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Abstract

Differentiation of naive peripheral B cells into terminally differenti-
ated plasma cells is characterized by epigenetic alterations, yet
the epigenetic mechanisms that control B-cell fate remain unclear.
Here, we identified a role for the histone H3K79 methyltransferase
DOTIL in controlling B-cell differentiation. Mouse B cells lacking
DotlL failed to establish germinal centers (GC) and normal
humoral immune responses in vivo. In vitro, activated B cells in
which DotllL was deleted showed aberrant differentiation and
prematurely acquired plasma cell characteristics. Similar results
were obtained when DOT1L was chemically inhibited in mature B
cells in vitro. Mechanistically, combined epigenomics and tran-
scriptomics analysis revealed that DOT1L promotes expression of a
pro-proliferative, pro-GC program. In addition, DOT1L indirectly
supports the repression of an anti-proliferative plasma cell dif-
ferentiation program by maintaining the repression of Polycomb
Repressor Complex 2 (PRC2) targets. Our findings show that DOT1L
is a key modulator of the core transcriptional and epigenetic land-
scape in B cells, establishing an epigenetic barrier that warrants B-
cell naivety and GC B-cell differentiation.
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Introduction

B lymphocytes are key cellular components of the adaptive
immune system, and their functional deregulation is associated
with immune deficiencies and autoimmunity (Rajewsky, 1996;
LeBien & Tedder, 2008). Several well-coordinated processes
during B-cell differentiation coincide with specific adaptations of
the epigenome (Parra, 2009; Busslinger & Tarakhovsky, 2014;
Bao & Cao, 2016). Given the critical contribution of B cells to
the immune system, it is important to understand the molecular
mechanisms underlying the epigenetic programming during
their differentiation.

We previously identified DOTIL as a conserved epigenetic
writer that catalyzes mono-, di-, or tri-methylation of lysine 79 of
histone H3 (H3K79me) (van Leeuwen et al, 2002; Frederiks et al,
2008). DOT1L-mediated H3K79me resides on the nucleosome core
surface away from histone tails (Vlaming et al, 2014). H3K79me is
associated with active transcription, but its function in gene regula-
tion remains unclear (Steger et al, 2008; Vlaming & van Leeuwen,
2016; Wood et al, 2018). DOTI1L has gained wide attention as a
specific drug target in the treatment of Mixed Lineage Leukemia
(MLL) characterized by rearrangements of the MLL gene. Onco-
genic MLL-fusion proteins recruit DOT1L, leading to hypermethyla-
tion of H3K79 and increased expression of MLL-target genes,
thereby introducing a druggable dependency on DOTIL activity
(Okada et al, 2006; Bernt et al, 2011; Daigle et al, 2011; McLean
et al, 2014; Chen et al, 2015; Wang et al, 2016; Stein et al, 2018).
In addition, we recently observed a similar dependency in a mouse
model of thymic lymphoma caused by loss of the histone deacety-
lase HDAC1 (Vlaming et al, 2019). While DOT1L is emerging as a
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drug target in leukemia and lymphoma, the role of DOT1L in gene
regulation during normal B lymphocyte development and differenti-
ation is not known. Analysis of publicly available RNA-sequencing
data shows that Dot1L expression is regulated during B-cell devel-
opment (see below).

An active humoral immune response is characterized by the acti-
vation of clonally selected, antigen-primed B cells within secondary
lymphoid organs. This results in the formation of a specific micro-
environment, known as the germinal center (GC) (MacLennan,
1994, 2005). Rapidly proliferating GC B cells pass through the
process of somatic hypermutation that lays the molecular basis of
antibody affinity maturation (Odegard & Schatz, 2006; Di Noia &
Neuberger, 2007; Calado et al, 2012; Victora & Nussenzweig, 2012;
Pilzecker & Jacobs, 2019). Ultimately, B cells selected on the basis
of antibody affinity may differentiate either into memory B cells to
establish long-term immunological memory or via a plasma-blast
stage into terminally differentiated, antibody-secreting plasma cells.
Development and functionality of B lymphocytes are associated with
dynamic changes in the epigenetic landscape (Martin-Subero &
Oakes, 2018). Recent studies indicate that specific alterations in B-
cell function and identity are intimately linked with well-established
histone modifications such H3K4 tri-methylation (H3K4me3) related
with active gene promoters (Li et al, 2007; Zhang et al, 2015) and
H3K27me3 associated with gene repression (Beguelin et al, 2016).
Furthermore, the H3K27 methyltransferase EZH2, the -catalytic
component of the Polycomb repressive complex 2 (PRC2), has been
shown to have an essential role in establishing GC B cells (Béguelin
et al, 2013).

Here, we determined the role of the H3K79 methyltransferase
DOTI1L in normal mouse B-cell development by deleting Dot1L early
in the B-cell lineage and investigating specific dependencies of B-
lineage cells on DOTI1L. Our findings, corroborated by in vitro
DOT1L inhibition studies, show that DOTI1L fine-tunes the core tran-
scriptional and epigenetic landscape of B cells and in doing so estab-
lishes a critical epigenetic barrier coordinating the stepwise
transitions toward terminally differentiated plasma cells.

Results
Effective deletion of DotiL in B-cell lineage cells

Given the DOTIL dependencies in leukemia (Daigle et al, 2013;
Shukla et al, 2016; Wang et al, 2016; Stein et al, 2018) and
lymphoma (Vlaming et al, 2019), we quantified the expression of
Dotl1L during normal B-cell development using publicly available
data (Shi et al, 2015). We observed that DotIL is transcriptionally
regulated in B-cell subsets and more highly expressed in GC B cells
(Fig 1A). To determine the relevance of this regulation in control-
ling the development and differentiation of B lineage cells, we inac-
tivated Dot1L during early B-cell development by crossing the MbI-
Cre knockin allele into a Dot1L™" background. DOTIL is the sole
enzyme responsible for H3K79me; knockout of DotIL has been
shown to lead to complete loss of H3K79me (Jones et al, 2008;
Feng et al, 2010; Vlaming & van Leeuwen, 2016; Vlaming et al,
2019). However, loss of H3K79 methylation requires dilution of
modified histones by replication-dependent and replication-inde-
pendent mechanisms of histone exchange (De Vos et al, 2011;
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Radman-Livaja et al, 2011; Chory et al, 2018). Mb1-Cre was chosen
because it leads to deletion of DotIL at an early stage in B-cell
development that is followed by successive rounds of replication.
This ensures complete loss of H3K79me in all subsequent B-cell
subsets. DotIL was specifically and efficiently deleted in B cells, as
confirmed at the transcript level (Fig EV1A and Appendix Fig S1),
as well as by intracellular staining for the DOTIL product
H3K79me2 in proB, preB, immature B cells, and mature B cells.
While some proB cells retained H3K79me2, preB cells and all
stages beyond lacked detectable levels of H3K79me2 (Fig 1B). As a
control, the methylation mark remained unchanged in mature T
cells from Mbi-Cre™ ;Dot1L™" and Mbil-Cre” ;:Dot1L*V"' mice
(Fig 1B). We refer to MbI-Cre"” ;Dot1L" and Mbi-Cre*’~;
Dot1L*Y™' B cells as DotlL KO and WT cells, respectively. To
study the impact of DotIL ablation on the development of B cells
in the bone marrow, we determined the cellularity of specific
developmental subsets in the DOTI1L-proficient and DOT1L-defi-
cient settings. Early ablation of Dot1L resulted in an overall 1.6-fold
reduction of bone marrow B lineage cells. This reduction appeared
to be caused primarily by an early differentiation block at the proB
to preB cell stage; preB cell were reduced 1.8-fold in the Doti1L KO
as compared to WT and proB cells were increased by 2.0-fold. In
line with this partial developmental inhibition, the cellularity of all
subsequent stages of development including immature B and
mature B cells was significantly reduced in the bone marrow
(Figs 1C and EV1B).

The reduction in preB cell numbers and subsequent B-cell
subsets did not relate to a compromised cell viability (Fig EV1C-
H). This suggests that impaired VDJ recombination in the absence
of DOTI1L-dependent pro-recombinogenic H3K79me marks (Xu
et al, 2012; Deng et al, 2015) underlies the reduced B-cell cellular-
ity in the DotlL-KO setting. However, other causative factors
cannot be excluded. Regardless of this partial developmental block,
B cells could mature in the absence of DOT1L and H3K79 methyla-
tion, providing a system to study the role of this epigenetic mark
in B-cell differentiation.

