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8
Statistical models versus machine learning for

competing risks: development and validation of
prognostic models

This chapter is based on a joint work with H. Putter, S. Litière, and M. Fiocco.

Abstract

Background: In health research, several chronic diseases are susceptible to competing risks (CRs). Initially,
statistical models (SM) were developed to estimate the cumulative incidence of an event in the presence of CRs.
As recently there is a growing interest in applying machine learning (ML) for clinical prediction, these techniques
have also been extended to model CRs but literature is limited. Here, our aim is to investigate the potential role of
ML versus SM for CRs within non-complex data (small/medium sample size, low dimensional setting).

Methods: A dataset with 3826 retrospectively collected patients with extremity soft-tissue sarcoma (eSTS) and
nine predictors is used to evaluate model-predictive performance in terms of discrimination and calibration. Two
SM (cause-specific Cox, Fine-Gray) and three ML techniques are compared for CRs in a simple clinical setting.
ML models include an original partial logistic artificial neural network for CRs (PLANNCR original), a PLAN-
NCR with novel specifications in terms of architecture (PLANNCR extended), and a random survival forest for
CRs (RSFCR). The clinical endpoint is the time in years between surgery and disease progression (event of interest)
or death (competing event). Time points of interest are 2, 5, and 10 years.

Results: Based on the original eSTS data, 100 bootstrapped training datasets are drawn. Performance of the final
models is assessed on validation data (left out samples) by employing as measures the Brier score and the Area
Under the Curve (AUC) with CRs. Miscalibration (absolute accuracy error) is also estimated. Results show that
the ML models are able to reach a comparable performance versus the SM at 2, 5, and 10 years regarding both
Brier score and AUC (95% confidence intervals overlapped). However, the SM are frequently better calibrated.

Conclusions: Overall, ML techniques are less practical as they require substantial implementation time (data
preprocessing, hyperparameter tuning, computational intensity), whereas regression methods can perform well
without the additional workload of model training. As such, for non-complex real life survival data, these tech-
niques should only be applied complementary to SM as exploratory tools of model’s performance. More attention
to model calibration is urgently needed.
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8.1 Introduction

Survival analysis (also referred as time-to-event analysis) is used to estimate the lifespan of a particular population
under study. Frequently, survival data are right censored; time to event is not observed for all patients due to follow-
up interruption before experiencing the event of interest or time limitations (study termination). Competing risks
(CRs) occur frequently in clinical applications of survival data [1–4]. In this type of data an individual may fail
from one of several causes. A CR is an event whose occurrence precludes the occurrence of an event of interest
(for instance death may preclude the occurrence of disease relapse) [5, 6]. In health research, CRs are unlikely
to be independent as the biology suggests at least some dependence between events. In several chronic diseases
attributable to aging and frailty such as cancer, chronic heart failure, or dementia, study populations are susceptible
to CRs [7].

Themost popular non-parametric approach to estimate survival in the presence of right censored time-to-event data
is the Kaplan-Meier’s methodology (KM) [8]. However, in the presence of CRs, this methodology overestimates
the probability of failure which might lead to over-treatment of patients [1, 5, 9]. Different statistical models (SM)
have been developed to estimate the cumulative incidence (absolute risk) of an event in the presence of CRs such as
the cause-specific Cox model [10], and the Fine-Gray sub-distribution hazards regression model [11]. The former
is a natural extension of the standard proportional hazards Cox model for the CRs setting where a Cox model
is applied for each cause-specific hazard. The latter models the effect of covariates directly on the cumulative
incidence function (CIF) over time reporting on the sub-distribution hazard ratio [9].

Nowadays, there is a growing interest in applying machine learning (ML) for prediction (diagnosis or prognosis) of
clinical outcomes [12, 13] which has sparked a debate regarding the added value ofML techniques versus SM in the
medical field. Criticism is attributed to ML prediction models. Despite no assumptions about the data structure are
made, and being able to naturally incorporate interactions between predictive features, they are prone to overfitting
of the training data and they lack extensive assessment of predictive accuracy (i.e., absence of calibration curves)
[14, 15]. On the other hand, traditional regression methods are considered straightforward to use and harder to
overfit. That being said, they do make certain (usually strong) assumptions such as the proportional hazards over
time for the Cox model, and require manual pre-specification of interaction terms.

Amongst ML techniques, artificial neural networks have been a common choice in healthcare. This trend is per-
tinent with the collection of large and complex patient information in electronic health records, and the rise of
computational power [16]. Over the years, neural networks and other ML techniques have been developed for
survival data. Wang et al. in 2019 provide a comprehensive survey of conventional and modern approaches
for right-censored time-to-event data [17]. The authors describe several ML techniques and suggest that neural
networks are well-suited to predict survival and estimate disease risk.

A common approach in the literature is the partial logistic artificial neural network (PLANN) of Biganzoli et al.
(1998) [18]. For the purpose of implementation, time is specified in discrete non-overlapping time intervals which
are added as an input feature in a longitudinally transformed feed-forward network with logistic activation, and
entropy error function. The output layer estimates smoothed discrete hazards for each time interval. PLANN was
extended by Lisboa et al. (2003) under a Bayesian regularisation framework which performs automatic relevance
determination (PLANN-ARD) [19]. Recently, Kantidakis et al. in 2020 proposed extensions of PLANN in terms
of architecture i.e., new hyperparameters, new activation functions, and time interval specification asmultiple input
features [20]. Next to survival neural networks (SNNs), another well-known ML technique for clinical prediction
of survival data is random survival forests (RSF, Ishwaran et al. 2008) [21]. RSF adapt Breiman’s random forest
method by using a collection of survival trees [22].

