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Abstract

In this paper, we present a method to solve the quantum marginal problem for symmetric d-level
systems. The method is built upon an efficient semi-definite program that uses the compatibility
conditions of an m-body reduced density with a global n-body density matrix supported on the
symmetric space. We illustrate the applicability of the method in central quantum information
problems with several exemplary case studies. Namely, (i) a fast variational ansatz to optimize local
Hamiltonians over symmetric states, (ii) a method to optimize symmetric, few-body Bell operators
over symmetric states and (iii) a set of sufficient conditions to determine which symmetric states
cannot be self-tested from few-body observables. As a by-product of our findings, we also provide
a generic, analytical correspondence between arbitrary superpositions of n-qubit Dicke states and
translationally-invariant diagonal matrix product states of bond dimension #.

1. Introduction

The quantum marginal problem (QMP) is ubiquitous not only in modern physics, but also in modern
chemistry, where it is usually referred to as the n-representability problem [1]. The QMP can be stated as
determining whether a set of reduced density matrices (RDMs) are compatible with a global wavefunction.
The QMP arises naturally when computing physically important quantities such as the energy of a system
or its entropy, as they often only depend on few particles. As an illustrative example, let us imagine one is
interested in computing the ground energy of a k-local Hamiltonian H = ), H;, where each H; acts
nontrivially on at most k particles. The solution to this problem is (1)|H|v), where |1)) is an eigenvector of
H with lowest corresponding eigenvalue. Unfortunately, the amount of computational resources to describe
[1)) grows, in general, exponentially with the system size, rendering this approach impractical. Alternatively,
one can exploit the fact that H is a sum of much simpler terms, and compute instead

(Y|H|p)y = >, Tr[H;p;], where each p; is the reduced density matrix of |1) (1| on the particles H; acts
upon. The latter formulation, however, only appears to circumvent the exponential cost of describing |¢)).
As a matter of fact, it actually comes at the cost of knowing the compatibility conditions of {p;} with a
global state [1) (1.

Despite this apparent simplification, the QMP has challenged the physics and chemistry communities
since the 60s and every nontrivial advance has already supposed a milestone in the field [2]. The QMP is
strongly believed to be very hard, even for a quantum computer: it is complete for the complexity class
quantum Merlin—Arthur (QMA) [3] which, roughly speaking, is the analogous of NP for a quantum
computer. This may be not so surprising, since the k-local Hamiltonian problem itself is QMA-complete
[4], even for k = 2 [5] or for quantum systems on a 1D geometry [6], and existing quantum algorithms
take typically exponential time to solve it [7—10]. In spite of these intractability results, tremendous progress
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has been achieved over the years in the QMP, even before the advent of the quantum information
processing era [11-13].

A great deal of the aforementioned progress has centered onto the one-body RDM problem; i.e.
determining if a set of one-body RDMs is compatible with a global (pure) state. Klyachko showed that in
this case it is sufficient to characterize the QMP compatibility conditions solely from the eigenvalues of the
one-body RDMs [2, 14]. For instance, the case of RDMs of a bipartite system is completely solved in terms
of linear inequalities on the spectra [14], a rather surprising fact, since it is not obvious that compatible
spectra form convex sets, let alone polytopes. This formalism has allowed for an elegant and mathematically
tractable characterization, from which further results have stemmed [15, 16], for instance, in the context of
witnessing genuinely multipartite entanglement from one-body RDMs [13].

The few-body QMP is encompassed with substantial additional challenges. First of all, the relevant
information cannot be extracted solely from the eigenvalues of the RDMs, as it was the case on the
one-body case. In the one-body case, the supports of different RDMs were necessarily disjoint; therefore,
the action of local unitaries did not affect global compatibility and, in consequence, only the spectrum of
the one-body RDMs was relevant. In the case that one considers few-body RDMs, their supports may
intersect. Therefore, these must, at least, have the same reduced density matrix on the intersection of their
supports. Despite the additional requirements, some progress has been made [17]: for instance, almost all
four-partite pure states are determined by their two-body marginals [18]. The QMP has also been
extensively studied under the bosonic and fermionic formalism [2, 12, 19-21]: there, one uses the
assumption of the global pure state being either fully symmetric or antisymmetric and obtains conditions
on the RDMs on a given subset of parties. These RDMs are all equal due to the symmetry of the global
state. The QMP remains today a topic of intense research activity [22-24].

In this work we consider the following problem: given a reduced density matrix o of m qudits, i.e. acting
on the Hilbert space (C%)®™, is it compatible with a global density matrix p acting on the symmetric space
of n qudits Sym(C%)®"? Note that we denote the symmetric space as the subspace which is spanned by the
Dicke states defined in section 2. We present the solution to this problem by analytically writing the
compatibility conditions between ¢ and p and we show that they can be efficiently determined numerically
as a feasibility semidefinite program (SdP) (section 3.1).

The core results of our work can be summarized as follows:

e We give the analytical conditions for any m-qudit RDM to be compatible with a larger n-qudit

symmetric state

e We show how these compatibility conditions can be efficiently solved (polynomially in #, with degree

d — 1) via a SDP, thus enabling fast optimization over symmetric states

Our results can be seen as a solution to the N-representability problem for bosons in first quantization;
i.e. for spin systems of identical, but distinguishable particles [25]. The N-representability problem also
exists for bosons in second quantization, but there it was shown to be QMA-hard [26], mainly because the
scaling that is taken is that the number of modes to be considered is proportional to the number of particles
in the system. This yields an exponential scaling, whereas in our work the physical dimension of the qudits
is fixed and independent of the number of particles in the system.

Our work has implications in several aspects of quantum information processing, as we show in
subsequent sections with exemplary case studies. We show in section 3.3 how this provides a
computationally undemanding variational approach to the ground state energy of any local Hamiltonian.
We benchmark our results with different physical models, such as the Lipkin—Meshkov—Glick (LMG) from
nuclear physics [27-29], an Ising chain with power-law interactions, and various XXZ chains with
transverse and longitudinal magnetic fields (section 4.1). We further showcase how our method leads to a
natural tool to optimize symmetric, few-body, Bell inequalities [30—32] and we apply our method to show
the ground state of some XXZ one-dimensional model with 128 particles contains Bell correlations
(section 4.2). In order to benchmark our results in large system sizes, we have also developed an analytical
correspondence between pure symmetric states of # qubits and translationally invariant diagonal matrix
product states (MPS) of bond dimension # (section 4.3) which may be of independent interest. Another
exemplary case study that stems from our method may have implications on the self-testing of symmetric
states from few-body correlators. Our method allows us to find sufficient conditions to certify which
symmetric states cannot be self-tested from their marginals, by analyzing when the compatibility conditions
do not lead to a unique solution (section 4.4). We discuss the implications of our results and discuss further
research directions in section 5. The results presented in this manuscript are partly adapted from chapter 6
of the doctoral thesis in [33].
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2. Preliminaries

Symmetric states constitute one of the most prominent classes of quantum states [34]. These are linear
combinations of the so-called Dicke states, which arise naturally from the superradiance effect [35]. Dicke
states and symmetric states have been successfully prepared in the laboratory in a plethora of systems,
ranging from photons [36] to ultracold atoms [37, 38]. Their entanglement properties have been extensively
studied [39—41]. Furthermore, device-independent (DI) self-testing protocols exist for Dicke states [42, 43],
and symmetric states provide an advantage in quantum metrology [44]. Symmetric states are simple to
describe, as their permutational invariance allows one to circumvent the exponential growth of the Hilbert
space representability problem, therefore being confined to a subspace of the multipartite Hilbert space
whose dimension scales only polynomially with n, with degree d — 1: more precisely, we have

dime Sym(C)" = ("54)

Symmetric states are spanned by the Dicke states and, thus, can be conveniently represented by the
so-called Dicke basis. In the case of n qubits, the Dicke states are typically denoted |D}) and take the
following form:

D) o Y 7(|0)* P 1)), (1)
TES,
where &,, denotes the symmetric group (the group of permutations of n elements), and 7 is a permutation
acting on the different local Hilbert spaces.

For instance, the half-filled Dicke state of n = 4 qubits has two excitations k = 2, but they are
delocalized among the different subsystems, in an equally-weighted coherent superposition of the same
phase:

1
V6
The number of different terms in a qubit Dicke state of k excitations is given by the combinatorial
expression (Z) and there are n + 1 Dicke states for d = 2.

In the general case of qudits, now one needs to specify how many |1) excitations there are, how many |2)
excitations, etc. Hence, it is a natural choice to index Dicke states by partitions of n. For this purpose,
whenever A = (Ai)f;()l be a vector with non-negative entries, then we denote A - n if A is a partition of # in

|D3) = (]0011) +10101) + |0110) + [1001) + [1010) + [1100)) . (2)

d elements, i.e. Z?;Ol Ai = n. We will omit mentioning d whenever it is clear from the context. There are
(”ﬁ;l) such partitions and a qudit Dicke state is denoted by | D)), where
Dx) oc Y 7(0) 0 @ - - @ |d — 1)), (3)

TES,

The number of different terms in equation (3) is given by the multinomial combinatorial expression

vt @

For the sake of a more compact notation, in the rest of this manuscript we will denote the qudit Dicke state
|Dy) simply as |\), since D is void of meaning.

3. Main result: the QMP for symmetric states

In this section we present our main results: first, in section 3.1 we derive a complete set of necessary and
sufficient conditions for an m-qudit reduced density matrix to be compatible with a global n-qudit
symmetric density matrix; second, in section 3.2 we show that, by means of the compatibility conditions
from section 3.1, one can express the QMP for symmetric states as a feasibility problem which is efficiently
solvable with semidefinite programming techniques; finally, in section 3.3 we illustrate how the solution
from section 3.2 can be used as a variational ansatz, whose applications are further explored in section 4.