Lack of DOTI1L prohibits differentiation of germinal center B cells

In the spleen of Mbi-Cre” ;DotIL™" mice, B-cell cellularity
decreased 3.5-fold while T-cell numbers remained unaffected,
resulting in a 2.0-fold decreased overall cellularity (Fig 2A and B).
Similar to the results from the bone marrow B-cell subsets, the
frequency of late apoptotic cells as measured by annexin V and
DAPI staining of spleen B cells (ex vivo) remained unaltered in the
absence of DOTIL (Fig EV1I). This was further corroborated
in situ by immunohistochemistry for the apoptosis marker cleaved
caspase-3 (Fig EV1J). Among the various peripheral B-cell subsets,
the strongest reduction was found in the number of marginal zone
B cells and GC B cells to the extent that they were nearly absent
(Figs 2C-H and EV2A). The reduction of GC B cells in Dot1L KO
was of particular interest given the highest expression of DotIL
mRNA in this subset (Figs 1A and 2H), suggesting that the forma-
tion of germinal centers critically depends on DOTIL. Indeed,
in situ histological analyses also revealed the absence of GCs in
the spleen of Dot1L-KO mice (Fig 2I and J). Similarly, in Peyer’s
patches, lack of DOTIL resulted in a marked reduction of GC B
cells (Fig EV2B).

© 2021 The Authors
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Figure 1. Expression levels, efficient deletion of Dot1L in B cells, and its effect on cellularity of B lineage subsets in the bone marrow.

A Expression of Dot1L in different B-cell populations (Shi et al, 2015). B1: B1 cells, MZB: marginal zone B, FOB: follicular B, GCB: germinal center B, SPLPB: spleen plasma
blast, SPLPC: spleen plasma cells, and BMPC: Bone marrow plasma cells. Expression is shown as transcript per million (TPM). Results represent the data from two
biological replicates except SPLPB and BMPC which lack replicates (WT; n = 2). Bars indicate mean values.

B Intracellular flow cytometry staining for H3K79me2 in bone marrow B-cell subsets as well as splenic B and T cells from MBICre™’~; Dot11*7*t (WT) and MBICre™’~;

Dot1U™7 (KO) mice. Results represent the data from two independent experiments.

C Statistical analysis of the absolute number of total nucleated cells from bone marrow B-cell subsets. Results represent the data pooled from three independent
experiments, and numbers represent biological replicates for each group (WT; n = 5, KO; n = 7), except bone marrow cellularity (WT; n = 10, KO; n = 14). Bars and

error bars indicate mean + SD.

Data information: Statistical analyses were performed using the Student’s two-tailed unpaired t-test. Statistical significance was determined by calculating the P-value.

A P-value of less than 0.05 was considered as significant.
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Figure 2. DotlL ablation affects the cellularity of mature peripheral B-cell populations with a strong reduction in Marginal Zone and Germinal Center B cells.

A-G Statistical analysis of absolute number of total nucleated splenocytes, splenic B- and T-cells, and indicated mature B-cell subsets in WT and KO mice. Results
represent the data pooled from at least two independent experiments and numbers represent biological replicates for each group (A: (WT) n = 16, (KO) n = 17; B
(B-cells): (WT) n = 16, (KO) n = 17; B (T-cells): (WT) n = 8, (KO) n = 9; C-E: (WT) n =9, (KO) n = 9; F: (WT) n = 6, (KO) n = 6; G: (WT) n =9, (KO) n = 9).

H Representative flow cytometry plots showing gating strategy (left panel) to identify germinal center B cells (PNA"€", CD95") from the spleen of unchallenged WT
and KO mice and statistical analysis of their absolute number (right panel). Results represent the data pooled from two independent experiments, and numbers

represent biological replicates for each group (WT; n = 4, KO; n = 6).

| Identification of germinal centers by lectin histochemistry of Peanut agglutinin (PNA) in spleens from WT and KO mice. The scale bar: 20 pm.
J Quantification of germinal centers identified in spleen sections as shown in (I). Results represent the data from one experiment, and numbers represent biological

replicates for each group (WT; n = 6, KO; n = 6).

Data information: Statistical analyses were performed using the Student’s two-tailed unpaired t-test. Statistical significance was determined by calculating the P-value.
A P-value of less than 0.05 was considered as significant. Bars and error bars indicate mean =+ SD.

Dot1L deletion impairs proliferation in response to T cell-
dependent stimuli and reduces class switch recombination in
response to T cell-independent stimuli in vitro

Following B-cell priming, B cells undergo class switch recombina-
tion (CSR) and form GCs. CSR is an important feature of humoral
immunity and is linked to B-cell activation and initiation of prolifer-
ation. Given the critical role of DOT1L in GC B-cell differentiation,
we here examined the CSR potential and proliferative capacity of
naive splenic B cells stimulated in vitro. Upon the T cell-dependent
stimulus mimetic anti-CD40 + IL-4, the lack of DotIL was found
associated with a reduced frequency of class-switched cells (Figs 3A
and EV3A). The reduction in CSR might relate to a defect in the CSR
machinery or impaired proliferation. Upon anti-CD40 + IL-4 stimu-
lation, the proliferative response of DotI1L-KO B cells was strongly
impaired, as revealed by tracing the dilution of a fluorescent label
(Fig 3B). Further analysis based on frequency of switched cells
(IgG1") among different generations of cell divisions revealed that
apparently, the overall reduction in frequency of switched cells in
KO as compared to WT B cells was associated with impaired prolif-
eration rather than a defect in CSR (Fig 3C). The reduced prolifera-
tion in response to T-dependent stimulation suggested that DotIL-
KO B cells are compromised in mounting T cell-dependent immune
responses, which is in line with the lack of GCs in Dot1L-KO mice.

Unlike stimulation with anti-CD40 + IL-4, mimicking T cell-
dependent B-cell activation, the proliferative capacity of mature B
cells was found indistinguishable in response to T cell-independent
activation stimuli using the strong B-cell mitogen lipopolysaccharide
(LPS) (Dziarski, 1982) or LPS + IL-4. These findings indicate that
Dot1L-KO B cells are not intrinsically impaired in their proliferative
potential (Fig EV3B and C). However, despite their proficiency in
proliferation, the frequency of switched cells in Dot1L-KO B cells
was found reduced in response to both LPS alone (inducing a switch
to IgG3) or LPS + IL-4 (inducing a switch to IgG1) (Figs 3D and E,
and EV3D-G). The underlying mechanism by which DOT1L might
affect CSR under these conditions of strong activation warrants
further investigation. RNA-Seq analysis of KO and WT B cells acti-
vated with LPS + IL-4 did not show defects in the mRNA expression
of the known trans elements involved in CSR in Dot1L-KO B cells,
(Appendix Table S1). However, under LPS conditions, DOT1L may
affect these factors by unknown post-transcriptional mechanisms or
by altering cis acting features associated with CSR, like switch
region accessibility. Alternatively, the switching cells may be prone
to die in the absence of DOT1L, as DOT1L has been associated with
DNA damage responses and induction of apoptosis (Huyen et al,
2004; Nguyen & Zhang, 2011; Kari et al, 2019; Bian et al, 2020). In
vitro activation of naive B cells with anti-CD40 + IL-4, LPS, and
LPS + IL-4 led to a higher proportion of dead cells (Zombie NIR

Figure 3. Class switch recombination and proliferative potential of Dot1L-deficient B cells in response to T cell-dependent and T cell-independent stimuli

in vitro.

A Statistical analysis of IgG1 switching of Dot1L-proficient (WT) and Dot1L-deficient (KO) B cells after 4 days of activation with anti-CD40 + IL-4. Results represent
the data from one experiment, and numbers represent biological replicates for each group (WT; n = 4, KO; n = 4).

B Number of cell divisions traced by CTV dilution of B cells stimulated for 4 days with anti-CD40 + IL-4. Data represent three biological replicates for each genotype.
Statistical analysis of the percentage of IgG1 switched cells per generation of proliferating WT and KO B cells after 4 days of stimulation with anti-CD40 + IL-4.
Results represent the data from one experiment, and numbers represent biological replicates for each group (WT; n = 4, KO; n = 4).

D, E Statistical analysis of switching of WT and KO naive B cells activated for 4 days with LPS alone (1gG3 switching) (D) or with LPS + IL-4 (IgG1 switching) (E). Results
represent the data pooled from at least four independent experiments, and numbers represent biological replicates for each group (D: (WT) n = 8, (KO) n = 9; E:

(WT) n = 11, (KO) n = 13).

F Statistical analysis of 1gG1 switching of naive B cells after 4 days of activation with anti-CD40 + IL-4 in the presence of the DOT1L inhibitor Pinometostat or DMSO
as a control. Results represent the data from one experiment, and numbers represent biological replicates for each treatment (n = 4).
G Number of cell divisions traced by CTV dilution of B cells stimulated for 4 days with anti-CD40 + IL-4 either in the presence of DOTLL inhibitor Pinometostat or

DMSO as a control. Data represents three biological replicates for each treatment.