ML approaches have also been employed for CRs, but the literature is limited. The PLANNCR approach was
developed by Biganzoli et al. in 2006 for the joint modelling of discrete cause-specific hazards [23]. This extends
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PLANN by using the time (in discrete time intervals) as an input feature in a longitudinally transformed network
with multinomial error function and logistic - softmax activation functions for the hidden and the output layer
(multiple output nodes), respectively. Later, Lisboa et al. (2009) implemented PLANNCR under a Bayesian
regularisation framework (PLANNCR-ARD) [24]. Ishwaran et al. extended RSF for CRs (RSFCR) in 2014 to
estimate the CIF of competing events [25].

For this work, a dataset with small/medium sample size and limited number of predictive features (low-dimensional
setting) is analysed. This concerns a retrospectively collected cohort of 3826 patients with high-grade extremity
soft-tissue sarcomas (eSTS) treated surgically with curative intent. Nine prognostic factors are used to develop and
validate several clinical prediction models with CRs for ML techniques and SM. The clinical endpoint of the study
is defined as the time in years between surgery and disease progression (as local recurrence or distant metastasis;
event of interest) of eSTS, where death is a competing event. Time points of interest are 2, 5, and 10 years (5-year
horizon is of major clinical interest). Analyses were performed in R programming language version 4.1.2 [26].

The aims of this manuscript can be summarised as: (i) examination of extensions of PLANNCR method (PLAN-
NCR extended) for the development and validation of prognostic clinical predictionmodels with competing events,
(ii) systematic evaluation of model-predictive performance for ML techniques (PLANNCR original, PLANNCR
extended, RSFCR) and SM (cause-specific Cox, Fine-Gray) regarding discrimination and calibration, (iii) inves-
tigation of the potential role of ML in contrast to conventional regression methods for CRs in non-complex eSTS
data (small/medium sample size, low dimensional setting), (iv) practical utility of the methods for prediction.

The paper is organized as follows. In Section ”Methods”, the eSTS data is presented. Further sections discuss
basic concepts for CRs, the SM and the ML techniques, model training, and how the predictive performance was
assessed. Section ”Results” describes PLANNCR extended tuned with two measures, and compares the predictive
performance of all methods in terms of discrimination and calibration. The manuscript ends with a ”Discussion”
about findings, limitations, and future perspectives of this work.

8.2 Methods

This section is divided into several subsections where the methodology used for this work is presented to the reader.
To begin with, the clinical data is described. Next, the SM and the ML techniques are discussed. Afterwards, it is
presented how the models were trained, and which performance measures were used to evaluate their predictive
ability. More technical details are provided in the supplementary material.

8.2.1 Dataset

Extremity soft-tissue sarcomas (eSTS) constitute a wide variety of histological subtypes with different sizes and
grades that affect patients of any age group. Treatment protocols may differ between institutes and countries.
Hence, important differences can be observed in the clinical course and prognosis of patients [27]. Over the years,
several prognostic prediction models have been developed for overall survival and local recurrence [28–30].

For this project, a retrospectively collected cohort of 3826 patients with eSTS was used [29]. The dataset contained
pseudo-anonymised patients fromLeidenUniversityMedical Center (Leiden, theNetherlands), Royal Orthopaedic
Hospital (Birmingham and Stanmore, UK), Netherlands Cancer Institute (Amsterdam, the Netherlands), Mount
Sinai Hospital (Toronto, Canada), the Norwegian Radium Hospital (Oslo, Norway), Aarhus University Hospital
(Aarhus, Denmark), Skåne University Hospital (Lund, Sweden), Medical University Graz (Graz, Austria), Royal
Marsden Hospital (London, UK), Daniel den Hoed (Rotterdam, the Netherlands), Radboud University Medical
Center (Nijmegen, the Netherlands), University Medical Center Groningen (Groningen, the Netherlands), Hauke-
land University Hospital (Bergen, Norway), Helios Klinikum Berlin-Buch (Berlin, Germany), MedUni Vienna
(Vienna, Austria), Vienna General Hospital (Vienna, Austria). In addition, eSTS patients from EORTC 62931

https://github.com/GKantidakis/Thesis_supplementary_materials/tree/main/Chapter8
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randomised controlled trial were included [31]. Data from the centers was collected between January 2000 and
December 2014. Patients from the EORTC trial were recruited between February 1995 and December 2003.

Characteristics Total (N = 3826)

Gender (%)
Female 1713 (44.77%)
Male 2113 (55.23%)

Mean age in years (sd) 59.40 (18.04)
Mean tumor size in cm (sd) 8.97 (5.69)
Surgical margin (%)

R0 3310 (86.51%)
R1−2 516 (13.49%)

Adjuvant chemotherapy (%)
No 3350 (87.56%)
Yes 476 (12.44%)

Tumor grade (%)
II 656 (17.15%)
III 3170 (82.85%)

Histological subtype (%)
Myxofibrosarcoma 771 (20.15%)
Synovial sarcoma 450 (11.76%)
MFH/UPS/NOS 1330 (34.76%)
Leiomyosarcoma 385 (10.06%)
Liposarcoma 421 (11.00%)
Other 469 (12.26%)

Tumor depth (%)
Superficial 1014 (26.50%)
Deep 2812 (73.50%)

Radiotherapy (%)
No 1341 (35.05%)
Neoadjuvant 521 (13.62%)
Adjuvant 1964 (51.13%)

Table 8.1: Patient demographics. sd, standard deviation; R0, negative margin; R1−2, positive margin with
tumor cells in the inked surface of the resection margin; MFH/UPS/NOS, alignant fibrous histiocytoma / undif-
ferentiated pleomorphic sarcoma / (pleomorphic) soft tissue sarcomas not-otherwise-specified; histology ”Other”,
angiosarcoma, clear cell sarcoma, conventional fibrosarcoma, epithelioid sarcoma, giant cell sarcoma, malignant
granular cell tumor, malignant peripheral nerve sheath tumor, rhabdomyosarcoma (adult form), spindle cell sar-
coma, unclassified soft tissue sarcoma and undifferentiated sarcoma.