3.1. Compatibility conditions with a global symmetric state

Here we outline the fundamental building block of our work. We derive a set of necessary and sufficient
conditions for compatibility of an m-qudit (symmetric) density matrix o with a global n-qudit symmetric
density matrix p.
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Let us consider a quantum system of n qudits in the symmetric state p. Let us denote the components of
p by p;), where A, p = n. Thus,
p=Y_ PhlANnl. (5)

A pn

Our first goal is to find closed-form expressions, both in the computational and in the Dicke basis, that
relates the matrix elements of p, with the matrix elements of its m-particle RDM. Note that, since p is
symmetric, the choice of which n — m subsystems to trace out plays no role.

Before stating theorem 1, we introduce the following notations. We define [d] :={0,...,d — 1}, and we
shall use indices with an overhead arrow (e.g. 1) to denote matrix elements in the computational basis, as
opposed to indices in boldface (e.g. A) that denote matrix elements in the Dicke basis. We recall once more
that such boldface indices consist in partitions of #, and they are associated to the Dicke basis elements
through equation (3).

Theorem 1. Let p be a symmetric state of n qudits, and m < n. Letz?,fe [d]™ and o, B = m, so that we define
o:= Tr,_u(p);ie.
o= ali)jl= ) ofla)al (6)
?,fe[d]’” a,BFm

Then, we have the coefficients in the computational basis

EDWDY D) iy = NG+ o, (7)

Apbn kEn—m ( ’;\) Z

where §(v) = 1 iff v is the zero vector and §(v) = 0 otherwise. We have also defined the function
w(i) := (wo(i), . .., wa—1(7)), with wi(i) counting how many coordinates of i are equal to k € [d] (for the details
see appendix A), and the coefficients in the Dicke basis

%5(a+ﬂ—>\)5(ﬂ+%—u)- (8)

A proof of theorem 1 can be found in appendix A. Note that equations (7) and (8) provide a set of
compatibility conditions for all the elements of a reduced density matrix o of m qudits to be compatible
with a global (possibly mixed) symmetric state p of n qudits. Therefore, by also imposing the constraints for
p to be a valid quantum state, i.e. p = 0 & Tr(p) = 1, then one has a complete set of necessary and
sufficient compatibility conditions.

=iy (")

Apbn kbEn—m

3.2. Efficient solution as a feasibility problem
In this section we describe an efficient solution to the QMP for symmetric states. In particular, we express
the QMP for symmetric states as a feasibility problem by means of semidefinite programming (SDP)
techniques. In appendix B a brief summary of SDP basic notions is included.

In particular, the complete set of compatibility conditions from section 3.1 makes it straightforward to
write them down as an SDP that tests feasibility for an m-qudit RDM o to be compatible with an n-qudit
global symmetric state p:

min 0
p
subjectto p = 0, Tr(p) = 1, (9)
Z pzal’)zg =05 Voa,BFm,
A pkn

where the coefficients a,);’)g are defined to account for the compatibility conditions in equation (8) (similarly
for equation (7)); namely,
() (3)
n

() (1)

Furthermore, by expressing a,);’)g as the entries of a matrix Aj indexed by A and p, the SDP equation (9)
is automatically written in canonical form:

Na+k—NIB+kKk—p). (10)

2= (")

kbn—m
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min (0, p)
P

subjecttop = 0, Tr(p) = 1, (11)
(AG,p) = 0§ Vo,BFm,

where (-, -) denotes the Hilbert—Schmidt inner product.

Some comments are in order. First, let us start by noting that in the SDPs in equations (9) and (11) we
are taking 0 as the objective function, thus expressing the SDPs as a feasibility problem, meaning that the
only output from the SDP is the answer feasible or infeasible, depending on whether the feasible set of p is
empty or not (cf appendix B for details). Therefore, when the SDP in equation (11) is feasible, then it is
certified that o admits an extension into a symmetric Dicke state p of n qudits (which is precisely the
solution of that SDP). In section 4.4 we discuss the uniqueness of that solution.

Second, let us note that the free variables of p act as the decision variables to be optimized with the SDP
technique. More precisely, the free variables from p can be seen as extra variables on the original problem,
thus defining the set of feasible ¢’s as a projected spectrahedron (see e.g. section 5.6 of [45]). Since p acts in
the symmetric subspace, the number of extra variables will be at most polynomial in the system size n with
degree d — 1, which makes the procedure efficient. Let us emphasize that the optimization is not directly
carried over the whole symmetric space of p, since some entries of p are eliminated by the equality
constraints in section 3.1.

Finally, let us comment on the purity of the compatible state p. One can easily combine our
methodology with the algorithm in section 3.7 of [17] in order to obtain a pure global state p (if such a p
exists for a given o). In particular, the algorithm would need to iterate equation (11), where at each
iteration one would keep the projector onto the highest eigenvalue subspace of the obtained solution p until
convergence to a rank-1 projector, thus attaining purity (which in the average case happens in less than 4
iterations [17]).

3.3. Variational ansatz
We can now easily modify the SDP in equation (11) to optimize any linear functional H on p, while
maintaining compatibility over a given marginal state 0. This is done by considering the following SDP:

min (H, p)
st.p=0 (12)
<Ag,p> :Ug Vo, B3 m.

The most interesting case arises when such a functional can be expressed as a sum of terms with support
on, at most, m qudits. This includes many cases of physical interest, such as Hamiltonians or Bell operators
composed of, at most, m-body interactions/correlators. In this case, let us denote H = ) ", H;. Then, (H, p)
can be expressed as a linear combination of terms of the form (H;, o), namely:

min Z(H,—, o)

st.p=0 (13)

<Ag,p> = ag Va,B3F m.

Note that, while in section 3.2 we were interested in the case where o is given, in equation (13) both p and o
are treated as positive-semidefinite variables. The positive-semidefiniteness of ¢ is automatically implied by
that of p. In fact, o can be completely removed from equation (13) and embedded into the objective
function; however we keep it in this form for clarity of exposition. The form of equation (13) is thus useful
to optimize a functional H that depends only on the marginal information contained in the reduced states,
while keeping compatibility with a global symmetric state. Recall that the size of p depends polynomially on
n, with a degree d — 1, so that this procedure is efficient for systems of qudits of large n and fixed d.

4. Some applications

The aim of this section is to illustrate several applications in various, apparently uncorrelated, problems in
quantum information, all of which have deep roots in the QMP.

In section 4.1 (and appendix C) we apply equation (13) to benchmark our method as a variational
ansatz to find a fast, upper bound, to the ground state energy and, in some cases, to well approximate the
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ground state of several paradigmatic Hamiltonians. In section 4.2 we adapt our method to optimize Bell
functionals composed of symmetric, few-body observables. In section 4.3 we provide a method to
approximate any n-qubit Dicke state with a translationally-invariant (TT) diagonal MPS of bond dimension
n. Finally, in section 4.4 we show how our method can be used to show which symmetric states cannot be
self-tested from few-body marginals.

4.1. Benchmarking the variational ansatz

Here we consider some Hamiltonians of exemplary spin models, complemented in appendix C, in order to
benchmark the performance of the variational ansatz presented in section 3.3. In particular, we consider:
the LMG model (section 4.1.1) and one of its SU(3) variations (appendix C.4); an Ising chain under a
transverse field with power-law decaying interactions (section 4.1.2) and with nearest-neighbours
interactions (appendix C.1); and the XXZ chain under a transverse field (appendix C.2) and the
ferromagnetic (FM) XXZ with longitudinal magnetic field and periodic boundary conditions (appendix
C.3). Furthermore, for the Ising chain with power-law decaying interactions model we provide in

section 4.1.3 the runtime and estimated resources consumed by our method, compared to density matrix
renormalization group (DMRG) as a benchmark.

The variational ansatz approximates the ground state and energy of an m-local Hamiltonian by an
m-qudit RDM (denoted m-RDM for short) compatible with a global many-body symmetric state.
Therefore, we expect the variational ansatz to provide a good approximation when the coupling interactions
are similar between all pairs and to provide exact results when the ground state lies in the symmetric space.

4.1.1. Lipkin—Meshkov—Glick model
Let us start by considering a spin model for which our variational method (VM) recovers the ground state
exactly. We picked as an example the LMG model [27-29], which involves long-range interactions that
result in ground states that are symmetric under any permutation of the particles. The LMG model was
originally proposed in nuclear physics to describe phase transitions in nuclei. However, nowadays it also
serves to describe e.g. two-mode Bose—Einstein condensates experiments, since it captures the physics of
interacting bosons in a double-well trapping potential. Furthermore, in its isotropic version, the ground
states of the LMG model are pure Dicke states, which have been shown to display Bell correlations [30, 32,
46]. The phase transitions of the general model are also well understood [47]. Analytical expressions for the
ground state entanglement entropy have been found [48—50] and exact solutions of the model are known
[51-53], which we use here to benchmark our method.

In particular, we consider the following LMG Hamiltonian which describes a set of n spin-1/2 particles
with anisotropic long-range interactions under an external transverse magnetic field h:

n
H = —%Z (a§i>a§> + ’yay)ay)) — hz aii), (14)
i=1

i<j

where a,((i) denotes the Pauli matrix in position i and direction k, A > 0 correspond to FM interactions,
A < 0 correspond to anti-ferromagnetic (AFM) interactions, and -y marks the anisotropy in the coupling
terms, with v = 1 being the isotropic case.

By adapting the SDP optimization problem in equation (13), we can use the 2-RDM compatibility
constraints to approximate its ground state by means of SDP. In particular, the optimization problem to
find the best approximation within the variational ansatz can be reduced to the following SDP:

min Tr (7—20)
st.p=0 (15)
(AG,p) =05 Va,BFm,

where we emphasize that Hi= — (2) % (Ux ® 0% + Y0, @ ay) —nh(o,® 1+ 1® 0,) /2 is now an
effective two-body Hamiltonian.