H Statistical analysis of the percentage of IgG1 switched cells per generation of proliferating WT B cells after 4 days of stimulation with anti-CD40 + IL-4 either in
the presence of DOTLL inhibitor Pinometostat or DMSO as a control. Results represent the data from one experiment, and numbers represent biological replicates

for each treatment (n = 3).

| Statistical analysis of 1gG3 switching of naive B cells after 4 days of activation with LPS alone in the presence of the DOTLL inhibitor Pinometostat or DMSO as a
control. Results represent the data from one experiment, and numbers represent biological replicates for each treatment (n = 4).

Data information: Statistical analyses were performed using the Student’s two-tailed unpaired t-test. Statistical significance was determined by calculating the P-value.
A P-value of less than 0.05 was considered as significant. Bars and error bars indicate mean £ SD.

© 2021 The Authors
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positive) in Dot1L-KO compared to WT (Fig EV3H-K). In addition,
the viable (Zombie NIR negative) subset in activated (LPS + IL-4
mediated) KO B cells consistently showed higher levels of cleaved
caspase-3, a marker of apoptosis (Fig EV3L). Apparently, upon
in vitro activation the viability of Dot1L-deficient B cells is compro-
mised.

In vitro inhibition of DOTI1L activity in mature B-cell phenocopies
early Dot1L deletion

The pleiotropic changes associated with DotIL ablation in develop-
ing B cells led us to investigate whether the effects observed in

6 of 21 EMBO reports 22: 51184 | 2021

mature Dot1L-KO B cells in vitro could be recapitulated by inhibiting
the methyltransferase activity of DOTI1L. For this purpose, we
employed the highly specific DOT1L inhibitor Pinometostat during T
cell-dependent and T cell-independent activation of mature splenic
B cells isolated from wild-type mice. Treatment with Pinometostat
closely mimicked our observations regarding B-cell activation, CSR,
proliferation, and viability in Dot1L-KO mice (Figs 3F-1 and EV3M—
T). These data highlight the relevance of DOTIL activity in control-
ling normal B-cell differentiation and proliferation induced by T-
dependent stimuli in vitro. Importantly, these insights exclude
potential indirect effects associated with the early ablation of Dot1L
during B-cell ontogeny.

© 2021 The Authors
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Figure 4. DOT1L-deficient B cells fail to mount an efficient immune response.

Muhammad Assad Aslam et al

A Representative flow cytometry plots showing gating strategy to identify splenic GC B cells 14 days after LCMV Armstrong infection in WT and Dot1L-KO mice (left
panel) and statistical analysis of their relative number. Results represent the data from two experiments, and numbers represent biological replicates for each group

(WT; n =7,KO; n = 8).

B Representative flow cytometry plots showing gating strategy to identify plasma cells from the spleen 14 days after LCMV Armstrong infection (left panel) and
statistical analysis of their relative number (right panel). Results represent the data from one experiment, and numbers represent biological replicates for each group

(WT; n =3,KO; n = 4).

C Statistical analysis of serum titers of LCMV-specific IgM and 1gG of WT and KO mice before (DO) and 14 days after (D14) LCMV Armstrong infection. Results represent
the data from two experiments, and numbers represent biological replicates for each group (WT; n = 7, KO; n = 8).

D Statistical analysis of serum titers of NP-specific 1gG1 and IgM quantified by ELISA from WT and KO mice at the indicated days following immune challenge. Adjusted
P-value were calculated using two-way ANOVA. Error bars indicate mean =+ standard error of mean (SEM). Results represent the data from one experiment, and
numbers represent biological replicates for each group (WT; n = 6, KO; n = 6).***P-value < 0.0001 and **P-value < 0.001.

Data information: Except for Fig 4D, statistical analyses were performed using the Student’s two-tailed unpaired t-test. Statistical significance was determined by
calculating the P-value. A P-value of less than 0.05 was considered as significant. Bars and error bars except Fig 4D indicate mean =+ SD.

Dot1L-deficient B cells fail to mount efficient immune responses
in vivo and acquire plasma cell features in vitro

The virtual absence of GC B cells, the impaired proliferative response
to T cell-dependent stimulation, and the decreased viability of Dot1L-
deficient B cells upon activation implicated a severe defect of Mbi-
Cre™/~;Dot1L"" mice in establishing effective humoral immunity. In
unchallenged Dot1L-KO mice, serum IgM titers appeared normal but
IgG1 and IgG3 titers were decreased, while IgG2b and IgA titers were
not significantly affected (Fig EV4A-E). To determine the immune
responsiveness of DotlL-deficient B cells, Mb1-Cre"’~;Dot1L¥" and
MbI1-Cre"/~;Dot1L*""" mice were challenged with an acute lympho-
cytic choriomeningitis virus (LCMV) infection. During the LCMV infec-
tion, Dot1L-deficient B cells failed to establish GC B cells and generate
plasma cells (Fig 4A and B). In accordance, these mice also failed to
mount normal IgM serum titers against LCMV (Fig 4C). The failure to
establish GCs in response to LCMV is also in line with the very low
LCMV-specific IgG serum titers (Fig 4C). The inability of MbI-Cre*’~;
Dot1L"" mice to mount efficient antibody responses to T cell-depen-
dent antigen was confirmed using 4-hydroxy-3-nitrophenylacetyl
conjugated to chicken gamma globulin (NP-CGG) in alum as immuno-
gen (Fig 4D). Together, these data suggest that DOTIL is essential for
establishing a normal humoral immune response. Upon in vitro activa-
tion of naive DotlL-KO B cells with LPS + IL-4, a significantly
increased frequency of cells expressing the plasma cell marker CD138
(Sanderson et al, 1989; McCarron et al, 2017) was observed
(Fig EV4F). This observation was supported by the increased

proportion of cells expressing the pan-plasma cell transcription factor
BLIMP1 (Tellier et al, 2016; Fig EV4G) in Dot1L-KO versus WT.
However, these cells failed to downregulate B220, also known as
CDA45R (Fig EV4H). Downregulation of B220 is considered as a hall-
mark of post-mitotic plasma cells (Kallies et al, 2004). In addition,
in vitro-activated DotIL-KO B cells failed to differentiate into CD19
high-activated B-cell blasts or CD19-negative plasma cells, but instead
they remained at a transitional state, expressing intermediate levels of
CD19 on cell surface (Fig EV4I). Of note, these results were repro-
duced using the DOT1L inhibitor Pinometostat during in vitro stimula-
tion of naive WT B cells with LPS (Fig SA-D). Together, these
phenotypes observed upon in vitro activation suggest that in the
absence of DOT1L-mediated H3K79 methylation, naive B cells prema-
turely gain some plasma cell features which may form the basis of
skipping the GC stage. However, these cells do not accomplish a
complete plasma cell differentiation program.

DOTLL supports a pro-proliferative, MYC-high GC stage and
prohibits premature differentiation toward plasma cells in vitro

To unravel the underlying molecular mechanisms that prohibit
Dot1L-KO GC B-cell differentiation and stimulate partial differentia-
tion toward plasma cells, we performed RNA-Seq analyses of
in vitro-activated B cells under Dot1L-proficient and Dot1L-deficient
conditions (Fig 6A). To avoid confounding issues associated with
impaired replication upon in vitro stimulation with anti-CD40 + IL-
4, naive B cells were stimulated in vitro with LPS + IL-4 as an

Figure 5. Chemical inhibition of DOTLL results in aberrant plasma cell differentiation in response to in vitro stimulation. >

A Representative flow cytometry plots showing gating strategy to identify and compare plasma cells (Sca-I"CD138") after 4 days of stimulation with LPS either in the
presence of DOTLL inhibitor, Pinometostat, or DMSO as a control (left panel) and statistical analyses of their relative numbers (right panel). Results represent the data
from one experiment, and numbers represent biological replicates for each treatment (n = 4).

B Representative flow cytometry plots showing gating strategy to identify and compare activated B cells (CD138" Blimp1"), Pre-PB cells (CD138~ Blimp1*) and plasma
blast (PB) cells after 4 days of stimulation with LPS either in the presence of DOTLL inhibitor, Pinometostat, or DMSO as a control (left panel) and statistical analyses
of their relative numbers (right panel). Results represent the data from one experiment, and numbers represent biological replicates for each treatment (n = 4).

C Representative flow cytometry plots showing the relative surface density for B220 (CD45R) after 4 days of stimulation with LPS either in the presence of DOT1L
inhibitor, Pinometostat or DMSO as a control (left panel) and statistical analysis of MFI of B220 for each treatment (right panel). Results represent the data from one
experiment, and numbers represent biological replicates for each treatment (n = 4).

D Representative histograms showing the relative surface density for CD19 on total live cells after 4 days of stimulation with LPS (left panel) and statistical analysis of
MFI of CD19 for each treatment (right panel). Results represent the data from one experiment, and numbers represent biological replicates for each treatment
(n = 4).