Patients were selected from the sarcoma registry of each hospital based on histological diagnosis. Those initially
treated without curative intent, showed local recurrence or distant metastasis at baseline, had Kaposi’s sarcoma or
rhabdomyosarcoma (pediatric form), tumor was present in their abdomen, thorax, head or neck, or were treated
with isolated limp perfusion as neoadjuvant treatment were excluded from the collection.

The dataset contained nine prognostic factors. Seven were categorical; gender (female or male), surgical margin
(R0 for negative or R1−2 for positive with tumor cells in the inked surface of the resection margin), adjuvant
chemotherapy (no or yes), tumor grade (II or III), tumor depth in relation to investing fascia (superficial or deep),
radiotherapy (no, neoadjuvant or adjuvant), histological subtype (myxofibrosarcoma, synovial sarcoma, malignant
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fibrous histiocytoma / undifferentiated pleomorphic sarcoma / (pleomorphic) soft tissue sarcomas not-otherwise-
specified, leiomyosarcoma, liposarcoma or other). Two were continuous; age at baseline (in years) and tumor size
by the largest diameter measured at pathological examination (in centimetres).

Median follow-up survival time is 5.98 years estimated by reverse Kaplan-Meier (25% quartile: 3.94 years, 75%
quartile: 8.80 years, range: 0.01 to 16.85 years) [8]. The endpoint of interest is defined as the time in years between
surgery and disease progression (local recurrence or distant metastasis) of eSTS, with death as competing event;
1773 patients were alive/censored at the end of follow-up (46.34%), 1554 had disease progression (40.62%), and
499 died without local recurrence/distant metastasis (13.04%).

The dataset contained 3.70%missing data overall for the nine variables, with 2514 complete cases (65.71%). More
specifically, there were missing values (0.97-11%) for all variables; 11.00% for tumor depth (421/3826), 8.21%
for histological subtype (314/3826), 7.40% for surgical margin (283/3826), 4.36% for adjuvant chemotherapy
(167/3826), 4.05% for tumor size (155/3826), 3.53% for gender (135/3826), 2.61% for radiotherapy (100/3826),
1.99% for tumor grade (76/3826), and 0.97% for age (37/3826), in decreasing order, respectively.

A simple imputation was used to avoid discarding observations from nearly complete records. The missForest
algorithm was applied to reconstruct any missing values, which is the most exhaustive/accurate random forest
algorithm for missing data [32]. This is a nonparametric imputation method that does not make any a priory as-
sumptions regarding the data structure. A random forest with 1000 trees (for model stability) was built for each
variable with missing information, testing all possible variable combinations as responses. Table 8.1 provides
patient demographics of the final dataset (demographics of the original dataset are provided in table S1 of Supple-
mentary file 1).

8.2.2 Basic concepts for competing risks

Typically for survival data, if several types of events occur, a model describing progression for each of the CRs is
needed. The observable data is represented by the time of failure T , the cause of failureD (D ∈ 1, · · · , k, k ≥ 1;
here k = 2), and a covariate vector Z. Usually there is one type of event that is of interest (i.e., disease progression
as local recurrence or distant metastasis) whereas the other events could prevent it from occurring (here competing
event is death).

Following Putter et al. (2007) [1], a fundamental concept in modelling CRs is the cause-specific hazard function
which denotes the hazard of failing from a given cause in the presence of CRs:

λk(t) = lim
∆t→0

Prob(t ≤ T < t+∆t,D = k|T ≥ t)

∆t
. (8.1)

Then, the cumulative cause-specific hazard can be specified as

Λk(t) =

∫ t

0

λk(s)ds (8.2)

and the survival function (probability of not having failed from any cause at time t) can be written as

S(t) = exp
(
−

k∑
j=1

Λj(t)
)
. (8.3)

The cumulative incidence function (CIF) of cause k is defined as Ik(t) = Prob(T ≤ t,D = k), the probability
of failing from cause k before time t. This can be linked to the cause-specific hazards through the expression:

Ik(t) =

∫ t

0

λk(s)S(s)ds. (8.4)

https://github.com/GKantidakis/Thesis_supplementary_materials/blob/main/Chapter8/Supplementary%20file%201.pdf
https://github.com/GKantidakis/Thesis_supplementary_materials/blob/main/Chapter8/Supplementary%20file%201.pdf
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This is also called the subdistribution function based on the fact that the cumulative probability to fail from cause
k cannot reach one, and therefore, it is not a proper probability distribution.

8.2.3 Regression models for competing risks

Cause-specific Cox model

Regression on cause-specific hazards is an extension of the popular Cox proportional hazards model for CRs
[10, 33]. The cause-specific hazard of cause k of a subject with covariate vector Z is modelled as

λk(t|Z) = λk,0(t) exp (βT
k Z), (8.5)

where λk,0(t) is the cause-specific hazard, and the vector βk represents the effects of covariates on cause k.
Patients who move to another state other than k are censored at their transition time.