In figure 1 we show that the ground state energy of the model we considered is faithfully recovered using
our VM.

We note that this method unlocks the possibility to have access to an efficient description of the n-qubit
state (given in the symmetric basis equation (8)), since it is a matrix of size (m + 1) x (m + 1). This, in
turn, allows to obtain any associated m-RDM V1 < m < n. This enables us to study the method against
extensive quantities such as entropy, since it is now easy to obtain the m-block size entanglement entropy
Spn = —> 1o, pilog, p; by finding the eigenvalues p; of the m-RDM [47]. In figure 1 we have used such a
procedure to obtain the half-system entanglement entropy. The method reproduces the features of the LMG
model phase diagram, as expected.
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Figure 1. Numerical results for the LMG Hamiltonian (14) with h = A = 1. Left: the VM faithfully reproduces the ground state
energy of the LMG model for n = 128. Up to numerical error (~ 10~ using SeDuMi [54]) the values coincide. Center: always
for n = 128, we use the RDM compatibility constraints to obtain the half-system RDM from the ground state found by the VM.
This enables us to compute the entanglement entropy, and to characterize the phase diagram of the model [47]. Right:
half-system entanglement entropy for v = 0 and different values of n obtained from the VM using the RDM compatibility
constraints in the symmetric basis. For v # 1, one can appreciate the anomaly in h = 1 as we increase 1, which becomes a critical
point in the asymptotic limit.

In order to illustrate that the VM can easily be implemented to d-level systems with local Hilbert space
of dimension d > 2, in appendix C.4 we consider the three-orbital LMG Hamiltonian for which we obtain
similar results as the ones presented in this section.

4.1.2. Ising chain with variable-range interactions under a transverse field

As a second example, we consider the Ising model with variable-range interactions in a transverse field. The
tuneable interaction range allows us to explore how our VM performs as the range of interactions decreases
from the infinite-range case (equivalent to the LMG model) to the nearest-neighbour case. In particular, we
consider the following Hamiltonian for an Ising chain with decaying power-law interactions:

M =sin(0)> Jiood +cos(0)> o, (16)

i<j i=1

where J;j = |i — j| =%, the parameter o tunes the range of interactions, and & > 0 (¢ < 0) results in AFM
(FM) interactions. We note that in the limit ov — 0 all pairs interact with the same strength [55], whereas in
the other extreme av — 0o we have interactions only between nearest neighbors. The phase diagram for this
model has been extensively characterised [56—58]. In particular, for a > 0 the model exhibits three phases:
an ordered FM phase for —m/2 < 6 < 6. («); a disordered paramagnetic phase for 6. (o) < 6 < 01 («);
and an ordered AFM phase for 6 (o) < 6 < /2. Notably, such a model has also been shown to display
Bell correlations at the critical points for the FM couplings [59].

In order to construct the VM for equation (16), we consider the SDP in equation (15) with the effective
Hamiltonian H :=J sin(0)o, ® 0, + n cos(§) (o, @ 1+ 1 ® 0y)/2, where J := ZKj Jij»

In figure 2 we compare the ground states obtained using our VM with those obtained from exact
diagonalisation (ED), in terms of relative energy and fidelity. To compare the ground state energies we look
at their ratio, Ej™ /EEP. For this, a few comments are in order: first of all, note that the ground state energy
is negative and sufficiently far from zero to constitute a good approximation of 1 — §, where J is the relative
error. Second, we have chosen the ratio as a figure of merit, instead of the relative error, as it gives a better
visual comparison with the fidelity also plotted in figure 2. To compute the ground state fidelity we use the
definition F(pgp, pym) := (Tr \/pEpVM\/pE)Z. For this model we expect that the analytical solutions for
the long-range interaction regime are well approximated by the one for the LMG model, where our VM
yields exact results. However, in the transition from o > 1 to o =~ 0 the quality of the approximation is a
priori not so clear. In figure 2 it can be appreciated that for o > 0 the method fails to capture the AFM
phase 6 («) < 6, eventually yielding fidelities close to zero. On the other hand, for values § < 01 («) the
method provides a good approximation, even though for sufficiently large o the method is less accurate
near the critical point 6.

In figure 3 we compare half-system entanglement entropies obtained from the VM and ED. As expected,
we observe a discrepancy in the AFM phase, because of the little overlap between the ground state and the
symmetric space in that region. Interestingly, we see from figure 3 that in the FM regime one can use the
VM (without ED) to approximate its phase transition (between paramagnetic and FM) for different
number of particles, and extrapolate its asymptotic limit. Such an approximation naturally works better as
the range of interactions increases.




I0P Publishing

New J. Phys. 23 (2021) 033026

A Aloy et al

ofr 0 -

0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
0

Figure 2. Numerical results for the Ising Hamiltonian (16) with n = 10, compared to exact diagonalization. Left: energy ratio,
right: ground state fidelity. As expected, the case o = 0 is faithfully recovered by the VM. However, we observe that as the value
of a increases (the range of interaction decreases) the VM fails to capture the AFM phase for which the fidelity eventually drops
to zero. The ground state energy and fidelity in the FM and paramagnetic phases are well approximated, although for large values
of « there is a little discrepancy near the critical points 6 ~ §_ ().
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Figure 3. Numerical results for the Ising Hamiltonian (16) with n = 10. Left: half-system entanglement entropy residual
obtained from comparing VM with ED (a value of 0 indicates an exact result). Although the paramagnetic to AFM phase
transition is not reproduced by the VM, one observes that the transition from FM to paramagnetic is well approximated by
looking at the discrepancies for values of @ > 1.5. Right: half-system entanglement entropy for o = 2. Note that the transition
from FM to paramagnetic manifest itself in the vicinity of § ~ —0.17 for n = 10. From this observation we conjecture that our
VM can be used to extrapolate some critical points where phase transitions occurs. We remark that the ED has not been used in
this case and that the behavior observed arises from the VM alone.

The VM has the potential to identify a phase transition in the model due to the following argument: one
might expect that in many cases of interest, and for a finite number of particles, the sudden change in
nature (e.g. symmetry) of the ground state is actually ‘smeared’ rather smoothly around the critical point.
Therefore, everywhere around this point the ground state may still have some overlap with the symmetric
space, which is the one considered by our VM. The numerical evidence presented in figure 3 supports this
conjecture.

Let us finish this section by mentioning that in appendix C.1 we have examined the VM performance in
the particular case of nearest-neighbours interactions (i.e. & — 00). Furthermore, since the
nearest-neighbours case is solvable by equivalently describing the model as a system of free fermions, in
appendices C.2 and C.3 we explore the performance of our variational ansatz beyond the free fermion scope
by considering various XXZ chains with transverse and magnetic fields.

4.1.3. Benchmarking performance with existing methods

One of the most appealing features of the VM proposed here is its ability to yield results for large system
sizes with very modest time and memory requirements (and, consequently, energy consumption). Indeed,
since the computations take place in the symmetric space, its dimension grows only polynomially with the
system size. In particular, it is linear for qubits, quadratic for qutrits, etc. In the previous sections we have
argued that the method yields results that capture traces of some quantities of physical interest. Therefore, it
can be a good candidate to a first order exploration before trying more numerically-intensive results. To
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Figure 4. Runtimes observed in order to preallocate the 2-RDMs and n/2-RDMs compatibility constraints in the computational
and symmetric basis. Apart from the memory storage advantage, it is observed that the symmetric spaces offers a significant
advantage also in runtimes. The computations have been carried out on a 64-bit operating system with 32 GB ram and a

3.70 GHz processor. No parallelization has been used, which can be easily be implemented, significantly speeding up the process.
The runtimes might slightly vary at each run and are not meant to be taken as exact, but as an illustration of their order.

make this comparison quantitative, we here benchmark the computational requirements of the method
with other existing techniques.

In this section we briefly comment on the time, memory and energy consumption devoted to the
variational ansatz. The runtime of the VM can be split in two steps: (1) to precompute the A matrices in
equation (11) for a fixed n, m and d and (2) to load and solve the SDP. The most expensive task, both in
time and memory, is to compute the compatibility constraints. Hence, in order to agilitate the process, one
would first preallocate and store the compatibility constraints for a fixed number of particles #, of local
Hilbert space dimension d and with RDMs of size m. Then, once the compatibility constraints are
preallocated, one can scan the phase diagram of the desired parametrized Hamiltonian model just by
loading the compatibility constraints and proceeding to solve the corresponding SDP.

In figure 4 we present a representative sample of the computing runtimes we have observed in order to
preallocate the compatibility constraints of the 2-RDMs and half-system n/2-RDMs for different number of
particles n and different local Hilbert space dimensions d. We have considered the 2-RDMs compatibility
constraints case both in the computational basis (equation (7)) and the symmetric basis (equation (8)).
Apart from requiring less memory, one observes a clear advantage in runtime when obtaining the
compatibility constraints directly in the symmetric basis, as expected. Therefore, for the VM it is desirable
to project the effective Hamiltonian onto the symmetric subspace. For the n/2-RDMs case, we have
considered only the symmetric representation which decreases the memory storage limitations in order to
find, for instance, the half-system entanglement entropies. An additional comment is in order: for a
constant value of d, note that the multinomial coefficients in equation (7) or equation (8) do not require a
full expansion of the factorials, but there exist closed analytical formulas for them (see e.g. [32]). This has
been taken into consideration in our calculations. Furthermore, it is desirable to apply such closed
expressions, not only for speed, but more importantly for numerical stability issues (quotients of factorials
of large numbers may give problems in floating-point arithmetic if these numbers are of the order
of ~100).