Data information: Statistical analyses were performed using the Student’s two-tailed unpaired t-test. Statistical significance was determined by calculating the P-value.
A P-value less than 0.05 was considered as significant. Bars and error bars indicate mean + SD.
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Figure 6. Transcriptome analysis of in vitro-activated B cells shows accelerated plasma cell differentiation and compromised activation of MYC-target genes
in the absence of DOTI1L.

A MA-Plot of normalized RNA-Seq data generated from three independent biological replicates for each genotype showing differential (false discovery rate
(FDR) < 0.05) expression of genes between Dot1L-KO and WT B cells after 2 days of in vitro activation with LPS + IL-4.
B Differential (FDR < 0.05) expression of Bach2, Prdm1 (encoding BLIMP-1), Cd138 (a plasma cell marker), and Myc transcripts as indicated by counts per million after
TMM normalization from WT and KO. Data were generated from three independent biological replicates for each genotype. Bars and error bars indicate
mean =+ SD. Statistical significance is indicated by FDR after the Benjamini-Hochberg multiple testing correction performed by edgeR package using R language.
C,D

Enrichment of plasma cell signature genes in KO as compared to WT-activated B cells (C) and Enrichment of MYC-target genes in WT as compared to KO-activated

B cells (D). Enrichment of gene sets is depicted by a BARCODE plot; P-value calculated via FRY test show the statistical significance of enrichment of each gene set.
A P-value less than 0.05 was considered as significant.

Source data are available online for this figure.

activating condition that facilitates replication of both WT and KO B
cells. Among the differentially expressed genes, the genes encoding
the pro-GC transcription factor BACH2 and the pro-proliferative
transcription factor MYC (Muto et al, 2004; Muto et al, 2010; Calado
et al, 2012) were H3K79me2 methylated in WT cells (see below)

and transcriptionally downregulated in activated DOT1L-deficient B
cells (Fig EV5A, B and D). In agreement with this, Prdm1, repressed
by BACH2 and encoding the pan-plasma cell transcription factor
BLIMP1 (Martins & Calame, 2008; Tellier et al, 2016), was found
upregulated (Figs 6B and EVS5C). These transcriptional changes are
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in line with the increased formation of cells with plasma cell
features in KO cells. In addition, analysis of a published plasma cell
gene signature (Shi et al, 2015) revealed that the transcriptome of
activated DotIL-deficient B cells was indeed strongly enriched for
plasma cell-associated transcripts (Fig 6C). Simultaneously, MYC-
target gene transcripts were strongly reduced (Fig 6D). Together,
these observations indicate that DOT1L-mediated H3K79 methyla-
tion licenses a transient entrance into a pro-proliferative, MYC-high
GC stage and is required to prevent premature differentiation of acti-
vated B cells toward non-proliferative terminally differentiated
plasma cells. Importantly, transcriptomic data from ex vivo isolated
naive DotlL-deficient B cells also revealed enrichment of some
plasma cell-associated genes, suggesting that antigen-inexperienced
B cells are prematurely differentiated to some extent in the absence
of DOTIL (Fig EV5SE). However, upon activation, Irf4, a factor
essential for plasma cell differentiation (Klein et al, 2006), was not
differentially expressed between WT and KO (Fig EVSF). This
dichotomy, among other factors, likely contributes to the failure to
adopt an identity of terminally differentiated plasma cells. Plasma
cells strongly depend on the endoplasmic reticulum (ER) stress
pathway (Gass et al, 2004), and recently, DOTIL has been
connected to the expression of unfolded protein response (UPR)
genes involved in this pathway (Dafflon et al, 2020). However, our
data from activated B cells revealed that the expression of most UPR
genes remained unchanged in the absence of DOT1L. This suggests
that at least from the transcriptional point of view an altered ER
stress response is not the cause of the aberrant differentiation in the
absence of DOT1L (Fig EV5G and H, Appendix Table S2). Together,
our results indicate that DOT1L modulates the expression of several
key transcriptional regulators essential in controlling stepwise B-cell
differentiation.

DOT1L-mediated H3K79 methylation is associated with gene
activity in B cells

To link the phenotypes of loss of DOTIL to its role as an epigenetic
regulator in B cells, we generated genome-wide maps of DOTIL-

EMBO reports

mediated H3K79me2 in naive and activated WT B cells by ChIP-Seq.
H3K79me2 is known to mark the region downstream of the tran-
scription start site of transcribed genes and positively correlate with
gene activity (Steger et al, 2008; Huff et al, 2010; Vlaming & van
Leeuwen, 2016; Godfrey et al, 2019). While H3K79mel shows the
same trends, it has a broader distribution, and H3K79me3 is detect-
able only at limited levels (Steger et al, 2008; Huff et al, 2010; Vlam-
ing et al, 2019). Here, we analyzed how the gene expression
changes in Dot1L-KO versus WT B cells related to genes being
marked by H3K79me2 in WT cells. Both in naive and activated B
cells more than 83 % of the differentially expressed genes was found
upregulated in the absence of DOTIL; only a small subset was
downregulated (Figs 7A and EVS5I). The upregulation was biased
toward more lowly expressed genes. The observed upregulation of
genes in DotIL-KO B cells was unexpected given the fact that
H3K79me2 generally correlates with transcriptional activity (Schu-
beler et al, 2004; Steger et al, 2008; Wang et al, 2008; Bernt et al,
2011; Cano-Rodriguez et al, 2016; Yang et al, 2016; Wood et al,
2018; Godfrey et al, 2019). However, repressive functions of DOT1L
have been proposed as well (Zhang et al, 2006a; Zhang et al, 2006b;
Cecere et al, 2013; Xiao et al, 2016). Comparing H3K79me2 ChIP
values in WT B cells with the gene expression changes caused by
loss of DOTIL revealed that the genes upregulated in Dot1L-KO B
cells were mostly hypomethylated in WT cells, indicating that they
are likely indirectly affected by the loss of DOTI1L (Fig 7A and B). In
contrast, genes downregulated in DotIL-KO B cells were generally
highly expressed and H3K79 methylated in WT B cells, indicating
that this gene set harbors the genes directly dependent on DOT1L.
This set of candidate direct targets of DOT1L includes the previously
mentioned pro-proliferative factor Myc, the pro-GC transcription
factor Bach2, and Prdml, a target of BACH2 (Fig EV5A-D). These
findings show that DOT1L-mediated H3K79me2 is a mark of many
active genes in B cells, but suggest that only a small fraction of these
genes requires H3K79me2 for maintenance of gene expression, since
only a subset of the active genes was downregulated in Dot1L-KO B
cells. Similar observations in transcriptome changes were also made
in CD8" T cells lacking DOT1L as well as upon DOTIL inhibition in

Figure 7. DOT1L-mediated H3K79 methylation is associated with gene activity in B cells and indirectly promotes repression of PRC2 target genes.

Integrative analyses of differentially (FDR < 0.05) expressed transcripts from naive and activated DotIL-deficient B cells (left panel) with H3K79me2 ChIP values from

A
WT naive and activated B cells (right panel).

B The distribution of mean H3K79me2 among different gene sets (6A, left panel) from activated and naive B cells depicted by box plots. Boxes in Box plot indicate Inter
quartile range (IQR) and whiskers show 1.5 IQR of highest and lowest quartile. Central horizontal line within the bars represent median of the TMM normalized
H3K79me2 counts + 1 values of the respective genes for each condition. Results represent the data generated from three biological replicates for each group.

C Differential (FDR < 0.05) expression of Ezh2 and Cdknla as indicated by counts per million after TMM normalization from WT and Dot1L-KO-activated B cells. Data
were generated from three independent biological replicates for each genotype. Bars and error bars indicate mean =+ SD. Statistical significance is indicated by FDR
after the Benjamini—Hochberg multiple testing correction performed by edgeR package using R language.

D H3K79me2 methylation at the Ezh2 locus from WT activated and naive B cells, as determined by reads per genomic content (RPGC). Data represent three independent
biological replicates.

E Correlation between expression of Ezh2 and Dot1L as depicted by TPM in different mature B-cell subsets; B1: B1 cells, MZB: marginal Zone B, FOB: follicular B, GCB:
germinal Center B, SPLPB: spleen plasma blast, SPLPC: spleen plasma cells) and Bone Marrow (BMPC: Bone marrow plasma cells) A20: Germinal Center like cell
lymphoma cell line. Correlation shown by scatter plot.

