight the
channel and spatial position of feature maps simultaneously. The RTDA module
is implemented by multiple deconvolution and convolution layers whose details will
be described in the Section 5.3.4. Through T (T = 0, 1, 2, 3...) loops, we employ an
1 × 1 convolution to fuse the output of each loop and obtain the final DIE feature
vector. Subsequently, the DIE features are fed into the centering constrained cross-
domain triplet loss (CCCDTL) function after L2-normalization. At the same time
DIE features are forwarded to both identity classifier (IC) and domain classifier
(DC) module.

The IC module consists of an FC layer and a Dropout layer[166]. This is a general
multi-class classifier trained using standard cross-entropy loss function. This loss
function is formulated as,

LIC(Is) = −
1

|Is|
∑

I∈Is
(yi logP(I)

+ (1− yi) log(1− P(I)))
with Is ∪ It = I

(5.1)

where I represents images in a training mini-batch. Is denotes images from the source
(labeled) domain and It represents images from the target (unlabeled) domain. P(I)
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is the predicted probability of image I belonging to class yi and |·| denotes the
number of samples in set “·” .

5.3.2 Centering Constrained Cross-domain Triplet Loss

As triplet loss (TL) benefits from hard mining and metric learning, TL is a very
common loss function in supervised ReID. In [148], Zhong et al. treat each two
images from the target domain and the source domain as a negative pair, which
enables TL to be used for cross-domain training. Following the assumption in [148],
each image in target domain is assumed to have a different identities, since labels
of the target domain are not available. The aforementioned strategy leads to a
mistake when applied to cross-domain ReID. Even if two images from the target
domain belong to the same person, they will be pushed away if TL is used in this
way, which is demonstrated in Fig.5.3 a).

So, in order to alleviate this issue, we introduce a correction. More specifically, we
mine hard positive pair only in the source domain and hard nagetive pair in both
the source and the target domain. Meanwhile, we also introduce the Maximum
Mean Discrepancy (MMD) distance to constrain target images which are pushed
far away from the position where they should be. Finally, we propose a centering
constrained cross-domain triplet loss (CCCDTL) function to further improve dis-
cernment of embedding features by closing the farthest intra-class distance, pushing
closest inter-class distance and minimizing the distance between the source and tar-
get distributions simultaneously, which is shown in Fig.5.3 b) and is formulated
as,

LCCCDTL(I) =
∑

Ia,Ip∈Is,In∈I

max{D(ϕ(Ia), ϕ(Ip))

−D(ϕ(Ia), ϕ(In)) +m, 0}

+ λ×D(
1

|Is|
∑

I∈Is
ϕ(I),

1

|It|
∑

I∈It
ϕ(I))

with Is ∪ It = I,

(5.2)

where λ is a hyperparameter to balance the importance of two terms. Ia is an anchor
point. Ip is the hardest (farthest) sample in the same class with Ia, and In is the
hardest (closest) sample with a different class for Ia. m is a margin parameter and
D is the Euclidean distance between two embedding feature vectors.

5.3.3 Domain-invariant Embedding by Gradient Reversal Layer

Inspired by conventional unsupervised domain adaptation methods, we utilize the
gradient reversal layer (GRL) in [158] to construct a domain classifier (DC) module
to further improve the domain-invariant capability of DIE features.
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5.3 Proposed Method

Based on the covariate shift assumption [167], we assume that there exist two distri-
butions S(I;L) and T (I;L), where I and L donate images and labels, respectively.
There are referred as the source distribution and the target distribution. Both dis-
tributions are assumed to be very complex and unknown, and furthermore similar
but different. In order to obtain a similar ReID performance on both target domain
without labels and source domain with labels, we should constrain two distributions
(i.e., S and T ) to be similar. Unfortunately the distributions are unknown and can
be very complex, which makes this problem difficult to solve. So, we reversely con-
sider this problem that making two distributions as different as possible is equivalent
to classifying them. With the help of gradient reversal layer (GRL), we can transfer
the classified supervised signal to an indiscriminate (domain-invariant) supervised
signal, which is formulated as,