In figure 5 we present some of the computing runtimes in order to load the constraints and solve the
SDP for the Ising chain with decaying power-law interactions previously considered in section 4.1.2. We
have considered the constraints and effective Hamiltonian in the symmetric basis, and in order to solve the
SDP we have set the solver SDPT3 [60] to its maximal precision providing a numerical error up to
O(107') when the variational ansatz can reach the exact solution. We have carried out the comparison
with the solution provided by DMRG. In order to find the fidelity between the DMRG solution and the VM
solution, we have used the auxiliary results developed in section 4.3 in order to represent the VM solution
as a translationally invariant diagonal MPS.

Let us finish this section by remarking that, in order to compute the fidelity of our variational solution
with respect to the exact one, the most straightforward way we have considered is to contract the MPS
representation of the ground state with the solution of the VM. However, the latter is not given in a MPS
form and it therefore has to be converted in a MPS form. In order to do so, we need to establish a
correspondence between arbitrary superpositions of Dicke states and MPS. To the best of our knowledge, in
general such a correspondence has not been established before, and this result may be of independent
interest. Therefore, we have devoted a full section (section 4.3) to it.

4.2. Bell non-local correlations
The proposed variational ansatz is also convenient to investigate Bell non-local correlations in many-body
systems. The permutational symmetry naturally synergizes with the so-called two-body permutation
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Figure 5. Numerical results of the VM for the Ising Hamiltonian (16) with n = 64, compared with DMRG. The DMRG
algorithm follows [59, 61, 62] increasing the bond dimension up to 20. Left and center: energy ratio and fidelity of the VM
solution with respect to the DMRG solution. In order to compute the fidelity we use the result in section 4.3 to transform the
symmetric basis representation of the VM solution into a MPS representation. Right: runtimes comparison to achieve
convergence with DMRG and VM method. The VM is significantly faster, making it a good candidate for a first rough
exploration of large phase diagrams, and to upper bound ground state energies. Note that runtimes might slightly vary at each
run. The total runtimes are 525.04 s (1 s preallocation) for the VM and 2854.25 s for the DMRG. With a power consumption of
425 W in our workstation, amounts to an environmental impact of around 18 g vs 100 g of CO, into the atmosphere for the VM
vs the DMRG methods (we have taken the 0.296 EU coefficient of kW h to kg of CO, given by the European Environment
Agency for 2016). We remark that the DMRG is an extremely optimized and efficient method that cannot be applied beyond 1
geometric dimension. In these cases, the benchmark with existing methods would be separated by even more orders of
magnitude.

invariant Bell inequalities (PIBIs) presented in [30]. This type of Bell inequalities involve at most two-body
correlation functions, and some of them are violated by symmetric states [32]. One can now consider two
approaches: on the one hand, to obtain the quantum state that gives the maximal violation of such
equalities within the variational ansatz. On the other hand, to find quantum states that also have Bell
correlations by using the VM to approximate the ground state of a many-body Hamiltonian. In the latter
case, the Hamiltonian considered needs not correspond to the Bell operator [46]. It is worth mentioning
that the measurement settings might need to be optimized in order to increase the visibility of the Bell
correlations.

4.2.1. Optimizing permutationally invariant two-body Bell inequalities

We first focus on two particular classes of two-body PIBIs. These inequalities satisfy the following condition
for all correlations that can be described under local-realism assumptions (meaning that their violation
signals the presence of non-local correlations, the so-called nonlocality [63]):

1 1
— 28y + ES()O —So + 5811 > —2n (17)

and
(nmod2)(n — 1)(nSy + 1) + (Z) Soo + 1So1 — Sy > (Z) (n+ 2+ nmod2), (18)

where S = 31, (M), Su= Dizj <M,(j>/\/l;j)> are the one- and two-body symmetric correlators with
M,? denoting the measurement in direction indexed by k = {0, 1} corresponding to particle i. The first
inequality equation (17) is particularly fitted to detect non-local correlations in superpositions of Dicke
states, while the second inequality equation (18) is tailored to detect non-local correlations in half-filled
pure Dicke states [32, 64].

In order to know if there exists a quantum state that violates such Bell inequalities, one still needs to find
appropriate n pairs of measurement settings. This gives rise to the so-called Bell operator, a quantum
observable in the n-partite Hilbert space whose expectation value with respect to a quantum state
corresponds to the value of the Bell inequality for the chosen measurement settings. In general, finding such
measurements consist in a very demanding non-convex optimization problem with no trivial solution.
However, since the variational ansatz provides a global state, the complexity of the problem gets greatly
reduced when we restrict the optimization to the case where all the measurement settings are the same for
each party, in the same reference frame. This gives rise to a permutationally invariant Bell operator, whose
extremal values within the symmetric space can be found using our VM.

Contrary to previous approaches (see e.g. [32, 65]), where one could use representation theory methods
such as Schur—Weyl duality to project the permutationally invariant Bell operator onto the different
symmetric blocks (see also [66]), here the VM circumvents this intermediate step: it is enough to consider
an effective two-body Bell operator B. For instance, for the Bell inequality in equation (17) the

10
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Figure 6. Detection of non-local correlations using inequality equation (17) in the XXZ chain equation (C2) with n = 128
particles. Left: Bell inequality value normalized to the classical bound using the VM with equation (19) for ] = 1 FM couplings.
Values below zero indicate non-local correlations with the VM solution. Center: same for ] = —1 AFM couplings. Right:
zoom-in of the region with largest relative violation for the FM case with largest fidelities according to figure 10, conditioned on
finding Bell correlations with the VM. Here the expectation values have been computed using the actual ground state given by the
DMRG solution with the (non-symmetric) Bell operator equation (21). We have chosen a bond dimension of 32 for the DMRG
solution.

corresponding effective Bell operator can be defined as
Bi=—2n(Mo® 1+ 10 M)+ (Z) (Mo ® Mo —2Mo & My + M, @ My), (19)
so that the Bell inequality in equation (17) reduces to
Tr (Bo) > —2n, (20)

where o can be the 2-RDM obtained with the variational ansatz. We parametrize the measurements as
Mi:= sin (6;) oy + cos (6k) o, where k € {0,1} and o, 0, are the Pauli matrices, and use the VM to find
the symmetric state minimizing the energy of the effective Hamiltonian. We note that this approach
becomes particularly useful in the case of large d, since the number of blocks arising from the
symmetry-adapted basis increases with d. We also remark that, since one can always apply a dual U*"
symmetry to both state and measurements without departing from the symmetric space, it is enough to
optimize over the difference between measurement directions, e.g. fy — 6;. Furthermore, since

equations (17) and (18) have two inputs and two outputs per party, Jordan’s lemma guarantees that using
d = 2 is sufficient to find its maximal violation.

4.2.2. Looking for Bell non-local correlations in a direction specified by a Hamiltonian

Here we propose a two-step process to find Bell non-local correlations in the ground state of Hamiltonians
of physical interest (e.g. an XXZ chain). First, we use the VM to do a quick scan over the parameter space of
a given Hamiltonian family, in order to find potential candidates whose ground state might display Bell
correlations (see figure 6). If Bell correlations are found by the VM, then a symmetric state has been
obtained which displays them, albeit we have no guarantee of the fidelity with the ground state of the model
at this point. Second, we narrow down the search to the parameter regime in which nonlocality has been
detected and compute the actual ground state with other more computationally expensive methods, such as
DMRG (see figure 6).

As toy models we consider an XXZ chain under transverse field (see appendix C.2) and the particular
case of a FM XXZ chain with periodic boundary conditions and longitudinal magnetic field (see appendix
C.3). As a result, for the first time to the best of our knowledge, we observe that the ground state of the XXZ
chain under transverse field in equation (C2) violates the Bell inequality equation (17), thus exhibiting Bell
correlations in the corresponding parameter regime. Bear in mind that, in order to carry out the
measurement optimization, one can no longer consider a single 2-RDM as we posed in equation (19), but
one has to sum over all the different 2-RDMs ¢; obtained with the DMRG. That is, similar to the effective
Bell operator approach in equation (19), now the Bell inequality takes the following form:

—2) Tr ((ij) T+1 Mg")) O'i)
i=1

+3 T ((Mgi) MY —2MP @ MY + MP & Mﬁf’) al-j) > o, (1)
i<j
Also note that, since the RDMs are fixed in this case (by the exact solution), the measurement directions

should not be restricted to the XZ plane in the Bloch sphere, but allowed to point in any direction.
Furthermore, the measurement settings for each party do not need to coincide.

11
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We proceed similarly for the FM XXZ chain with periodic boundary conditions and longitudinal
magnetic field b presented in appendix C.3, for which pure Dicke states provide a good approximation of
the ground state. As we have previously mentioned, inequality equation (18) is tailored to half-filled Dicke
states which happen to approximate the ground state in the range —ﬁ U—L)<b< ﬁ (Je — J,) (see
appendix C.3 for details). Therefore, in such region we expect to witness non-local correlations with
equation (18). Indeed, in figure 7 we show the witnessed nonlocality, where we have used the variational
ansatz to approximate the ground state and optimized using equation (19). We also observe that nonlocality
detection goes beyond the specified region where the half-filled Dicke state approximates the ground state.
As discussed in appendix C.3, such extra range of nonlocality detection seems to arise from the variational
ansatz approximating the first excited state instead of the ground state.

4.3. Generically expressing symmetric states as TI diagonal MPS
In this section we present an analytical method to generically represent any n-qubit Dicke state with a TT
MPS. More precisely, the goal is that, given a state of the form

> = de|Dﬁ>) dy € G, (22)

find two matrices Ay, A; € Mpyp(C) such that

W)= Y Wil in) = Tr[Ai, .. A ]t s in). (23)

(i1 0rin)€{0,1}7 (i1 in)€{0,1}"

Some representations of important symmetric states have been known since their inception. For
instance, the GHZ state (up to normalization) can be generated with D = 2 [67] using the following TI

MPS:
1 0 0 0
N ) ”

On the other hand, for the |W) state, there exists no TI representation with bond dimension 2 [68].
However, it does admit (up to normalization) the following non-TI representation [68]:

(1) ifi <n

(25)
(0’+0'x, Ux) ifi=n.