Fine and Gray model

In 1999, Fine and Gray introduced a subdistribution hazards model, which can directly regress on CIF [11]:

λ̃k(t) = −d log(1− Ik(t))

dt
. (8.6)

For the cause-specific Cox model, the risk set (number of patients at risk) decreases at each time point where there
is a failure of another cause. On the other hand, for Fine and Gray’s model, individuals who fail from another
cause remain in the risk set. The subdistribution hazards are then modelled assuming proportional hazards:

λ̃k(t|Z) = λ̃k,0(t) exp (βT
k Z). (8.7)

Similar to the standard Cox model, the partial likelihood approach is used to estimate the parameters.

8.2.4 Machine learning techniques for competing risks

Random survival forests

Random survival forests for competing risks (RSFCR) [25] are an extension of the RSF framework [21, 22] for CRs
with right censored data proposed by Ishwaran et al in 2014. It is a fully non-parametric ensemble tree approach
for the estimation of the CIF for competing events (CIF and cause-specific hazard function are related as shown
in equation (8.4)). RSFCR can directly model non-linear effects and interactions to perform accurate prediction
without making any prior assumptions about the underlying data.

The algorithm of RSFCR is based on recursive binary partitioning while injecting randomness in two ways: (a)
drawing B bootstrap samples from the learning data, and (b) growing a single CRs tree for each bootstrap sample
by randomly selecting a subset of candidate variables at each node (region of the tree). A CR splitting rule is
maximised to split each parent node into daughter nodes using the selected variables. The authors propose two
splitting rules: either an event-specific or a combination of event-specific splitting rules across the k events. Here,
the event-specific splitting rule was applied because disease progression was of major interest (weighted log-rank
splitting, technical details in [25]). Then each tree is grown to full size under the constraint that terminal nodes
(the ends of each tree) should have at least one unique case. In the terminal nodes, the Kaplan-Meier [8] and the
Aalen-Johansen [34] methodologies are used to estimate the event-free survival function and the cause-specific



8.2. METHODS 155

CIF, respectively. Finally, the ensemble estimates are calculated averaging each estimator over theB grown trees.
More technical details are provided in Supplementary file 2.

Partial logistic artificial neural networks

In 2006, Biganzoli et al. extended the partial logistic artificial neural network to competing risks (PLANNCR) for
the joint modelling of discrete cause-specific hazards [18, 23]. PLANNCR is a feed-forward network comprised
of a group of units called nodes (or neurons) in each layer. It has an input layer that picks up the signals and
passes them to a single hidden layer after the application of an activation (also called transformation) function. An
activation function modulates the degree of non-linearity transferred from the input features to the hidden layer.
Connections between the artificial neurons of different layers are called edges - each having a weight. Weights are
adjusted through training increasing or decreasing the strength of each connection [35]. Signals are transmitted
towards the output layer, which provides a smoothed estimation of discrete conditional event probabilities (in
multiple output nodes; each for an event), with another activation function.

For the purpose of implementation, survival times are discretized into a set of l = 1, · · · , L disjoint intervals
Al = (τl−1, τl], where 0 = τ0 < τ1 < · · · < τL is a set of pre-defined time points (usually years). For the lth

interval, observed times are grouped on a single point τl. Data has to be transformed into a longitudinal format
where the time variable (in intervals) is added as part of the input features next to the prognostic features. Subjects
are repeated for the number of intervals observed on the training data, and for all time intervals on the test data.
PLANNCR can model non-linear, non-proportional, and non-additive effects between the prognostic factors on
the cause-specific hazards. Here, without loss of generality, each subject was repeated for 1 up to 11 time intervals
denoting years since surgery. The last interval included survival times longer than 10 years (subsequent intervals
were not of interest).

In the CRs model, the response vector hasR+1 variables, with r = 1, · · · , R the possible causes of interest (here
R = 2). Let zk = (τl, xk) be defined by two components: the covariate vector xk (k = 1, 2, · · · , p) and the time
interval τl. The joint dependence of the discrete cause-specific hazards is modelled as:

ηlr(zk,β) = β0 +

H∑
h=1

βa
rαh(β0h + βT

h zk) (8.8)

where h = 1, · · · ,H nodes in the hidden layer, β the vector of estimated weights for the input-hidden
(β01, · · · , β0H , β1, · · · , βH ), hidden-output layers (β0, β

a
1 , · · · , βa

R), and αh the sigmoid (logistic) activation
function for the hidden layer αh(zk,βh) =

exp(β0h+βT
h zk)

1+exp(β0h+βT
h zk)

.

Activation function for the output layer is the softmax providing the discrete cause-specific hazards:

h̃lr(zk,β) =
exp

(
ηlr(zk,β)

)∑R+1
r=1 exp

(
ηlr(zk,β)

) , (8.9)

for l = 1, · · · , L intervals, and r = 1, · · · , R causes of interest. Since PLANNCR has a different output node for
each CR (1 + R output nodes in total), it is an extension of standard neural networks for multiple classification
resorting to the multinomial likelihood. For the rest of this paper, this will be called PLANNCR original [23].

Similar extensions to the specification of the PLANNCR are provided as in Kantidakis et al. (PLANN extended,
2020) [20]. More specifically, PLANNCR extended is tuned investigating two new activation functions for the hid-
den layer: (1) the rectified linear unit (ReLU) a common activation function, αh(zk,βh) = max(0, β0h + βT

h zk),
and (2) the hyperbolic tangent (tanh), αh(zk,βh) =

1−exp(−2(β0h+βT
h zk))

1+exp(−2(β0h+βT
h zk))

. Note that the activation function for the
output layer is necessarily the softmax to provide smoothed discrete hazard estimation. New hyperparameters
are specified in a state-of-the-art R library [36]. In contrast with Kantidakis et al. (2020), the L non-overlapping
intervals are specified in one time variable (instead of L separate variables) to not inflate the number of input
features. Moreover, networks with two hidden layers are not tested here due to the danger for overfitting (small-

https://github.com/GKantidakis/Thesis_supplementary_materials/blob/main/Chapter8/Supplementary%20file%202.pdf
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medium sample size, small number of predictors). More technical details for PLANNCR original and PLANNCR
extended are provided in Supplementary file 2.