LDC(I) = −
1

|I|
∑

I∈I

(ΓI logP(I)

+ (1− ΓI) log(1− P(I)))

ΓI

{
1 , I ∈ It
0 , I ∈ Is ,

(5.3)

where ΓI is an indicator function to index which domain image I belongs to. During
the backpropagation processing, GRL makes the gradient negative and feeds it beck
to next layer, which is formulated as,

θ ← θ − α(∂LO
∂θ
− ∂LDC

∂θ
), (5.4)

where LO represents the loss functions other than LDC , θ are all the parameters of
the whole nueral network and α is the step size of SGD.

Eventually, the backbone network learns to generate domain-invariant representa-
tion. Note that the use of GRL during the several initial epochs of training is not
stable. This is because the backbone network is struggling to find the optimal path in
the beginning, due to the entangled supervision signal yielded by GRL. After model
has acquired robust representative capability, the GRL guides the representation
towards better generalization.
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5.3 Proposed Method

5.3.4 Recurrent Top-down Attention

Most attention-based ReID models implement attention mechanism by utilizing ex-
tra neural network modules to predict where the model should focus on. These
modules usually consist of Multi Layer Perceptrons (MLPs) and rely on the outputs
of lower layers. The feature extraction and the attention prediction in the current
layer work independently and at the same time. Nevertheless, it is well known that
when an object catches our attention, our brain makes a decision to focus on the
discriminative region, which should be a top-down (from brain to visual system)
procedure. Similarly, our models also need to use the high-level feedback signal to
guide feature extraction instead of using low-level features. Thus, we mimic the
human visual attention process when addressing the ReID problem from in a com-
plicated image, taking a first glimpse and then rethink several times, to optimize
attention.

When a mini-batch of input images pass through all the layers, instead of immedi-
ately generating DIE feature vectors, a feedback module is deployed to propagate
the supervised information to the bottom layers and update the network. On the
one hand, intuitively, when two images with different identities have similar DIE fea-
tures, they are not easy to be distinguished. Instead of outputting the feature vector
directly, a better way is to recurrently guide the previous layers based on the primary
DIE feature (when T equals to 0), such that the bottom layers can be strengthened
or weakened to produce more discriminative features specifically for those identities
that are difficult to distinguish. Furthermore, through aforementioned loss function,
the DIE feature from the top layer will be more domain-invariant which is often come
from high-level information. Thus we propose a new Recurrent Top-Down Attention
(RTDA) module and allow DIE network to use the high-level feedback information
for feature extraction.

More specifically, we utilize the primary DIE feature during the first “glimpse” the
image to predict the spatial positions of interest (spatial attention) and the weights
of channels (channel attention) on the feature maps, and then make the network
refocus on those regions and rethink emphasized or suppressed channels. In de-
tail, spatial attention is implemented by three deconvolutional layers followed by
a sigmoid layer, and channel attention consists of two convolutional layers and a
sigmoid layer, as shown in Fig.5.2. We employ the Kronecker product to combine
spatial- and channel-attention, which generates a spatial-channel mask with the
same dimensions as the feature maps. After that these feature maps are updated by
element-wise multiplication. After T times recurrent forward propagating, we fuse
the DIE features from each loop by a weighted sum where the weights are learned
by an 1 × 1 convolution and are initialized to 1

T+1
. Notably, our experiments on

benchmark datasets clearly demonstrate the advantage of the RTDA algorithm in
cross-domain ReID, which is reported in Section 5.4.2.
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Table 5.2: Comparison with State-of-the-art Methods.