F

Coverage plot of H3K27me3 from naive B cells (Frangini et al, 2013) and H3K79me2 (from WT-activated and naive B cells) flanking 4 kb around transcriptional start
sites (TSS) for genes upregulated in KO (KO Gain) or non-differential Expression-matched genes. Coverage was calculated as reads per genomic content cutoff at the
0.995t" quantile and rescaled to a maximum of 1. Black boxes indicate the relavant B-cell population for comparing the distribution of H3k27me3 and H3K79me2 for
the indicated gene sets obtained from the differential gene expression analysis of Dot1L-proficient and deficient B cells.

Data information: Statistical analysis were performed using Student’s two-tailed unpaired t-test. Statistical significance was determined by calculating P-value. P-value
lesser than 0.05 was considered as significant. Bars and error bars indicate mean + SD.
Source data are available online for this figure.
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mouse ES cells and during human cellular reprogramming (Kwesi-
Maliepaard et al, 2020; Ferrari et al, 2020; Kim et al, 2021).

DOT1L supports repression of PRC2 target genes

The large number of genes found upregulated in Dot1L-KO B cells
indicated that DOT1L positively regulates the expression of a tran-
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scriptional repressor whose target genes are de-repressed in the
absence of DOT1L. To identify such candidate repressors, we inves-
tigated the relatively small fraction of genes downregulated in naive
and activated Dot1L-KO B cells. Unbiased identification of upstream
transcriptional regulators by Ingenuity Pathway analyses (IPA)
pointed toward potential regulators that were differentially upregu-
lated in WT B cells (Tables 1 and 2). To further narrow down the

Table 1. Ingenuity pathway analysis of upstream transcriptional regulators that are differentially expressed higher in WT than Dot1L knockout

naive B cells (FDR < 0.05).

Upstream transcriptional Expression Log ratio Activation z- P-value of TMM normalized
regulator (KO/WT) score overlap Ensemble gene id H3K79me2
HIF1A® —1.534 5138 3.22E-10 ENSMUSG00000021109 8.44
EZH2 —1.195 0.27 0.000133 ENSMUSG00000029687 33.46

REL —1.146 1.685 9.25E-05 ENSMUSG00000020275 41.44
TAF4B —1.042 0.0396 ENSMUSG00000054321 2316

IRF4 —-1.038 —3.202 0.00193 ENSMUSG00000021356 120.62
MED13 —-0.978 —2.143 0.0067 ENSMUSG00000034297 153.69
SIRT1® —0.973 —3.106 7.11E-09 ENSMUSG00000020063 7.74
PURA —0.964 1.067 0.00223 ENSMUSG00000043991 47.75
EBF1 —-0.95 2612 7.55E-08 ENSMUSG00000057098 112.63

2Genes with TMM normalized H3K79me?2 score lesser than 10 were not considered.

Table 2. Ingenuity pathway analysis of upstream transcriptional regulators that are differentially expressed higher in WT than Dot1L knockout

activated B cells (LPS + IL-4, Day 2; FDR < 0.05).

Upstream transcriptional Expression Log ratio Activation P-value of TMM normalized
regulator (KO/WT) z-score overlap Ensemble gene id H3K79me2
BACH2 —1.956 —3.367 0.00186 ENSMUSG00000040270 66.81
EGR1°? —1.678 3.22 6.76E-15 ENSMUSG00000038418 10.41
TAF4B —1.436 0.00102 ENSMUSG00000054321 5319
PURA —1.392 0.00633 ENSMUSG00000043991 4935
HIF1A® —1.269 4.754 7.83E-10 ENSMUSG00000021109 6.13
CREBZF —1.233 —1.994 0.0409 ENSMUSG00000051451 206.73
SMAD2 —-1178 2439 0.0061 ENSMUSG00000024563 94.23
EBF1 —115 1.207 0.000138 ENSMUSG00000057098 155.78
HHEX —1.059 —0.538 0.00453 ENSMUSG00000024986 41.60
EGR2° —1.018 1.566 1.16E-06 ENSMUSG00000037868 8.55
PDLIM1 —0.967 0.0383 ENSMUSG00000055044 16.33
SATB1 —0.962 —1.998 4.34E-07 ENSMUSG00000023927 116.85
CREB1 —0.949 3.751 6.80E-13 ENSMUSG00000025958 9251
PAXS5 —0.917 —1.807 0.00318 ENSMUSG00000014030 330.58
KLF2 —0.912 1144 198E-15 ENSMUSG00000055148 148.02
NPM1 —0.881 —0.509 0.00309 ENSMUSG00000057113 177.98
MYC —0.878 —3.848 274E-14 ENSMUSG00000022346 163.26
REL —0.866 1.473 1.58E-10 ENSMUSG00000020275 102.56
EZH2 —0.846 —0.678 2.11E-06 ENSMUSG00000029687 135.73
CBFB?® —0.814 0.538 2.45E-05 ENSMUSG00000031885 6.84
NFKB1 —0.813 231 6.65E-12 ENSMUSG00000028163 176.38

®Genes with TMM normalized H3K79me2 score less than 10 were not considered.

© 2021 The Authors
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list, we filtered for genes that are (i) H3K79-dimethylated by DOT1L,
(ii) encode transcriptional repressors, and (iii) play a role in B-cell
differentiation/proliferation and GC formation. This led to the iden-
tification of the histone H3K27 methyltransferase EZH2 as a candi-
date factor (Tables 1 and 2). We verified that Ezh2 expression was
reduced in Dotl1L KO B cells (Fig 7C) and that the gene is H3K79-
dimethylated in WT cells (Fig 7D), indicating that the expression of
Ezh2 might be directly promoted by DOT1L activity (Fig 7C and D).
Further supporting this notion, the expression of Ezh2 and DotIL
was found co-regulated in B-cell subsets (Fig 7E).

We next investigated the physiological relevance of the connec-
tion between DOTI1L and EZH2. First, Ezh2-KO and Dot1L-KO B cells
have overlapping phenotypes (Su et al, 2003; Béguelin et al, 2013;
Caganova et al, 2013; Beguelin et al, 2017; Guo et al, 2018). Second,
we took advantage of publicly available RNA-Seq data (Guo et al,
2018) from Ezh2-KO plasma cells to identify genes that require
EZH2 for their repression (Fig EVSJ). Using this as a signature of
EZH2-dependent genes, we found that many of the genes de-
repressed in Ezh2-KO cells were also found de-repressed in activated
Dot1L-KO B cells (Fig EV5K). Many of these genes were found de-
repressed also in naive Dot1L-KO B cells (Fig EV5K). As an indepen-
dent validation, we evaluated the expression of a known PRC2-
target gene Cdknla (p21) (Fan et al, 2011; Sato et al, 2013; Beguelin
et al, 2017) and found that it was upregulated in activated Dot1L-KO
B cells (Fig 6C). Third, we analyzed the level of H3K27me3 and
H3K79me2 in the set of genes that was de-repressed in DotIL KO
using our H3K79me2 ChIP-Seq data and publicly available
H3K27me3 ChIP-Seq data from naive B cells (Frangini et al, 2013).
Further analysis revealed that this gene set was enriched for
H3K27me3 in WT cells compared to expression-matched non-dif-
ferentially expressed genes (Fig 7F). Lastly, chemical inhibition of
both DOTIL (this study) and EZH2 (Scharer et al, 2018) upon
in vitro stimulation led to enhanced dysfunctional plasma cell
formation. Together, these findings suggest that in B cells, DOT1L
supports the repression of PRC2 target genes, thus uncovering a
previously unknown connection between two conserved histone
methyltransferases associated with activation and repression,
respectively. Together, our findings place H3K79 methylation by
DOTIL at the heart of maintaining epigenetic identity of B cells, by
orchestrating the activity of central transcriptional and epigenetic
regulators such as BACH2, MYC, EZH2, and their target genes.