8.2.5 Model training

Figure 8.1 shows how model training was performed. Based on the original eSTS data, 100 bootstrapped training
datasets were drawn with 3826 patients each (sampling with replacement, ≈ 63.2% of the original data). These
datasets were randomly split into two complementary parts to tune the hyperparameters of the ML models using
grid search ( 34 to train the models and 1

4 to test their performance, same parts for all methods). Performance of
the final models was assessed on the validation data, which were the left out samples (out-of-bag, ≈ 36.8% of
the data). Out-of-bag error estimates are almost identical to N -fold cross-validation [37]. For the standard re-
gression approaches, models were built on each complete training dataset (consisted of 3826 patients) using the
nine covariates. Their predictive performance was evaluated on the respective validation dataset. Complex func-
tional form dependencies (non-linear, non-additive, time-dependent effects) were not investigated. All analyses
were performed in R programming language version 4.1.2 [26]. Packages used in the implementation and tuning
parameters for the ML techniques are provided in Supplementary file 2.

Figure 8.1: Illustration of the model training approach repeated 100 times. For the ML techniques, hyperparame-
ters were tuned on the training datasets. Final performance for all models was assessed on the validation datasets
(left out samples).

https://github.com/GKantidakis/Thesis_supplementary_materials/blob/main/Chapter8/Supplementary%20file%202.pdf
https://github.com/GKantidakis/Thesis_supplementary_materials/blob/main/Chapter8/Supplementary%20file%202.pdf
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8.2.6 Predictive performance assessment

Predictive performance of the methods was assessed in terms of discrimination and calibration on each validation
dataset. The Area Under the Curve (AUC) and Brier score with CRs were used. Miscalibration (absolute accuracy
error) was also estimated.

Following Blanche et al. [38], we present the dynamic version of the measures with CRs. Let πi(·, ·) be a subject-i
specific prediction process (i = 1, 2, · · · , n independent and identically distributed subjects) for all landmark times
s (times at which predictions are made) and prediction horizon t. Without loss of generality, we set πi(s, t) = 0 for
all subjects iwho are no longer at risk at time s, and focus on prediction of eventD = 1 (main event investigated).
A dynamic AUC at landmark time s for a prediction horizon t can be defined as

AUC(s, t) = Prob
(
πi(s, t) > πj(s, t)|∆i(s, t) = 1,∆j(s, t) = 0, Ti > s, Tj > s

)
, (8.10)

where∆i(s, t) = 1s<Ti≤s+t,Di=1,∆i(s, t) = 1 when subject i experiences the main event of interest within time
interval (s, s+ t] (case), and ∆i(s, t) = 0 when subject i experiences a competing event within the time interval
or is event-free at s+ t (control) [39].

Dynamic AUC with CRs is a measure of discrimination. It typically ranges from 0.5 to 1 (the higher the better).
A good predictive accuracy is provided by a model that usually gives higher predicted risks of event for subjects
who experience the event of interest compared to subjects who did not experience the event of interest.

A more complete predictive accuracy measure with CRs is the Brier score. The dynamic expected Brier score can
be written as

BS(s, t) = E[
(
∆(s, t)− π(s, t)

)2|T > s]. (8.11)

This expression can be expanded based on Graaf et al. 1999 [40] taking the following form

BS(s, t) = E[
(
E[∆(s, t)|H(s)]− π(s, t)

)2|T > s] +E[
(
∆(s, t)−E[∆(s, t)|H(s)]

)2|T > s], (8.12)

where H(s) = {X, Y (s), T > s} the information at time s used to compute the prediction of π(s, t). The first
term in (8.12) measures calibration - how close the predictions are to E[∆(s, t)|H(s)], the ”true” underlying risk
of event in (s, s+t] givenH(s). In addition, the second term depends on the discrimination ability ofH(s). Thus,
Brier score is a measure of both calibration and discrimination. Typically, it ranges from 0 to 0.25 (lower values
mean smaller prediction error).

When censored data are present, the indicator∆i(s, t) is unknown (cannot be computed) for all subjects i censored
within interval (s, s+ t]. Therefore, the Inverse Probability of Censoring Weighting (IPCW) technique has to be
applied for the estimation of both dynamic AUC and Brier score for CRs. For details see [38]. Here, the landmark
time was set to s = 0 (baseline) for all analyses as all prognostic factors were time fixed.

Last, the predictive ability of the methods was evaluated based on their miscalibration on each validation dataset
(see figure 8.1). Model calibration refers to the agreement between observed and predicted outcomes, in this case
agreement between observed and predicted cumulative incidence event probabilities for a cause D = k at time
t = t0 [41, 42]. For each SM and ML model, the predicted cumulative incidence event probabilities are estimated
on a validation dataset, and the data is split intom = 4 equally sized groups based on the quantiles of the predicted
event probabilities. Quantiles were selected instead of (for instance) deciles to avoid any computational issues.
Then, the observed cumulative incidence probabilities are calculated for each group. Miscalibration is defined as
the mean squared error (MSE) of the difference between the observed and the predicted cumulative probabilities
of failure from a specific cause D = k at time horizon t = t0

MSEk(t0) =

∑4
m=1

[
I
(m)
k (t0)− Îk

(m)
(t0)

]2
4

, (8.13)
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with I(m)
k (t0) and Îk

(m)
(t0) the observed and predicted cumulative event probability for groupm, respectively.