Methods Duke==>Market Market==>Duke

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

UMDL [168] 34.5 52.6 59.6 12.4 18.5 31.4 37.6 7.3
PUL [149] 45.5 60.7 66.7 20.5 30.0 43.4 48.5 16.4
SPGAN [150] 57.7 75.8 82.4 26.7 46.4 62.3 68.0 26.2
TJ-AIDL[159] 58.2 74.8 81.1 26.5 44.3 59.6 65.0 23.0
ours (T = 3) 58.7 75.4 81.9 27.1 46.7 62.5 68.3 26.4

5.3.5 Multi-loss Joint Learning

In order to confirm that all modules work harmoniously and allow the proposed neu-
ral network to be trained in an end-to-end manner, we sum the three loss functions
to form the final loss, which is written as follows:

Lfinal = LIC + β1LCCCDTL + β2LDC (5.5)

where β1 and β2 are hyper parameters to balance the importance of the three terms.
Through cross validation, we set β1, β2 and λ to 1, 0.1 and 1 respectively.

In addition, we adopt the stochastic gradient descent (SGD) method to update the
parameters of the network while different learning rates are applied on different
layers. More specifically, the weights of the pre-trained primary feature extractor
should not be updated as fast as the other modules because we should keep the
useful information acquired by training on ImageNet. Hence, we set the learning
rate for the backbone network to a relatively smalll value, more specifically to 10−4.
For the other modules, IC, CCCDTL, DC and RTDA, the learning rate are 10−1,
10−1, 10−1 and 10−2 respectively.

5.4 Experiments and Analysis

5.4.1 Datasets

The performance of our proposed method on the task of ReID is evaluated on two
popular benchmark datasets: Market-1501 [155] and DukeMTMC-reID [156].

Market-1501 consists of 32,668 labeled images of 1,501 identities collected from 6
camera views. All of the identities are divided into two parts: 12,936 images from
751 identities for training and 19,732 images from 750 identities for testing. During
testing, 3368 query images from 750 identities are treated as probe for matching
persons in the gallery.

DukeMTMC-reID is also a large-scale ReID dataset. It is collected from 8 cameras
and contains 36,411 labeled images belonging to 1,404 identities. It consists of 16,522
training images from 702 identities, 2,228 query images from the other 702 identities,
and 17,661 gallery images.
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5.4 Experiments and Analysis

We use rank-1 accuracy and mean average precision (mAP) for our evaluation on
both datasets. In the experiments, there are two source-target settings:

1. Target: Market-1501 / Source: DukeMTMC-reID.

2. Target: DukeMTMC-reID / Source: Market-1501.

5.4.2 Ablation Study

In order to analyze the effectiveness of the proposed Domain-Invariant Embedding
Network, we compare the baseline model with ten different configurations. For our
model we use DIE features from different the Ts after L2-normalization as retrieved
vectors in testing. The result of each experiment is reported in the each row of Table
5.1.

Effectiveness of CCCDTL and DC module. As for the first configuration in
Table 5.1, our baseline model consists of the backbone network and the IC module,
which is trained on the source datasets and directly evaluated on the test set of the
target dataset. The second and third experiments aim at comparing the triplet loss
function in [148] with our CCCDTL model. The results show that our method ad-
dresses the aforementioned mistake and shows a better performance. Furthermore,
by adding an independent DC module into the base model, Rank-1 accuracy is in-
creased by 6.1%. From Fig. 5.3 c) and d), we can see that the two distributions of
the different domains blend into each other due to the effectivity of the DC module.
Furthermore, our experiments show that all of the proposed modules are effectively
increasing accuracy. Furthermore, combining with third, fourth and fifth row of
Table 5.1, the proposed modules do not conflict to each other, combining all loss
functions achieves 53.6% at Rank-1 accuracy.

Effectiveness of RTDA module. Firstly, in order to investigate the influence
of different T = 1s, we conducted several experiments using T (T = 1, 2, 3, 4 and 5).
From Figure 5.4, it is obvious that increasing the number of recursive steps for in-
formation feedback allows the bottom layers to receive richer top-down information.
We observe from our experiments that after T > 3 the performance decreases since
the model is overfitted. Empirically, we set T = 3 in the training phase of DIEN to
compare with the state-of-the-art. Furthermore, combining Fig.5.4 a), b) and Fig.5.1
leads us to think that our model extracts coarse features which contain a large pro-
portion of the information when T = 0. With the a increase in iterations, extracted
features are more fine-grained with smaller proportions of information. Benefiting
from aggregating multi-step features, the ReID performance of our model signifi-
cantly increases again. Furthermore, from the Grad-CAM visualization results with
different Ts in Figure 5.1, we can observe that domain-invariant features pay more
attention on discriminative cues but not on the complete foreground. Finally, our
proposed model achieves 58.7% at Rank-1 accuracy on the Market-1501 dataset.
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5. LEARNING A DOMAIN-INVARIANT EMBEDDING FOR UNSUPERVISED
PERSON RE-IDENTIFICATION