Discussion

Given the critical contribution of B cells to the immune system, it is
important to understand the molecular mechanisms underlying the
epigenetic programming during their differentiation. Taking advan-
tage of a B cell-specific mouse knockout model, we observed that
the H3K79 methyltransferase DOTIL has a central role in B-cell
physiology. Among mature B cells, GC B cells express the highest
levels of Dot1L and they were strongly reduced in Dot1L-KO mice.
Indeed, GC B-cell differentiation was found to be critically dependent
on DOTIL. Upon in vitro activation, Dot1L-KO B cells failed to prolif-
erate and after an in vivo immune challenge these cells failed to dif-
ferentiate into GC B cells and establish an effective immune
response. In addition, we observed an accelerated but incomplete
plasma cell differentiation in Dot1L-KO B cells in vitro. RNA-Seq data
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generated from naive and in vitro-activated Dot1L-KO and WT B
cells demonstrated a strong enrichment of genes associated with
plasma cell differentiation among the genes upregulated in DotIL
KO. However, in vitro-activated Dot1L KO B cells failed to downregu-
late B220, indicating an incomplete differentiation into plasma cells
(Kallies et al, 2004), which is in agreement with the failure of these
cells to upregulate Irf4, a factor essential for plasma cell differentia-
tion (Klein et al, 2006). Our results also revealed that DOTIL
supports MYC and BACH2 activity, which B cells depend on to effec-
tively differentiate into pro-proliferative GC B cells and maintain that
state (Calado et al, 2012). Recent studies have shown that inhibition
of DOT1L also leads to reduced Myc expression in multiple myeloma
(Ishiguro et al, 2019), in MYC-driven B-cell lymphoma (Deshpande
et al, 2018), and in androgen-dependent prostate cancers (Vatapalli
et al, 2020) indicating that the connection between DOT1L and MYC
has broad implications in B-cell physiology as well as other cell
types. Furthermore, in neuroblastoma H3K79me2 methylation has
been shown to be a strict prerequisite for MYC-induced transcrip-
tional activation, indicating a mutual interaction between DOTI1L
and MYC (Wong et al, 2017). Interestingly, this novel interaction has
also been reported recently in colorectal cancer (Yang et al, 2019). In
addition to the crucial role in GC formation, we also identify DOT1L
as a critical factor in maintaining MZ B cells. Further exploring the
strong reduction of MZ B cells upon loss of DotIL should provide
additional insights regarding the contribution of DOTIL in orches-
trating normal B-cell physiology.

In addition to supporting MYC and BACH2 activity, our findings
also suggest that DOT1L supports the repression of target genes of
PRC2. Regarding influence of EZH2 and DOT1L on GC B cells, it was
found that in both spleen and Peyer’s patches, GC B cells were drasti-
cally reduced in the absence of EZH2 (Caganova et al, 2013) and
DOTI1L (this study). Phenotypically, this connection between DOT1L
and PRC2 targets is further supported by overlap in transcriptome
changes between Ezh2 KO and DotIL KO B cells. The mechanism
explaining the connection between DOTIL and PRC2 targets is
unknown and needs further investigation. The observation that Ezh2
is normally H3K79-dimethylated and downregulated in DotIL-KO B
cells, and that DotIL and Ezh2 are co-regulated in B cells indicates
that DOT1L might promote repression of PRC2 targets by maintaining
expression of Ezh2. Alternatively, DOT1L might affect a subset of
PRC2 targets by altered activity of co-repressor complexes, as has
been suggested for DOTIL in mouse ES cell differentiation (Ferrari
et al, 2020). Finally, additional factors controlled by DOTIL may
impact differentiation of B cells (e.g. see Tables 1 and 2). A direct
stimulatory effect of H3K79me on H3K27me3 synthesis is not likely
to be involved since these modifications occur at distinct locations in
the genome and are associated with opposite transcriptional states.
The link between DOTIL and multiple transcriptional regulators
implies the existence of a complex regulatory network in B cells that
warrants further investigation.

Understanding the critical role of DOTIL in B-cell physiology
might uncover important implications in B cell-related pathologies.
Considering the requirement for DOTIL in supporting humoral
immune responses that we show here, targeting DOT1L may offer
an opportunity for immune suppression. Given the strong depen-
dency of GC B cells on DOT1L and the role of DOTIL in controlling
PRC2 targets and the oncogenic factor MYC, DOT1L inhibition may
also offer a novel therapeutic angle in the treatment of diffuse large
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B-cell lymphoma of the GCB type. In summary, in B cells, DOT1L
has a central role in guiding dynamic epigenetic states controlling
differentiation and ensuring functional immune responses, with a
potential for clinical exploitation.

Materials and Methods
Mice

Mb1-Cre”~;Dot1L"" mice were derived by crossing the Dot1Ltmla
(KOMP)Wtsi line—generated by the Wellcome Trust Sanger Insti-
tute (WTSI) and obtained from the KOMP Repository (www.komp.
org)—with the MB1-Cre strain kindly provided by M. Reth (Hobeika
et al, 2006). Mice from this newly created MbI1-Cre” ~;Dot1L strain
were maintained under specific pathogen-free (SPF) conditions at
the animal laboratory facility of the Netherlands Cancer Institute
(NKI; Amsterdam, Netherlands). Mice used for experiments were
between 6-8 weeks old and of both genders unless stated otherwise.
All experiments were approved by the Animal Ethics Committee of
the NKI and performed in accordance with the Dutch Experiments
on Animals Act and the Council of Europe.

Genotyping PCR

Mice were genotyped for DotIL using the forward primer (DotlL:
FWD, 5-GCAAGCCTACAGCCTTCATC-3') and reverse primer 1
(Dot1L:REV1, 5-CACCGGATAGTCTCAATAATCTCA-3') to identify
WT allele; Dot1L™" (517 bp) while the floxed allele; Dot1L" (335 bp)
was identified by using Dot1L: FWD and reverse primer 2 (DotlL:
REV2, 5-GAACCACAGGATGCTTCAG-3'). The region flanking
floxed exon 2 of DotlL was amplified by using My Taq DNA poly-
merase (meridian BIOSCIENCE, catalog number BIO-21107) and the
following thermocycler conditions: Initial denaturation 95°C for
S min, followed by 35 cycles of denaturation 95°C for 30 s, anneal-
ing 60°C for 30 s and extension 72°C for 1 min. Final extension was
done at 72°C for 5 min. The WT allele (418 bp) for Mbl was
detected by using forward primer (Mb1l-FWD1: 5-CTGCGGGTA
GAAGGGGGTC-3') and reverse primer (Mb1-REV1: 5-CCTTGCGA
GGTCAGGGAGCC-3’) while Cre (219 bp) was detected by using
forward primer (Mb1-FWD2: 5-GTGCAAGCTGAACAACAGGA-3')
and reverse primer (Mb1-REV2: 5-AAGGAGAATGTGGATGCTGG-
3’). PCR to amplify the region of the MBI locus was performed by
using My Taq DNA polymerase (meridian BIOSCIENCE, catalog
number BIO-21107) and the thermocycler conditions used to
amplify region of MBI locus consists of one cycle of Initial denatura-
tion: 95°C for 3 min, annealing: 75°C for 5 min and extension: 72°C
for 90 s followed by 34 cycles of denaturation: 94°C for 1 min,
annealing: 63°C for 1 min, extension: 72°C for 90 s. Final extension
was done at 72°C for 10 min.

Reverse transcriptase (RT)-PCR

Total RNA from FACS sorted mature B and T lymphocytes from the
spleen of mice was isolated using RNeasy mini (Qiagen, cat. no.
74106) according to the manufacturer instruction. The cDNA
libraries were prepared using Invitrogen Superscript III kit and
Random hexamer primers (catalog number 18080051) according to
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the manufacturer instructions. Deletion of exon 2 (44 bp) from
Dotll transcript was detected by amplifying the portion of DotIL
cDNA with Taq polymerase (Invitrogen, catalog number 10342053)
using forward primer (P1:FWD, 5-CGAGAAGCTGGAGCTGAG-3')
and reverse primer (P2:REV, 5-TGGTGGATGCTGTCGATG-3').
Thermocycler conditions used for amplification consists of Initial
denaturation: 95°C for 3 min, followed by 15 cycles of denaturation:
95°C for 30 s, annealing: 65.7°C for 45 s and extension: 72°C for
1 min. This was followed by 25 cycles of denaturation: 95°C for
30 s, annealing: 60°C for 45 s, extension: 72°C for 1 min. Final
extension was done at 72°C for 5 min. PCR fragments of 255 and
211 bp, for WT and KO, respectively, were extracted from 2%
Precast Agarose E-gel (catalog number G401002) using E-gel
Agarose electrophoresis system (Invitrogen) and subjected to
sequencing using the same set of individual primers. Sequenced
products were analyzed by SnapGene (version 4.1.6).

In silico analysis

The predicated translated product from the KO DotlL transcript
missing exon 2 was generated using SnapGene (version 4.1.6).
Alignments of the open reading frame from the WT DotIL transcript
and the predicted translated product from the KO DotIL transcript
were performed by ClustalW under default settings.