8.3 Results

In this section, results for the eSTS data are presented. The following models are compared in terms of predic-
tive performance: (1) Cause-specific Cox, (2) Fine-Gray, (3) PLANNCR original, (4) PLANNCR extended, (5)
RSFCR. Each model is assessed on 100 validation datasets (see figure 8.1). More results about the comparison
between the methods are provided in Supplementary file 3.

8.3.1 PLANNCR tuned with Brier score or AUC at 5 years

The hyperparameters selected for PLANNCR original and PLANNCR extended are provided in section 1 of Sup-
plementary file 3. The most effective combinations are reported separately based on the Brier score / AUC at 5
years (5-year horizon was of major clinical interest).

For PLANN original, both performance measures selected the same values for the 2 hyperparameters (size and
decay). On the other hand, separate hyperparameters were selected for PLANNCR extended on a 5-D space
(nodesize, dropout rate, learning rate, momentum, weak class weight). The technical details can be found in
Supplementary file 2. From the 3 activation functions tested for the hidden layer (”sigmoid”, ”relu”, ”tanh”), the
”sigmoid” provided the best performance on the training data for both Brier score and AUC. A weak class weight
of 1 was selected (no adjustment for disease progression or death).

The performance of the tuned PLANNCR extended was compared for disease progression (event of interest).
Results are presented in table 8.2. PLANNCR extended tuned with Brier score at 5 years had a better performance
in terms of Brier score and miscalibration at 2, 5, or 10 years. However, PLANNCR extended tuned with AUC
at 5 years had a better performance regarding AUC at 5 and 10 years. These results were expected as Brier score
is a more complete measure taking into account both discrimination and calibration. For the rest of the results
presented below, optimal combinations for Brier score at 5 years were selected for PLANNCR extended.

PLANNCR extended PLANNCR extended
with Brier score with AUC

Performance

Brier score at 2 years 0.208 (0.198 - 0.220) 0.214 (0.201 - 0.226)
Brier score at 5 years 0.228 (0.221 - 0.235) 0.231 (0.225 - 0.236)
Brier score at 10 years 0.238 (0.229 - 0.247) 0.240 (0.234 - 0.247)
AUC at 2 years 0.661 (0.637 - 0.688) 0.659 (0.640 - 0.683)
AUC at 5 years 0.652 (0.612 - 0.689) 0.660 (0.633 - 0.685)
AUC at 10 years 0.629 (0.576 - 0.681) 0.631 (0.582 - 0.678)
Miscalibration at 2 years 0.008 (0.003 - 0.017) 0.013 (0.006 - 0.022)
Miscalibration at 5 years 0.003 (0.001 - 0.008) 0.008 (0.004 - 0.014)
Miscalibration at 10 years 0.002 (0.000 - 0.008) 0.004 (0.001 - 0.009)

Table 8.2: Mean predictive performance of PLANNCR extended for disease progression (event of interest) tuned
with Brier score or AUC at 5 years. The 95% confidence intervals are provided in parentheses based on 100
validation datasets.

https://github.com/GKantidakis/Thesis_supplementary_materials/blob/main/Chapter8/Supplementary%20file%203.docx
https://github.com/GKantidakis/Thesis_supplementary_materials/blob/main/Chapter8/Supplementary%20file%203.docx
https://github.com/GKantidakis/Thesis_supplementary_materials/blob/main/Chapter8/Supplementary%20file%203.docx
https://github.com/GKantidakis/Thesis_supplementary_materials/blob/main/Chapter8/Supplementary%20file%202.pdf
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8.3.2 Predictive performance comparison

In this section, the five methods are compared on the 100 validation datasets for different predictive performance
measures: (1) Brier scores, (ii) AUC, (iii) miscalibration at 2, 5, and 10 years, respectively, for disease progression
(local recurrence or distant metastasis). Optimal hyperparameters and additional plots for the event of interest
(disease progression) and the competing event (death) are included in sections 1 and 2 of Supplementary file 3.

Brier score - AUC

Figure 8.2 shows the Brier score (lower values better) and AUC (higher values better) at 2, 5 and 10 years since
surgery for all methods regarding disease progression.

For the time-dependent Brier score, the cause-specific Cox model had in general the best performance followed
by the Fine-Gray model and RSFCR at 2 years, and the PLANNCR extended and Fine-Gray at 5 and 10 years.
PLANNCR original had slightly the worst performance at these time points. 95% confidence intervals (CI) based
on the percentile method for 100 validation datasets using the out-of-bag data overlapped. PLANNCR extended
had marginally larger 95% CI at 2 years and RSFCR at 10 years. Regarding AUC at 2, 5, and 10 years, the cause-
specific Cox model and the PLANNCR extended had the best performance (very close to each other) followed
by Fine-Gray model, RSFCR and PLANNCR original in decreasing order of performance. The 95% confidence
intervals were very similar for the methods, except for PLANNCR original which had much wider intervals at all
times. This means that its discrimination ability (AUC) was not consistent (fluctuated) in the validation datasets.

Figure 8.2: Predictive performance of cause-specific Cox model, Fine-Gray model, PLANNCR original, PLAN-
NCR extended (tuned with Brier score at 5 years), and RSFCR for the event of interest: disease progression ± 95%
percentile confidence intervals based on 100 validation datasets. Left panel: Brier score, right panel: AUC at 2,
5, and 10 years since surgery.