(A Alh =

We observe that in equation (25), all the coefficients of the MPS are either 1 or 0. Indeed, some MPS can
be used to represent Boolean formula solutions [69]. More generally, the representability of quantum states
with MPS of a particular form has deep connections with modern algebraic geometry [70-72]. For
instance, the |W) state can be arbitrarily well-approximated with a diagonal TI MPS of bond dimension

D =2:
Lemmal. Lete > 0 and
X0 0 Yo 0
Ay = N A = s 2
0 (0 ) 1 (0 y1> (26)
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where
xo = 2~ V/ng=1/In(n=1)]

X = eﬁﬂ/?’lx
1 0 (27)
yo = 2—1/1161/11
yp = _eﬁﬂ'/nyo.
The n-qubit |W) state can be obtained as the limit of ¢ — 0 of the TI MPS given by equation (26).

Proof. One simply notes that, since the MPS is diagonal, the element corresponding to the physical index
(irs...,0,) with k:= Zj i is given by

Wiy i) = X595 + X1, (28)

which amounts to 0 if k = 0 mod 2 and ¢*~1/"=1 if k = 1 mod 2. Hence, noting

ke 1 ifk=1
limenT = (29)
€ 0 ifk>1

yields the result. ]

Inspired by lemma 1, we propose now a TT MPS of bond dimension # to approximate generically any
superposition of Dicke states of the form equation (22). We propose the following parameterization of A
and A;:

Ay x 1p; Ay = diag(xy,...,xp). (30)

For simplicity let us denote Ag = y1 and k = }_.i;. It is then easy to see that equation (23) leads to the
following system of equations:

D
Zynka]; - /(/)(il ..... in)> {il) cee ln} S {O) 1}n (31)
a=1

Note that for states of the form of equation (22) we only require n + 1 equations. Hence, it is natural to
choose D = n. This motivates the following lemma:

Lemma 2. Consider the system of equations

X1+ +x, =2
xf+~-~—|—xﬁ=zz (32)

X4t xy =2,

where z, . . .,z, € C. The solutions of equation (32) are the roots of the polynomial P(X) defined in
equation (D10).

Lemma 3. The system of equations that determines the coefficients y and x, . . . x, of the diagonal tensors Ay and
Ay, used to represent the linear combination of Dicke states equation (22), is given by

y :ﬂ/do/n

d,

e iy
x%+...+xi - %
2/ (5)

(33)

d

G
XX =d,
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The value of y is readily determined from the first equation, and the x’s are found by finding the roots of the
polynomial P(X) constructed from lemma 2 using the remaining set of equations.

Note that generically, we will have n complex solutions, up to n! permutations. However, there is the
possibility that some of the solutions lie at infinity in some pathological cases. Nevertheless, these cases
form a zero-measure set which can in practice be avoided by adding an e-perturbation to d, in the same
spirit as in equation (27).

It is now clear that the bottleneck is solving equation (32) in lemma 2. We propose two approaches in
order to do so: in this section, a variant of the Faddeev—Leverrier algorithm to solve Newton’s identities in
order to find the roots of power-sum symmetric polynomials. In appendix D, we propose a step-by-step
computation of the solutions via Grébner basis which could provide solutions for more general systems of
equations.

We make two observations in order to solve equation (32). The first one is that, if we consider a matrix
A with eigenvalues {xi, ..., x,}, then equation (32) can be thought of as

Tr[Af) =z, 1<k<n (34)

The second observation is that there exists a way to express the characteristic polynomial of a matrix A in
terms of Tr[A¥]. Indeed, if P(X) = det (XT —A) = (X —x1) ... (X — x,) = Yoo e X* is the characteristic
polynomial of A, then P(A) = 0, and taking the trace in both sides yields such an equation. The
Faddeev—Leverrier algorithm provides an easy-to-compute form for the coefficients ¢: they are given by

Tr[A] m—1 0 0 zz m—1 0 0

Tr[A?] Tr[A] m—2 - 2 z m—2

B Gt O . _=nm -
Ch-m = — . . . = :
! : : : m! : : :
Tr[A™'] Te[A™?] - TY[A] 1 Zmot Zmea - oz 1
Tr[A™]  Te[A™'] - oo Tr[A] Zm Zmo cee e g
(35)

The values of x are found by finding all the roots of the polynomial P(X) = >";_, X with ¢, = 1. In
appendix D we give an alternative approach to solve equation (32) from a more algebraic point of view that
gives more insight to the combinatorial structure underlying equation (32).

Having an efficient way to represent a state of the form equation (22), we can now use its MPS form to
efficiently compute the fidelity of DMRG solutions, which are already given in the MPS formalism, for large
n, thus being able to benchmark our method.

4.4. Determining which symmetric states cannot be self-tested from their marginals

Self-testing is one of the most stringent protocols in the paradigm of DI quantum information processing.
Self-testing consists in inferring, solely from the statistics of a Bell experiment, which quantum states and
measurements are being used and performed, respectively [73—75]. Much of the existing work has been
centered around the bipartite case [76, 77], partly motivated by its more accessible physical
implementations [78, 79], but also motivated by its more accessible theoretical analysis, exploiting in most
cases properties of the maximally entangled state of two qudits [80—82]. In the multipartite case, the
analysis becomes more complicated, although some ideas for the bipartite case have inspired some
extensions [42]. In the multipartite case, symmetric states constitute a natural candidate to begin their
study: for instance, the robust self-testing of the W state (|D;)) [83] inspired schemes to self-test Dicke
states of the form |Dy) [42, 43, 84]. Nevertheless, these schemes use full-body correlators and require
individual addressing, thus being less appealing from an experimental point of view. Therefore, some
studies have been carried to find out whether self-testing is possible using only marginal information [85]
(see also [86, 87]): in [85], some efforts showed that the three-qubit states maximally violating some of the
translationally invariant, two-body Bell inequalities from [88] could be self-tested using two-body
correlators, thus giving a positive answer to this question.

Interestingly, the question of how much information from the statistics is needed (i.e. how many parties
one can trace out) in order to self-test a quantum state is still open. In this section, we aim at showing how
our method can be used to guarantee a negative answer to the previous question and to give numerical
evidence toward a positive answer as well, depending on the uniqueness of the solution to equation (11).
More precisely, we show how our method can be used to explore which symmetric states could potentially
be self-tested from marginals and which symmetric states definitely could not, because their marginals do
not have a unique (modulo local unitaries) extension in the symmetric space.

Let us first consider an n-qubit density matrix being a projector onto an n-qubit Dicke state |Dy) as in
equation (1). We shall denote it p, ;. Let 0 = Tr;(p) be the resulting density matrix from tracing out a
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Figure 8. Numerical results on the dependence between #, m, rank(p) for an m-RDM to have a unique symmetric extension p of
n =15 and n = 30 qubits respectively with a given rank(p). For each case we have carried out 100 trials forcing the SDP to
explore the feasible set in a random direction A at each trial. The black squares correspond to the configurations for which the
recovered global symmetric state has fidelity > 0.9999 with the original global state for 100% of the trials, thus providing
evidence of having a unique symmetric extension. The numerical tolerance has been set to take into account the imprecision of
the SDP solver. For the non-black squares, some of the trials have exhibited a fidelity < 0.9999. For those cases, we show the
minimal fidelity obtained out of all the trials as a way to illustrate the tolerance. One clearly observes a certain correlation
between size of the RDM m and rank(p), showing more chances to have a unique extension for low rank(p) by tracing out few
particles.

single particle. In virtue of equation (7), we have

-1 —1 —1
0= (Z) ((Z_ 1) Pn—1k-1 + (” k ) pn—l,k) . (36)

To gain some intuition, let us first study under which conditions is it possible to show that the purification
of o is unique. Following the spirit of lemma 5.2 of [89], we begin by considering a purification with an
auxiliary system of the form

@) = [Dk-1)[P1) + | D) |P2), (37)

where the Dicke states vectors are supported by the Hilbert space of n — 1 qubits and
|P1) = ao|0)|x10) + o |1)[xn1) (38)
|P2) = Bol0)[x20) + Bu[1}]x21)s (39)

where |x;;) have support in C? with a sufficiently large d to represent the purification.
It follows from elementary algebra that the (n — 1)-body RDM of |®)(®] is equal to o if, and only if,

k In—k
oy — 0, ) = \/j, ﬁo = " 5 ﬁl =0. (40)
n n

Hence, in this case there exists a purification, it is unique, and it must be of the form

) = [Dy)lxun). (41)
Corollary 1. The (n — 1)—partite reduced state of | Dy) uniquely determines |Dy) in the symmetric space.

In appendix E we show how the above example can be generalized to tracing out any number of parties.
The uniqueness of the extension is in one-to-one correspondence to the uniqueness of a linear program (see
equation (E9)). We have numerically observed that such a solution is unique if we trace out up to n — 2
parties for a basis Dicke state. However, it is not a priori clear how generic the above property is. A more
in-depth study suggests that generically, the uniqueness property depends on both the rank of the global
density matrix and the number of parties traced out. In figure 8 we provide numerical evidence that
generically the uniqueness of the symmetric extension depends on the number of particles #, the number m
of parties in the RDMs and the rank of the global density matrix p. We have followed the procedure below:

(a) Generate a random symmetric state whose density matrix has a given rank
(b) Use the compatibility conditions to obtain its RDM
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(c) Choose a random Hermitian matrix A and find a new global state compatible with the RDM by
making use of the SDP in equation (11), but with objective function —(A, p) and check its fidelity with
the original global state. The matrix A forces the SDP to explore the feasible set in the direction given
by A

(d) We repeat step (c) a sufficient number of times (in our case, 100 times). If the fidelity remains always
one up to numerical accuracy error, this is strong numerical evidence that the global state is unique.
On the other hand, if the fidelity falls below one in some case, this indicates that too many parties have
been traced out and the RDM would no longer be sufficient to self-test the original state, since it does
not have a unique global extension of size n

We note that, although mixed states in their generality cannot be self-tested, the fact that for some rank
configurations and sizes of the RDM the extension to the symmetric state seems to be unique could open
the door to a weaker form of self-testing, under the assumption that the global state is symmetric.