Flow cytometry

Single cell suspensions were made from bone marrow, spleen, and
Peyer’s patches. Bone marrow, spleen, and blood samples were
subjected to erythrocyte lysis. Distinct cellular populations were
identified using a combination of fluor-conjugated antibodies
against surface markers (Appendix Table S3). Cells were stained
with fluorescently labeled antibodies (Appendix Table S4). For
intracellular staining, cells were fixed and permeabilized using the
Transcription Factor Buffer set (Becton Dickinson, BD, catalog
number 562574). Antibodies for intracellular staining were diluted
in Perm/Wash buffer except for cleaved caspase-3. For H3K79me2
staining, cells were first stained with surface markers and fixed and
permeabilized as described before. After fixation and permeabiliza-
tion cells were washed with Perm/Wash containing 0.25% SDS.
H3K79me2-specific antibody (Millipore, clone NL59, catalog number
04-835) was diluted 1:200 into Perm/Wash + 0.25% SDS and cells
were incubated for 30 min. Cells were washed with Perm/Wash
and incubated with the secondary antibodies Donkey anti-Rabbit
AF555 (Thermo Scientific, catalog number A-31572) or Goat anti-
Rabbit AF488 (Invitrogen, catalog number A-11034) 1:1,000 in
Perm/Wash. For cleaved caspase-3 staining, the cells were first
stained with surface markers and then fixed with 4% formaldehyde
for 15 min at room temperature. After washing with 0.25% tween
buffer, the cells were permeabilized with 0.25% tween buffer for
15 min at room temperature. Following permeabilization, the cells
were stained with cleaved caspase-3 antibody as 1:50 diluted in
0.25% tween buffer for 45 min at room temperature under dark
condition. For annexin V staining, following surface marker stain-
ings, the cells were washed once with PBS and later with Binding
Buffer (10 mM HEPES pH 7.4, 140 mM NaCl, 2.5 mM CaCl,). Cells
were stained with annexin V stain mix prepared as 1:20 in Binding
Buffer and incubated for 20 min at room temperature in the dark.
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Following annexin V (Biolegend, catalog number 640920) staining,
the cells were washed once with Binding buffer and resuspended in
Binding buffer containing DAPI (1:100). Flow cytometry was
performed using the LSR Fortessa (BD Biosciences) and data were
analyzed with FlowJo software (Tree Star Inc.). Histograms
were smoothed.

Immunization

Adult mice were inoculated intravenously with sub-lethal dose
2x10° PFU (Plaque forming units) of lymphocytic choriomeningitis
virus strain Armstrong. Serum was collected prior to immunization
and 14 days post-immune challenge. For NP-CGG immunization,
mice were injected intraperitoneally with 100 pg of alumprecipitated
NP-CGG [(4-hydroxy-3-nitrophenyl) acetyl coupled to chicken
y—globulin, BIOSEARCH™ TECHNOLOGIES] in a 200 pl of NP-CGG
alum solution. To determine the serum titers of NP-specific IgM
and IgG1, mice were bled from the tail vein on days 0, 7, 14, 21, 28,
and 35.

In vitro stimulation: class switch recombination, proliferation,
and plasma cell formation

Single cells suspensions were prepared from the spleen of 6- to 8-
week-old mice. Following erythrocyte lysis, naive splenic B cells
were enriched by the depletion of CD43-expressing cell using
biotinylated anti-CD43 antibody (Clone S7, BD Biosciences), BD
IMag Streptavidin Particles Plus, and the IMag® system (BD Bios-
ciences), as described by the manufacturer. To measure their prolif-
erative capacity, naive B cells (CD437) were labeled for 10 min at
37°C with 5 uM Cell Trace Violet (CTV, Life Technologies, Invitro-
gen™) in IMDM medium containing 2% FCS, with pen/strep, and
100 uM B-mercaptoethanol. After washing, cells were cultured in
complete IMDM medium (IMDM supplemented with 8% FCS, with
pen/strep, and 100 pM B-mercaptoethanol) at a density of 2 x 10°
cells/well in 24-well plates. CSR to IgG3 and IgG1 was induced in T
cell-independent manner by exposure to 5 pg/ml of Lipopolysaccha-
ride (Escherichia coli LPS, 055:B5, Sigma) or LPS + IL-4. IL4 was
used at a concentration of 10 ng/ml. Cells were exposed to anti-
CD40 (1 pg/ml, BD Clone HM40-3) and IL-4 (10 ng/ml) to induce
IgG1 switching in a T cell-dependent manner. Four days later, the
cells were harvested and either stained to determine CSR frequency
or plasma cells formation. CTV dilution as an indicator of cell multi-
plication. In order to determine the effect of chemical inhibition of
DOTIL on CSR and plasma cell formation under in vitro stimulation
(LPS or anti-CD40 + IL-4), naive B cells isolated from WT spleen
were labeled with CTV and stimulated (LPS or anti-CD40 + IL-4)
under the above-mentioned conditions either in the presence of
DOTI1L inhibitor Pinometostat (EPZ-5676, catalog number S7062,
Selleckchem) at a concentration of 10 uM or 0.1% dimethyl sulfox-
ide (DMSO) as a control.

Enzyme-linked Immunosorbent Assay (ELISA)

LCMV-specific serum IgM and IgG levels were measured by ELISA.
In short, Nunc-Immuno Maxisorp plates (Fisher Scientific) were
coated overnight at 4°C with virus in bicarbonate buffer. Plates were
subsequently incubated for 1h with blocking buffer (PBS/5% milk
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powder (Fluka Biochemika)). Sera from mice were diluted in
PBS/1% milk powder and incubated for 1h at 37°C. Next,
HRP-conjugated IgG and IgM antibodies (Southern Biotech) were
diluted 1:4,000 in PBS/1% milk powder and incubated 1 h at 37°C.
Plates were developed with TMB substrate (Sigma Aldrich), and the
color reaction was stopped by the addition of 1 M H,SO,4. Optical
density was read at 450 nm (ODgs0) using a Microplate reader
(Model 680, Bio-Rad).

To quantify NP-specific serum antibodies, plates were coated
with 2 pg/ml NP30-BSA. Serum was added at a starting dilution of
1:100 followed by threefold serial dilutions and incubated for 2 h at
room temperature. Bound serum antibodies were detected with
polyclonal biotinylated goat anti-mouse IgM or anti-IgG1 (Southern
Biotech, catalog numbers 1020-08 and 1071-08, respectively), strep-
tavidin-alkaline phosphatase conjugate (Roche, catalog number
11089161001) and chromogenic substrate 4-nitrophenyl phosphate
(Sigma, catalog number N2765-100TAB) in diethanolamine buffer.
Purified monoclonal antibodies (B1-8u and 18-1-16y1, home-made)
were used as standards for quantification.

To quantify resting serum Ig titers, plates were coated with
1 pg/ml of goat anti-mouse Kappa and Lambda prepared in BBS
(Borate Buffered Saline). Serum was diluted with 0.05% Tween in
PBS and added at a starting dilution of 1:100, followed by four-
fold serial dilutions. The plates were incubated overnight at 4°C.
Bound serum antibodies were detected with biotinylated goat anti-
mouse IgM, IgG1, IgG2b, 1gG3, and IgA (Southern Biotech, catalog
numbers 1020-08, 1071-08, 1090-08, 1100-08, and 1040-08,
respectively), streptavidin-alkaline phosphatase conjugate (Roche,
catalog number 11089161001), and chromogenic substrate
4-nitrophenyl phosphate (Sigma, catalog number N2765-100TAB)
in diethanolamine buffer. Mouse IgM, IgG1, IgG2b, IgG3, and IgA
antibodies (Southern Biotech, catalog numbers 0101-01, 0102-01,
0104-01, 0105-01, and 0106-01, respectively) were used as
standards for quantification.

Lectin histochemistry

Lymphoid tissues such as spleens were fixed in EAF (ethanol,
acetic acid, formaldehyde, saline) for 24 h and subsequently
embedded in paraffin. 4-um-thick sections were stained with the
lectin Peanut Agglutinin (PNA, Vector Laboratories) at 1:1,500 dilu-
tion to reveal germinal centers. The sections were counterstained
with hematoxyline.

Immunohistochemistry

Spleens were collected and fixed in EAF fixative (ethanol/acetic
acid/formaldehyde/saline at 40:5:10:45 v/v). Fixed spleens were
embedded in paraffin and sections of 4 um thickness were made.
Immunohistochemistry (IHC) was conducted for CD3 (Thermo
Fischer Scientific, RM-9107-S1, at a dilution of 1:600), cleaved
caspase-3 (Cell Signaling, catalog number 9661, at a dilution of
1:400), and Ki67 (Abcam, catalog number ab15580, at a dilution of
1:3000). The sections were reviewed with a Zeiss Axioskop2 Plus
microscope (Carl Zeiss Microscopy, Jena, Germany), and images
were captured with a Zeiss AxioCam HRc digital camera and
processed with AxioVision 4 software (both from Carl Zeiss Vision,
Miinchen, Germany). The scale bars were set at 50 pm.
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Sorting and in vitro activation for RNA and ChIP-Seq

For RNA sequencing, cells were first depleted for CD43" cells and
either subjected to MACS sorting for CD19" cells as naive B cells or
activated for 2 days with LPS + IL-4. Following activation, the cells
were enriched for CD19" by MACS according to the manufacturer
instructions. For ChIP-Seq, CD43™ cells were either FACS sorted for
CD19" as naive B-cell pool or activated for 3 days with LPS + IL-4
and subjected to FACS sorting for CD19" expression.