Figure S1 in Supplementary file 3 provides the same plot with PLANNCR extended tuned with AUC at 5 years.
The predictive ability decreased in terms of Brier score but slightly increased regarding AUC at 5 and 10 years
(see also table 8.2). Figures S3 and S5 in Supplementary file 3 illustrate the prognostic ability (Brier score, AUC)
of all models for death (the competing event). The SM (cause-specific Cox and Fine-Gray) had the lowest Brier
score followed by the RSFCR. PLANNCR models had worse performance and larger CI than the rest at 2 years.
PLANNCR original continued to have larger CIs at 5 and 10 years, whereas PLANNCR extended had narrower

https://github.com/GKantidakis/Thesis_supplementary_materials/blob/main/Chapter8/Supplementary%20file%203.docx
https://github.com/GKantidakis/Thesis_supplementary_materials/blob/main/Chapter8/Supplementary%20file%203.docx
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CIs at 5 and 10 years (more consistent performance). For AUC, the cause-specific Cox model and the PLANNCR
extended had the highest values followed by the Fine-Gray model and the RSFCR. PLANNCR original the lowest
performance and the largest 95% CI.

Miscalibration

The five models were investigated in terms of miscalibration (definition in section ”Predictive performance as-
sessment”) at 2, 5, and 10 years. Results are depicted in figure 8.3 with boxplots. The SM (cause-specific Cox
model, Fine-Gray) had by far the lowest miscalibration error at 2 years for disease progression (cause 1). The SM
and then the PLANNCR original had the lowest miscalibration at 5 years (the SM and PLANNCR extended at 10
years). PLANNCR extended had the highest miscalibration error at 2 years, the second highest at 5 years and the
lowest at 10 years (next to cause-specific Cox model for this time point). The RSFCR had the worst calibration at
5 and 10 years for the cumulative incidence of the event of interest.

Figure 8.3: Miscalibration of cause-specific Cox model, Fine-Gray model, PLANNCR original, PLANNCR
extended (tuned with Brier score at 5 years), and RSFCR at 2, 5, and 10 years for the event of interest: disease
progression based on 100 validation datasets. Miscalibration was calculated as the mean squared error (MSE)
between the observed and the predicted cumulative incidence event probabilities (for 4 groups).

The miscalibration plot for PLANNCR extended tuned with AUC at 5 years is available in Supplementary file 3
(figure S2). PLANNCR extended is less well calibrated compared to figure 8.3. This result was expected since in
the supplementary figure the model was tuned for discrimination only (AUC at 5 years), whereas in figure 8.3 it
was tuned taking into account both discrimination and calibration (Brier score at 5 years). Figures S4 and S6 show
the miscalibration error for all five methods for the competing event (death). The cause-specific Cox model and
the Fine-gray model had the lowest miscalibration error. RSFCR show a similar miscalibration error for death at 2
and 5 year and slightly worse error at 10 years. The two neural networks had the highest miscalibration error at any
time point (distinct from the other three models). A tentative explanation of the higher PLANNCR miscalibration
for the competing event is that it arises from heavier regularisation of the predicted death probabilities (for a given
time point) resulting in a smaller spread of the predictions there. A solution to improve the calibration could be
to tune the performance of PLANNCR (e.g. Brier score at 5 years) for the competing event. However, as disease

https://github.com/GKantidakis/Thesis_supplementary_materials/blob/main/Chapter8/Supplementary%20file%203.docx
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progression was of major interest here, PLANNCR original and extended were both tuned for disease progression.

8.4 Discussion

To the best of our knowledge, this is the first study which compared SM with ML techniques for CRs in soft-
tissue sarcoma. A total of 3826 retrospectively collected patients were analysed with high-grade eSTS based on
nine prognostic factors (small/medium sample size, low-dimensional setting). The SM (cause-specific Cox, Fine-
Gray) and the RSFCR used exact times to event whereas the neural networks (PLANNCR original, PLANNCR
extended) required a data preparation into a long format where the exact time points were turned into L separate
time intervals (years). The five methods predicted the cumulative incidence of disease progression (event of
interest) and death (competing event) since the date of surgery.

The results showed that the ML models have similar performance to the SM in terms of Brier score and AUC at
2, 5, and 10 years for disease progression and death (95% confidence intervals overlapped). Predictive ability of
PLANNCR extended was usually better than RSFCR and PLANNCR original especially for AUC. This means
that PLANNCR extended had the ability to discriminate better between low and high risk groups of patients. Nev-
ertheless, the SM were frequently better calibrated than the three ML techniques. Miscalibration of PLANNCR
original and extended was more pronounced for the competing event. These findings are consistent with a simula-
tion study of our group that compared the predictive performance of SNN (PLANN original and extensions) with
Cox models for osteosarcoma data in a similar simple setting (250 or 1000 patients, five prognostic factors) [43].
Hence, more attention to model calibration (absolute predictive accuracy) is urgently needed for ML methods.

For this work, we sampled with replacement 100 times (bootstrapping) from the eSTS data to train the MLmodels.
Then, the left out samples were used to internally validate all models’ performance and obtain empirical 95% CIs
(see figure 8.1). This can be an advantageous approachwhen the sample size is limited because it avoids decreasing
the number of patients for model development / validation. However, it comes with a cost as this procedure is
repeated multiple times and is therefore computationally expensive. The performance of all models was assessed
with two time-dependent measures: Brier score (discrimination and calibration) and AUC (discrimination) at 2,
5, and 10 years, respectively. We chose the time-dependent AUC over the adaptation of Harrell’s concordance
index to the CRs setting [44, 45] - a global performance measure for discrimination - since the latter is not a proper
measure for the evaluation of t-year predicted risks (see [46]).