5. Conclusions and outlook

In the present work we have presented a study of the QMP restricted to symmetric states. We have provided
a complete set of analytical compatibility conditions for an m-qudit RDM o to be compatible with an
n-qudit global symmetric state p. We then use said compatibility conditions to answer the question of
whether a given reduced density matrix o is compatible with a global symmetric state p by turning it into a
feasibility problem efficiently solvable via an SDP. Our results have implications in different fields. We have
explored some of them in several case-studies:

e We have developed a computationally efficient variational optimization method to upper bound the
ground state energy of any local Hamiltonian. This method considers the resulting marginals to be
compatible with a global symmetric state in order to carry out the optimization by means of SDP with
the compatibility conditions as constraints. In order to benchmark the VM, we have considered
several paradigmatic Hamiltonian spin models, that go from long-range to nearest-neighbor
interactions. In general, we observe that the VM provides a good upper bound for FM and long-range
interactions, yielding exact results in the infinite-range limit; while it misses to capture AFM
short-range interactions, where the ground state has poor overlap with the symmetric space. We have
also used the compatibility conditions in order to obtain the half-system entanglement entropy in the
symmetric space, which is an insightful quantity for many-body systems. Remarkably, we present
numerical evidence that for some cases our VM can also be used to approximately locate phase
transitions. This numerical observation hints that the properties of the ground state in a phase
transition also manifest, to some extent, in the symmetric space projection and are, therefore,
captured by our method. Another observed feature is that for some specific models the VM has
recovered the first excited state, instead of the ground state, in some regions of the phase diagram.
Finally, we have observed a significant speed advantage of the VM compared to a typical DMRG
algorithm. The advantage of the VM lies on the low memory storage required and high speed, making
the VM a suitable candidate for a first order exploration of large sets of parameters characterizing the
phase diagram of spin Hamiltonians. While we have only considered qubits, qutrits and chain
configurations, our VM is straightforwardly applicable to any qudit and lattices of arbitrary geometry
and dimension. We leave open to implement and explore the VM in corresponding cases of interest.

o We have considered the VM in the context of Bell non-local correlations. In particular, we have
explored its synergy with the so-called two-body permutationally invariant Bell inequalities. The
results in this context are two-fold: first, we have shown how the VM comes as a natural tool to
optimize a multipartite two-body PIBI in order to find whether the inequality detects non-local
correlations; second, we have used the low computational cost of the VM to look for non-local
correlations in a spin-1/2 XXZ chain under a transverse field, narrowing the parameters to be
considered and eventually leading to the detection of non-local correlations in the ground state with
n = 128 parties. We have also considered another spin-1/2 XXZ chain this time with periodic
boundary conditions with longitudinal magnetic field, detecting non-local correlations on its ground
state and first excited state of a specific phase. The tool we have here presented can be readily used in
the context of Bell correlation depth [90] or DI entanglement depth certification [91, 92] in the
context of two-body PIBIs.

e We have developed an analytical methodology to derive a translationally invariant diagonal
matrix-product state representation of bond dimension 7 for pure symmetric states. This result is
generic, and could be of independent interest. For our purposes, we have used it to transform the
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symmetric state solution obtained with the VM into a translationally invariant, diagonal, MPS,
allowing us to check its fidelity with the DMRG solution.

e Finally, we have shown how the compatibility conditions can be used to determine which symmetric
states p cannot be self-tested solely from their marginals. Remarkably, we present numerical evidence
suggesting a correlation between the size of the global state n, its rank rank(p), how many particles m
remain in the observed RDM and the uniqueness of a symmetric global state. This uniqueness
property could open the way to a weaker form of self-testing, that uses the assumption that the global
state is symmetric.

Our work, however, is not limited to the above applications. For instance, on a recent work by us we
have used the present work to tackle the problem of bounding the fidelity of a many-body quantum state in
atomic ensembles [93]. Further interesting connections that deserve to be explored include symmetric
extensions of quantum states, intimately related to the separability problem, which are also naturally treated
as SDP [23, 94], with direct applications to symmetric and permutationally invariant states [95, 96].
Furthermore, one may also wish to explore the role of different symmetries in the SDP. Whether there exists
a SDP invariant formulation of our problem [66, 97] that could allow it to be formulated for other
symmetry groups is unclear and we leave it for future research. In a following work, we shall investigate
variations of the VM in order to perform tomography/fidelity estimates with respect to a target symmetric
state. This is of wide experimental relevance, as in the case of Bose—Einstein condensate where only partial
information (e.g. not an informationally complete set of measurements) is available [31, 98].
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Appendix A. Proof of theorem 1

We begin by noting that, in the computational basis, the partial trace of n — m subsystems of an n-qudit
density matrix p has the following expression:

Toou(p) = > WG S2 olk (A1)

?je [d]m ke [d]n—m

where the operator | denotes index concatenation, and the indices have been properly rearranged so that the
n — m traced out parties are the last ones.

Hence, our goal is to express the symmetric state in the computational basis in order to apply
equation (A1) and then go back to the symmetric space. Since Dicke states are enumerated by the partitions
of m it will be useful to define the following function:

we: [d]" — {0,...,n}

i = #pelnl:i=k (A2)

In words, wk(?) counts how many coordinates of iare equal to k. It is then natural to define w(?) =
(wo(i), . .., w4a—1(7)). Note that, by construction, w(i) - n for every i € [d]".
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The weight counting function w is useful to represent the Dicke state |A) in the computational basis.
For the purpose of this proof, we use the notation |Dy) to specify that the Dicke state is in the
computational basis representation:

-1/ -
= (3) 3 Mo - ), (A3)
ield)

where 9§ is the Kronecker Delta function, which is 1 if, and only if, its argument is the zero vector; 0
otherwise. Thanks to equation (A3) we can now define the inclusion operator II : Sym(C%)®" < (C#)®"
onto the symmetric space

11:= 3 IDA) AL (A4)

Abn

We note that IT'IT = Tgym(cayer and that I : (C)®" — Sym(C?)®" is the projector onto the symmetric
space.
Let now p be a density matrix on Sym(C¥), whose components are labeled p,); in the Dicke basis and p]i

in the computational basis. The relation between them is given by
i R N o my T g
ph= (") = 37 d(w(® — Naw() - ) §) (u) o (A5)
Ajikn

Now we are ready to trace out n — m parties of p, e.g. the last. Note that w(d| l;) = w(ad) + w(l;). Hence,
using equation (A1) we obtain o := Tr,_,(p) as

. e —1/ -1/2 . . . .
d= X A=Al (1) X s e - niwi wd w4

A
ke[d)n—m A ubn ke [d]—m

L=l

-

yielding equation (7). Finally, equation (8) is obtained via the transformation (c3) = HT(O'JE)H. 0

Appendix B. Basics of semidefinite programming

Semidefinite programming (SDP) is a class of convex, constrained optimization problems which constitutes
one of the main theoretical and computational techniques in convex algebraic geometry [45]. In particular,
SDP takes Hermitian matrices as optimization variables and optimizes linear functions subject to linear
matrix inequalities (LMIs). The set of matrices that satisfy all the LMIs in the problem constitutes the
so-called feasible region (which may be empty if no matrix satisfies all the LMIs simultaneously). In
mathematical terms, the feasible region of an SDP problem is called a spectrahedron, and it is then the
intersection between some affine linear subspace (given by the LMIs) and the cone of positive symmetric
matrices. Note that the feasible region will always be convex since it is the intersection of convex sets.

Such conditions grant SDP problems desirable numerical properties, which allow for efficient solutions
by numerical algorithms based on, e.g. the interior point methods and the primal-dual method. Moreover,
the optimality of the solution given by said algorithms is by construction a certificate or, in other words, a
numerical mathematical proof. Consequently, SDP has found success in many distinct fields. For instance,
the interest of using SDP in quantum information problems keeps increasing and is crucial for topics like
non-local correlations [64, 99], quantum steering [100] or separability [94].

The general primal SDP formulation can be stated as follows:

min (C, X)
st. X = 0 (B1)
<A,‘,X>:bi i:l,...,m,

where (X, Y) = Tr(X'Y) is the Hilbert—Schmidt scalar product, C, A;, X are n x n Hermitian matrices, and
X is the matrix variable over which the optimization is performed. Notice that in the cases presented in the
main text, we treat X as a density matrix (thus we require it to be positive semidefinite and have unit trace).
If there exists a set of matrices which satisfies the given constraints forming a spectrahedron (i.e. the
feasible set), then the SDP problem is said to be feasible and has at least one solution. Conversely, the SDP
problem is said to be infeasible when the spectrahedron cannot be formed by the given constraints.
Therefore, the SDP formulation in (B1) can be turned into a feasibility problem by taking the objective
function to be a constant independent of the decision variables (i.e. by making the objective function
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irrelevant) and using the algorithms to probe only for the non-emptiness of the spectrahedron. For
instance, one way to pose (B1) as a feasibility problem is to consider the particular case where C = 0,,, is
the n X n zero matrix and, therefore, (C, X) = 0.