RNA-Seq sample preparation

MACS sorted CD19" cells were resuspended in TRIzol (Ambion Life
Technologies), and total RNA was extracted according to the manu-
facturer’s protocol. Quality and quantity of the total RNA were
assessed by the 2100 Bioanalyzer using a Nano chip (Agilent). Only
RNA samples having an RNA Integrity Number (RIN) > 8 were
subjected to library generation.

RNA-Seq library preparation

Strand-specific ¢cDNA libraries were generated using the TruSeq
Stranded mRNA sample preparation kit (Illumina) according to the
manufacturer’s protocol. The libraries were analyzed for size
and quantity of cDNAs on a 2100 Bioanalyzer using a DNA 7500
chip (Agilent), diluted, and pooled in multiplex sequencing pools.
The libraries were sequenced as 65 base single reads on a
HiSeq2500 (Illumina).

RNA-Seq preprocessing

Strand-specific RNA reads (11-33 million reads per sample), 65 bp
single-end, were aligned against the mouse reference genome
(Ensembl build 38) using Tophat (version 2.1, bowtie version 1.1).
Tophat was supplied with a Gene Transfer File (GTF, Ensembl
version 77) and was supplied with the following parameters: “--pre-
filter-multihits —no-coverage-search —bowtiel -library-type fr-first-
strand”. In order to count the number of reads per gene, a custom
script which is based on the same ideas as HTSeq-count has been
used. A list of the total number of uniquely mapped reads for each
gene that is present in the provided Gene Transfer Format (GTF) file
was generated. Genes that have no expression across all samples
within the dataset were removed. Analysis was restricted to genes
that have least two counts per million (CPM) value in all samples in
specific contrasts, to exclude very low abundance genes. Differential
expression analysis was performed in R language (version 3.5.1) on
only relevant samples using edgeR package and default arguments
with the design set to either Dot1LKO status, Ezh2KO status or cell
type. Genes were considered to be differentially expressed when the
False discovery rate (FDR) was below 0.05 after the Benjamini—
Hochberg multiple testing correction. Sets of differentially expressed
genes in indicated conditions were called “gene signatures”. MA
plots were generated after differential expression analysis carried by
edgeR package (Robinson et al, 2010; McCarthy et al, 2012). Read
counts were corrected for gene length based on the longest tran-
script of the gene followed by normalization for the library size and
shown as transcript per million (TPM). Counts are shown as counts
per million after trimmed mean of M-values (TMM) normalization
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using the edgeR R package. For analyses where we performed
expression matching, we chose genes with an absolute log, fold
changes less than 0.1 and false discovery rate corrected P-values
above 0.05 that were closest in mean expression to each of the
genes being matched without replacement. The RNA-Seq datasets
reported in this article have been deposited at the National Center
for Biotechnology Information under the accession number
GSE138909.

Ingenuity pathway analysis

Lists of differentially expressed genes (FDR < 0.05) between WT
and KO B cells both from naive and activated conditions were
submitted to IPA using default settings to identify potential
upstream regulators.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was carried out after differen-
tial expression analysis and was shown as barcode plot where the
genes were ranked according to the log, fold change between the
compared conditions. Statistical significance for the enrichment of
gene set was determined by Fast approximation to mroast (FRY)
gene set test (Wu et al, 2010) from limma package (version 3.44.3)
(Ritchie et al, 2015), and two-sided directional P-value less than
0.05 was considered significant. For Fig EV5H, GSEA was performed
by Fast Gene Set Enrichment Analysis (fgsea) Bioconductor pack-
age (version 1.14.0) (preprint: Korotkevich et al, 2019) using
ranked, shrunken fold changes from the differential expression
analysis as input.

ChIP-Seq sample preparation

Sorted cells were centrifuged at 500 rcf. The pellet was resuspended
in IMDM containing 2% FCS and formaldehyde (Sigma) was added
to a final concentration of 1%. After 10-min incubation at RT,
glycine (final concentration 125 mM) was added and incubated for
S min. Cells were washed twice with ice-cold PBS containing
Complete, EDTA-free, protein inhibitor cocktail (PIC) (Roche).
Cross-linked cell pellets were stored at —80°C. Pellets were resus-
pended in cold Nuclei lysis buffer (50 mM Tris-HCI pH 8.0, 10 mM
EDTA pH 8.0, 1% SDS) + PIC and incubated for at least 10 min.
Cells were sonicated with a PICO sonicator to an average length of
200-500 bp using 30 s on/30 s off for 3 min. After centrifugation at
high speed, debris was removed and 9% volume of ChIP dilution
buffer (50 mM Tris-HCI pH 8, 0.167 M NaCl, 1.1% Triton X-100,
0.11% sodium deoxycholate) + PIC and 5x volume of RIPA-150
(50 mM Tris—HCl pH 8, 0.15 M NaCl, 1 mM EDTA pH 8, 0.1% SDS,
1% Triton X-100, 0.1% sodium deoxycholate) + PIC was added.
Shearing efficiency was confirmed by reverse crosslinking the chro-
matin and checking the size on agarose gel. Chromatin was pre-
cleared by adding ProteinG Dynabeads (Life Technologies) and rota-
tion for 1 h at 4°C. After the beads were removed 2 pl H3K79mel,
2 pul H3K79me2 (NL59, Merck Millipore, catalog number 04-835)
and 1 pl H3K4me3 (Abcam, catalog number ab8580) were added
and incubated overnight at 4°C. ProteinG Dynabeads were added to
the IP and incubated for 3 h at 4°C. Beads with bound immune
complexes were subsequently washed with RIPA-150, two times
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RIPA-500 (50 mM Tris-HCI pH 8, 0.5 M NaCl, 1 mM EDTA pH 8,
0.1% SDS, 1% Triton X-100, 0.1% sodium deoxycholate), two times
RIPA-LiCl (50 mM Tris-HCl pH 8, 1 mM EDTA pH 8, 1% Nonidet
P-40, 0.7% sodium deoxycholate, 0.5 M LiCl,) and TE. Beads were
resuspended in 150 pl Direct elution buffer (10 mM Tris—HCl pH 8,
0.3 M NaCl, 5 mM EDTA pH 8, 0.5% SDS) and incubated overnight
at 65°C, and input samples were included. Supernatant was trans-
ferred to a new tube, and 1 pl RNase A (Sigma) and 3 pl ProtK
(Sigma) were added per sample and incubated at 55°C for 1 h. DNA
was purified using Qiagen purification columns.

ChIP-Seq library preparation

Library preparation was done using KAPA LTP Library preparation
kit using the manufacturer’s protocol with slight modifications.
Briefly, after end-repair and A-tailing adaptor were ligated followed
by Solid Phase Reversible Immobilization (SPRI) clean-up. Libraries
were amplified by PCR and fragments between 250 and 450 bp were
selected using AMPure XP beads (Beckman Coulter, catalog number
A63881). The libraries were analyzed for size and quantity of DNAs
on a 2100 Bioanalyzer using a High Sensitivity DNA kit (Agilent),
diluted and pooled in multiplex sequencing pools. The libraries
were sequenced as 65 base single reads on a HiSeq2500 (Illumina).

ChIP-Seq preprocessing

ChIP-Seq samples were mapped to mm10 (Ensembl GRCm38) using
BWA-MEM with the option “-M”. Duplicate reads were removed using
MarkDuplicates from the Picard toolset with “VALIDATION_
STRINGENCY = LENIENT” and “REMOVE_DUPLICATES = true” as
arguments. Bigwig tracks were generated from these bam files by
using bamCoverage from deepTools using the following arguments:
“-of bigwig —binsize 25 —-normalizeUsing RPGC —ignoreForNormalization
chrM —effectiveGenomeSize 2652783500”. Bigwig files were loaded
into R using the “import.bw()” function from the rtracklayer R pack-
age for visualization of heatmaps and genomic tracks. TSSs for heat-
maps were taken from Ensembl GRCm38.77 gene models by taking
the first base pair of the 5 UTR of transcripts. When such annota-
tion was missing, the most 5’ position of the first exon was taken.

Statistical analyses

Statistical analyses were performed using Prism 7 (GraphPad). Data
are presented as mean + SD except for Fig 4D where it is presented
as mean + SEM. Unless stated otherwise, the unpaired Student’s
t-test with two-tailed distributions was used to calculate the P-value.
A P-value < 0.05 was considered statistically significant.

Data availability

The RNA-Seq and ChIP-Seq datasets reported in this article have been
deposited at the National Center for Biotechnology Information under
the accession number GSE138909 (https://www.ncbi.nlm.nih.gov/ge
o/query/acc.cgi?acc= GSE138909) and GSE138906 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE138906), respectively.

Expanded View for this article is available online.
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