Two regression models for CRs were applied for the comparison with ML techniques; the cause-specific hazard
regression Cox and the Fine-Gray. The cause-specific Cox model might be better suited for addressing etio-
logical questions, whereas the Fine-Gray for estimating the clinical prognosis of patients - which was the aim
here [3, 5, 47]. Nonetheless, both SM were employed for a more comprehensive approach, providing similar
results, and outperforming the ML models in calibration. Complex functional dependencies such as non-linear
and non-additive effects were not investigated, which shows how effective the SM can be in simple settings (with
small/medium sample size and limited number of predictors) despite they assume additivity of effects and pro-
portionality of hazards over time. On the other hand, ML methods may be very flexible (no a priori modelling
assumptions), but usually require (very) large datasets to ensure small overfitting of their developed clinical pre-
diction models [48, 49].

Other ML-driven models have been recently proposed for survival analysis with CRs and their prognostic ability
was compared with typical benchmarks such as the cause-specific Cox, Fine-Gray, and RSFCR. In 2017, Alaa
and van der Schaar [50] proposed a non-parametric Bayesian model to jointly assess a patient’s risk of multiple
competing adverse events. The patient’s cause-specific survival times are modelled as a function of the covariates
using deep multi-task Gaussian processes. Bellot and van der Schaar [51] developed in 2018 a tree-based Bayesian
mixture model for CRs. They constructed a hierarchical Bayesian mixture model through multivariate random
survival forests and evaluated the importance of variables for each cause. Recently, a deep neural network (multiple
hidden layers) was employed by Nagpal et al. called deep survival machines [52]. This is a parametric
methodology to jointly learn a common deep non-linear representation of the input features. This network estimates
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separately the event distribution for each CR. Note that for this project, we only specified shallow neural networks
(1 hidden layer) to avoid excessive danger of overfitting in this simple setting.

Focusing on the practical utility, the two SM have the advantage compared to three ML techniques examined. The
latter require a substantial implementation time for data preprocessing, tuning of the parameters, and are compu-
tationally more intensive to run (in terms of hours here). At the same time model optimisation of PLANNCR is a
delicate task which requires robust numerical methods and skillful use, else the network might converge in subop-
timal minima in the error function [35]. From the threeML techniques, PLANNCR extended demanded more time
and effort for training because of the larger number of tuning parameters (five versus two for PLANNCR original
and RSFCR). On the contrary, the cause-specific Cox and Fine-Gray models do not require any hyperparameter
tuning and offer a fast implementation.

Nowadays, the employment of ML is overhyped in some contexts of medicine due to the increased interest in
applying modern techniques to create prediction models. Therefore, it is necessary to report prediction models
powered by artificial intelligence completely and transparently to allow critical appraisal, reproducibility of the
modelling steps and results by a wider audience, and to avoid research waste [14, 15, 53]. In general, a traditional
regression approach may still provide more accurate predicted survival probabilities and prognostic performance
compared to a state-of-the-art ML model, especially in non-complex medical settings (low-medium sample size,
small number of predictors). In this instance, application of ML algorithms should only be motivated for explo-
ration of the collected data.

In the future, it might be useful to compare the predictive ability of the cause-specific proportional hazard Cox
model with the PLANNCR original / extended for time-dependent variables. The first method allows the inclu-
sion of time-dependent covariates in standard software, and the second can naturally incorporate time-dependent
covariates due to the essential data transformation into a long format for each patient. Moreover, the Fine-Gray
and RSFCR can be extended to provide dynamic predictions with time-dependent covariates for CRs by creating
a landmark dataset at a set of landmark time points tLM [54]. Last but not least, it would be interesting to com-
pare the SM and ML techniques regarding interpretation. Overall, SM offer a more straightforward interpretation
via cause-specific hazard ratios, while PLANNCR can provide the shape of the cause-specific hazard function
over time and covariates, and RSFCR the variable importance. Further research is needed on a common metric to
directly compare all methods.

8.5 Conclusions

In this article, we discussed ML alternatives (PLANNCR original, PLANNCR extended, RSFCR) to SM (cause-
specific Cox model, Fine-Gray) to build prognostic models for survival analysis with CRs in eSTS data with
small/medium sample size and limited number of predictors (simple setting). Methods were compared in terms
of discrimination and calibration. ML models reached an equivalent performance in terms of suitable predictive
performance measures at 2, 5, or 10 years since surgery (95% confidence intervals overlapped), but the conven-
tional regression models were generally better calibrated. Hence, more attention to calibration is needed. Modern
ML-driven techniques are less practical as they require substantial implementation time (data preprocessing, hyper-
parameter tuning, computational intensity), whereas regression models are straightforward to use and can perform
well without the additional workload of model training. Overall, complete and transparent reporting of all methods
is required to allow critical appraisal, reproducibility, and avoid research waste. In our opinion, for non-complex
real life data such as this, ML techniques should only be employed complementary to SM as exploratory tools of
model’s performance.
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List of abbreviations

AUC, Area Under the Curve; CI, Confidence Interval; CIF, Cumulative Incidence Function; CRs, competing risks;
eSTS, extremity soft-tissue sarcomas; IPCW, Inverse Probability of Censoring Weighting; KM, Kaplan-Meier;
ML, machine learning; MSE, mean squared error; PLANN, partial logistic artificial neural network; PLANN-
ARD, Partial logistic artificial neural network - automatic relevance determination; PLANNCR, Partial logis-
tic artificial neural network for competing risks; PLANNCR-ARD, Partial logistic artificial neural network for
competing risks - automatic relevance determination; ReLU, rectified linear unit; RSF, random survival forests;
RSFCR, random survival forests for competing risks; SM, statistical models; SNNs, survival neural networks.
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