An important feature of SDP problems is that to every primal SDP formulation there exists an
associated dual SDP problem which is stated as follows:

max by
y
" B2
s.t. ZAiyi <G, (B2)
i=1
where b = (by,...,b,) and y = (y,,...,y,,) are the dual decision variables. The relevance of having a dual

formulation comes clear by noting that, by construction, the dual optimal value provides an upper bound
on the primal optimal value. In particular, it can be easily checked that the difference between any primal
and dual feasible solutions X and y is:

(CX)—by=(C— ZAi}’i)X> =0, (B3)
P

which is known as the duality gap, and the inequality (C, X) > b"y for any feasible matrix X and vector y is
known as the weak duality. Therefore, by evaluating the objective function of (B1) with any feasible matrix
X, one obtains an upper bound on the objective function of (B2) (and viceversa to obtain a lower bound on
the objective function of (B1)). Moreover, when considering a feasibility problem and obtaining an
infeasible solution, the dual problem can be used to certify the non-existence of solutions in the primal
problem. In most non-pathological cases (e.g. when strict feasibility is present [45]) the duality gap is closed
for an optimal pair (X*, y*), yielding strong duality and a certificate of convergence.

Appendix C. Variational method: further examples

C.1. Ising chain for nearest neighbors interactions

In section 4.1.2 we explored how our VM behaves as we decrease the range of interactions on an Ising chain
with power-law decaying interactions, and in section 4.1.1 we focused on the extreme case of having
infinite-range interactions (the LMG). Here we investigate what happens in the other extreme case: an Ising
model with nearest-neighbours interactions in a transverse field. The Hamiltonian we consider is:

n—1 n
H= —]ZZ O’;i)O'ngl) — hz aff}, (C1)
i=1 i=1
where ], > 0 (], < 0) corresponds to FM (AFM) coupling, and }~1 tunes the transverse field strength. For
equation (C1), the VM is taken with the effective Hamiltonian H := — (n — 1)],0, ® 0, — nh(o, ® 1

+ 1 ® 0,)/2. Similar as done in sections 4.1.1 and 4.1.2, in figure 9 we compare the VM with ED for low
number of particles. As expected, the VM yields almost orthogonal solutions in the AFM region, while it
provides fidelities close to unity in the FM region. Still, slight discrepancies arise in the FM case. In
particular, one observes that in the vicinity of what is a critical point (in the asymptotic limit) the fidelity
drops, nevertheless still providing a good upper bound to the ground state energy (see figure 9). We remark
that, by using the VM to determine the half-system entropy scaling in the FM case (J, = 1/2), we observe
an anomaly at i =~ 1 (see figure 9), which signals the presence of critical point. Therefore, despite the
discrepancy in fidelity, the FM critical point can still be well approximated by our VM.

C.2. XXZ model under a transverse field

In appendix C.1 we have looked at a spin system in one dimension and with nearest-neighbour interactions.
This model is actually solvable via Jordan—Wigner transformation [101], as it can be equivalently described
as a system of free fermions (see e.g. [46]). Here we consider the validity of our variational ansatz beyond
the free fermion scope, in an XXZ spin chain with an homogeneous magnetic field in the X direction:

H = —]Z (Ufj)a)(cj) + U}(,i)O'}(,j) + Aaéi)aéj)) + Zhafj), (C2)
(i) i

where we take ] = 1 (J = —1) for the FM (AFM) couplings, A marks the anisotropy (with A =1
corresponding to the isotropic case, the XXX model) and h tunes the transverse field strength. In this case,
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Figure 9. Numerical results for the Ising Hamiltonian (C1) with n = 10. Left and center: comparison of the ground state energy
and fidelity with respect to results from exact diagonalization. We observe that energies disagree mostly in the AFM case, due to
its inherent asymmetry. The FM case is in general well approximated, with only some minor discrepancies near the values that
hint at a critical point in the asymptotic limit. Right: the VM is used in the FM case (J, = 1/2) in order to investigate the scaling
of the half-system entanglement entropy, hinting at the existence of a critical point when extrapolating to the asymptotic limit.
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Figure 10. Numerical results for the XXZ Hamiltonian (C2) with n = 10, compared to exact diagonalization. The first row
corresponds to FM interactions (J = 1) while the second row corresponds to AFM interactions (/] = —1). Left: ground energy
ratio. Right: ground state fidelity. We observe how the ground state fidelity and energy are well approximated for values A > 1
(A < —1) when considering FM (AFM) interactions. In such regime it provides close to exact results except in the vicinity of the
phase transition between regions 2—3 and 2—4 of figure 1 of [102].

the effective Hamiltonian for the VM is H :=] ((n —1) (ax Qo+ 0, @0, + Ao, ® O'Z) +nh(o, ® 1
+1®0y)/2).

In figure 10 we compare the ground states obtained from our VM with those obtained from ED, in
terms of relative energy and fidelity. For this case we observe numerically that the VM provides a faithful
approximation for values A 2> 1 (A < —1) when considering FM (AFM) interactions. In particular, in such
a regime the VM yields exact results except around a line which likely corresponds to critical points in the
asymptotic limit [102, 103].

C.3. Ferromagnetic XXZ with periodic boundary conditions
Let us now consider the following instance of an XXZ model: a periodic anisotropic FM spin-1/2 chain,
placed in an homogeneous magnetic field in the z direction. This model is described by the Hamiltonian

n

M=y (0P @™+l @cf™) =LY ol @™ +b> ol (C3)
i i=1

i=1 i=1

20



10P Publishing New J. Phys. 23 (2021) 033026 A Aloy et al

Table 1. Ground state for the model in equation (C3), as a function of the
magnetic field b and the coupling parameter AJ = J, — J,, according to the
perturbative results presented in [104]. In figure 11 we recover and
strengthen the result.

b Ground state
b<—-AJ |Dg)
—EREAT < b < BN ID2),0 <k<n
AJ<b 1)

Figure 11. Numerical results for the XXZ model equation (C3) with n = 10, compared to exact diagonalization. Left: energy
ratios. Center: ground state fidelity. Right: first excited state fidelity. We note that the overlap of the right and center figures would
cover the whole phase diagram.

where "1 = ¢ ], > 0 are the exchange coupling constants, and b tunes the strength of the external
magnetic field. The preparation of Dicke states as ground states of equation (C3) has been studied in
reference [104], for which our variational ansatz comes as a natural tool to benchmark their fidelity. In
table 1 we show the ground state distribution predicted with the perturbative results of [104] and in

figure 11 we see that, up to n = 10, the fidelity remains > 85%, which is consistent with the predictions of
[104]. For this case, in the VM we take the effective Hamiltonian H:= — n (]x (ax ®ox+0,® O'y)

+ 0, ®0,)+nblo, 21T+ 1®0,)/2.

The perturbative prediction from [104] splits the phase diagram among different regions, each having
substantial overlap to a different Dicke state. However, there are already some discrepancies observed: in
between these regions, the approximation with Dicke states does not have good overlap with the ground
state (see figure 1 in [104]), however it has good overlap with other basis Dicke states (see figure 2 in [104]).
Here, our method enables us to understand this discrepancy from a different perspective: in figure 11 we see
that the regions in which the perturbative approach fails actually correspond to a good overlap for the first
excited state and a Dicke state. The low-end of the spectrum of the Hamiltonian considered has a good
overlap with the symmetric space. However, it can happen that the VM chooses to approximate the first
excited state instead of the ground state if the energy obtained becomes more favorable. This depends on
both the overlap with the ground space and the energy gap of the Hamiltonian. Let us denote by E, and by
E; the ground and first excited state energies, respectively. Let us also denote by Fy (F;) the fidelity between
the ground state (first excited state) and the symmetric space. The discontinuities may happen when
FyEy = F,E;. Indeed, in figure 11 we observe that, while the energy ratio is smooth, the fidelity may
suddenly drop to zero or jump to almost one due to the above mentioned reason.

For the larger n limit, the ground state of equation (C3) can be found exactly using MPS and the DMRG
algorithm, case for which the representation of superpositions of Dicke states as an MPS presented in
section 4.3 might come in handy.

C.4. Many-body SU(3) Hamiltonian with collective interactions

Here we illustrate that our proposed VM can be also easily applied to d-level systems with local Hilbert
space of dimension d > 2. To do so, we consider the three-orbital LMG Hamiltonian [105] (equivalently,
the generalisation of the Lipkin Hamiltonian as proposed in [25]). Similarly to section 4.1.1, the variational
ansatz is expected to recover exact results due to the long-range interactions resulting in ground states with
permutation symmetry. The model is constructed by # identical but distinguishable three-level atoms, and
it is also commonly used in nuclear shell models. It can also arise for three-level atoms collectively coupled
to electromagnetic field modes of a cavity. Concretely, the model is described by the Hamiltonian:

H =a(Sw—Sn)+ bzsé, (C4)
i#j
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Figure 12. Numerical results for the three-level generalized Lipkin Hamiltonian equation (C4) with n = 32. Left: the VM
provides exact ground state up to numerical error of the solver (=~ 107 using SeDuMi [54]). Center: half-system entanglement
entropy obtained through the compatibility conditions equation (8), capturing features of phase transitions. Right: half-system
entanglement entropies for different number of particles at a = 3. The scalability can be used to extrapolate the peak anomalies
to the asymptotic limit.

where S = >, Ti;l) with 75 = [i) (j| for i,j = {0, 1, 2}. In this case the effective Hamiltonian used in the
SDPisH:=na(Sp®@1+10Sp —Sp®1-1808n) /2+ (5) b (sij®5i,-+(3,§® 141 ®3,§)/2).
i#j
In figure 12 we show that the variational ansatz reproduces exactly the ground state energy, as expected.

Furthermore, we use the compatibility conditions to obtain the half-system entanglement entropy, which is
useful to provide insights about the phase diagram of the model.