Hence, adding RTDA modules does help perform representation learning and it is
cooperating with the DC and CCCDTL modules.

5.4.3 Comparison with State-of-the-art Methods

We compared our method with the state-of-the-art unsupervised learning methods.
Table 5.2 presents the comparison when Market-1501 is the source set and Duke
is the target set and viceversa. We compared with four unsupervised methods,
including UMDL [168], PUL [149], SPGAN [150] and TJ-AIDL[159].

UMDL employed hand-crafted features and a multi-task dictionary learning method
to learn cross-dataset feature, PUL is a typical post-processing method by reselecting
training samples for fine-tuning a CNN model, SPGAN is a famous GAN-based
baseline method for Person ReID, and TJ-AIDL is recently published and achieves
the state-of-the-art result. Compared to the PUL method, our method achieves
+13.2% higher rank-1 accuracy and a +6.6% improvement for mAP. As for the
comparison with SPGAN, our method has +1.0% higher rank-1 accuracy and +0.2%
higher mAP, while it is noted that GAN-based methods have significantly greater
computational costs and memory consumption than our method and rely heavily
on data augmentation. We also compare to TJ-AIDL and our results are slightly
better than it, since TJ-AIDL given extra supervised information in the form of
attributes of a person in the source dataset such as backpack or handbag et al.
Our method without data augmentation has similar or better performance than all
selected competitors.

5.5 Chapter Conclusions

In this paper, we proposed an end-to-end deep model, the Domain-invariant Em-
bedding Network (DIEN), for solving cross-domain ReID tasks. Our DIEN utilizes
both source-domain (labeled) datasets and target-domain (unlabeled) datasets as
training data to explore the common cues of cross-domain ReID by jointly optimiz-
ing multiple loss functions. We also introduced a Recurrent Top-Down Attention
module to refine the DIE features. Benefiting from the recurrent iteration, the
model is able to extract more discriminative low-level features with the guidance
from high-level information. With this proposed DIEN, we conducted experiments
on the Market-1501 and the DukeMTMC-reID datasets, and evaluated the effective-
ness of our model in different configurations. Finally, compared to several recent
unsupervised person ReID methods, the proposed DIEN achieved state-of-the-art
performance and reduced the gap between supervised and unsupervised methods.
Our experimental findings can be summarized as:

(1) Even through we introduce label noise when we regard all the unlabeled identities
as different identities, the model still acquires considerable improvements. This
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5.5 Chapter Conclusions

phenomena implies that the deep model learns transferable knowledge in labeled
data and is flexible enough to handle under-investigated data structures.

(2) Through observing the attention maps (in Figure 5.1) generated from the pur-
posed recurrent top-down attention (RTDA), we find that with the growth of recur-
rent time, the corresponding focus area is more and more fine-graded, which shows
a consistency with our human attention mechanism.

(3) By comparing the weights of fusing feature in different time step as illustrated
in Figure 5.4, we find that models mainly depends on the first attentive feature
to retrieval pedestrians. The subsequent attentive features are likely to serve as
supplementaries regarding to key details.

Future work. On the one hand, our experiments provide some promising insights
for understanding how the network works in UDA ReID, which is beneficial for not
only ReID tasks but also the future explainable machine learning. Thus, we plan to
explore more about the interpretation of deep neural network. On the other hand,
since the proposed RTDA is a time-consuming feature refinement method, we plan
to design a more efficient way to implement feature refinements.
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