Appendix D. Alternative solution to the system of equations in lemma 2

Before introducing the form of P(X) let us motivate its definition by illustrating the idea with a sequence of
examples. In these examples, we turn equation (32) into an equivalent system that is much easier to solve.
In algebraic geometry terms, the second system forms a reduced Groebner basis, meaning that its first
equation is a polynomial in a single variable, the second is a polynomial in the previous variable and a new
one, etc. This allows one to find all the solutions by solving only univariate polynomials and plugging the
found roots into the next equations by substitution.

e N = 2. Solving the system of equations

x1+x2—21:0
. B (D1)
X]+x,—2=0

is equivalent to solving

2%2 = 2z1% + (22— 25) =0
2 142 (1 2) (DZ)
X1+x—21=0

e N = 3. Solving the system of equations

X1+x+x35—21=0
Nto+x5—2=0 (D3)

N+to+x—2z=0
is equivalent to solving

6xg — 621x§ +3(2F — z2)x3 + (=2, + 3212, — 223) = 0
2x§ — 2(21 — xz)X3 + [(Z] — Xz)z - (Zz — x%)] =0 (D4)

X +x3—(z1—x1) =0
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e N = 4. Solving the system of equations

X1+x+x35+x4—2,=0

2024 22
X +x+x5+x;—2=0

3, .3, .3, .3 (D5)
X1+ +x+x—-—2=0
XP+x +x+x—z=0
is equivalent to solving
24x; — 24z,x, + 6(20 — 2,)x; — 2(z} — 3212, + 223)x4 + (2} — 6272, + 322 + 82,23 — 624) =0
6x; — 6(z1 — x3)x; +3([z1 — x31° — (22 = 5 D)xs — ([z1 — x3)° =3[z — ;s)[za — 3] +2[z5 —x53]) = 0 D6)

2xﬁ —2(z1 — X —x3)x + [(z1 — %2 — x3)7 — (2 —xﬁ —xé)] =0

X +x5+x—(21—x)=0

From the above examples the recursion is clear. In the easy systems equations (D2), (D4), (D6) the first
equation is a polynomial in a single variable x,,. The rest of the equations correspond to the system of
equations for n — 1 with a slight transformation, where we have decreased by 1 the index of x;; i.e. x; — x;_;
and we have made the substitution z; — z; — x/ | in the first equation, z; > z; — x’_, in the second
equation and so on until we substitute z; — z; — x; in the last one. Note that since the first equation is a
polynomial in x;,, the second equation is a polynomial in x,, x,,_1, the third equation a polynomial in
Xn> Xn—1, Xn—2 and so on the transformed systems form a reduced Groebner basis and are therefore easy to
solve.

Before thinking of writing the Groebner basis in its full generality, let us observe the following:

Corollary 2. Let P(X) be the first element of the Groebner basis for equation (32) (i.e. the left-hand side of the
first equation in the systems equations (D2), (D4), (D6), etc). Since the system of equations (32) is
permutationally invariant, we must have

PX)=(X—x1)...(X —x,), (D7)

i.e. the roots of P correspond to the values of x;, up to a permutation.

Therefore, we only need to find the general form of P(X). The coefficients of P(X) are closely related to
the partitions of n. Let us define the following:

Definition 1. Let A - m denote a partition of m; i.e. A = (X1, ... M%) where S5 y1;\; = m and
Ai > Aip1 with Ay, i € N We define the polynomial

k
Qu(2):==> &[] (D8)

Amo =1
where .
(—1y

We define by convention Q, := 1.

Note that ), [x] = m! since £, counts (with sign) the number of permutations of m elements of
cycle type A. In addition, we remark that the number of partitions p(m) of a given integer m scales as
log p(m) ~ Cy/m, where C is a universal constant. This makes the sum in equation (8) prohibitive to
evaluate already for modestly large values of m. However, as shown in section 4.3, it is possible to efficiently
compute Q,,(z) without splitting it into its different summands.

Definition 2. We define P(X) to be

" |
PX):=Y %QM(Z)X”"”. (D10)
m=0 :

Now that we know how to obtain the x that satisfy z in equation (32), let us turn to the system of
equations that actually arises from equation (23). Note that equation (32) does not take into consideration
the z, term, but by incorporating the condition that Ay oc 1 then the system of equations of interest
becomes equation (33).

23



10P Publishing

New J. Phys. 23 (2021) 033026 A Aloy et al

The system of equations equation (32) is also known the power sum ideal. Its reduced Groebner basis is
found as the elimination ideal of the power sums.

Corollary 3. The elimination ideal of the power sums gives the compatibility conditions on the weights dy of
equation (22) to be representable with a diagonal TI MPS of bond dimension D < n.

Indeed, let us consider n = 4 and D = 3. The elimination ideal of the power sums of three variables and
degree four is

(X1 + X+ X3 — 2,6 + 55 +55 — 20, % + X0 + 55 — 23,5 + % 4+ x5 — 2z4) NK[z1, 2,23, 24) = (q(21, 22,23, 24) )
(D11)
where
q(z1,22,23,24) = z‘f — 6zf22 + 32% + 82123 — 624 (D12)

Note that the compatibility polynomial in equation (D12) is precisely the same polynomial Q,(z) in the
constant term of the univariate polynomial in equation (D6). Hence, all the symmetric Dicke states for
which the z obtained from their di belongs to the elimination ideal of the power sums of D variables with
degree n are representable as a diagonal TI MPS of the form Ay o 1 and A; = diag(x).

Appendix E. Linear programming approach for Dicke-diagonal states

Let us see how we can now apply equation (9) in a more systematic way to determine that the states of the
Dicke basis are the only ones in which corollary 1 applies.

Let us consider p as a rank-1 projector onto a quantum state of the form equation (22). In virtue of
equation (8) we have (note that for qubits the partition of # is identified by a single number, therefore we
write «v instead of «)

() (%)

() () (” ) m) Fesadrer (E1)

o If we set d, = 6(«v — k) then we have

08 = 8(a _5)(2)—1 (" (z:z) Lok — ), (E2)

«

where I5(x) is the indicator function, which evaluates to 1 if x € S and 0 otherwise. This allows us to
write the set of equations for any basis Dicke state:

((M;%)) (”;’”) :5<a_5)(’;)‘1 (™) (’;:;”>I[o,nm1<k—a>. (E3)

a+p B+p

n—m
a-+p
ZP B+p
p=0
o If we take m = n — 1, we recover the result of corollary 1 in the following way: since

o= (1)’ S (")l (E4)

a=k—1

the conditions of the SAP equation (9) can be now rewritten as

(") (" I
(aﬂ))((;;))C) =5(a—5)< a1> (i) Tontk—a. (E5)

We note that the right-hand side of equation (E5) is zero if & > k or @ < k — 1. In these cases, in the
diagonal (o« = ) we have a condition of the form

1
a+p
Z p3+P
p=0

pﬁgﬂ + pgiigw+l =0, (E6)

for some &, > 0 that we do not need to write here explicitly. Now, the semidefinite positivity
condition on p from the SAP equation (9) implies that the diagonal elements must be non-negative:
p% > 0. Hence, for all o > k+ 1 and a < k — 2 we must have pS = p2T| = 0. The condition p = 0
further implies that all the elements in the respective rows and columns must be zero. Therefore, the
only non-zero element p2 left is p¥, which must be 1 in virtue of equation (E5).
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o If we trace out two parties, i.e. we take m = n — 2, then a similar argument follows: we see that for
o > kor a < k— 2 we have a condition in the diagonal similar to the form of equation (E6)

pgg(v + pﬁi%gﬂ-‘rl + pgiggﬂ-‘ﬂ =0. (E7)

Again, in equation (E7) we have a linear combination of pf:ig > 0 (because p >~ 0) with strictly

positive weights ggifj > 0. This implies that p{, = 0 for o # k, and a similar argument follows.

However, one needs to be careful in counting the number of zero and non-zero equations: we need
n > 4 for equation (E7) to exist. To this end, let us see the general case:

o If we trace out n — m parties, then we generalize the last two points: for & > kor a < k — (n — m)
the condition on the diagonal is

n—m

o+
E pa+§£(y+p - 0) (ES)
p=0

which implies pﬁ}iﬁ = p’,:tg = 0 for p > 0. This condition is nontrivial as long as the number of

equations (m — 1) is greater than the number of nonzero left hand sides (n — m + 1), i.e. whenever
m > n/2. Therefore, the condition p > 0 implies that all the off-diagonal elements must be zero and
therefore pf = 1.

e Suppose we trace out n — m parties. Then we have the following system of equations:

n—m n—m n—m Xo n—m
( 0 ) 1 (nim) 0 X ( k )I[O,n—m](k)
n—m n—m . n—m
0 o (”_m_l) 0 DL (k71>l[0,,,,m](k71)

Xn—m

n—m n—m n—m\ . B
0 0 (n72m> (n—m) . (k_m)IIO,n—ml(k m)
(E9)
where we have defined for simplicity x,:= ) (}) / (’;) If m > n/2, there must necessarily be zeroes

>

in the right-hand side of equation (E9).
The question about uniqueness of solutions of linear programs [106] and semidefinite programs [107,
108] is an intensive field of research, due to its connection to rigidity theory. For instance, the general
solution to the uniqueness of equation (11) can be expressed via

Theorem 2 [107]. If p is a max-rank solution of equation (11), and we write p = L'L, where L € C™", then p
is the unique solution of equation (11) if, and only if, the kernel of the linear space spanned by LTAgL is trivial.

Corollary 4 [107]. Ifall the solutions to equation (11) share the same rank, then the solution must be unique.

ORCID iDs

Albert Aloy @ https://orcid.org/0000-0002-1401-0184
Matteo Fadel © https://orcid.org/0000-0003-3653-0030
Jordi Tura © https://orcid.org/0000-0002-6123-1422

References

[1] Stillinger F H 1995 Mathematical Challenges from Theoretical/Computational Chemistry (Washington, DC: National Academy
Press)

[2] Klyachko A A 2006 Quantum marginal problem and n-representability J. Phys.: Conf. Ser. 36 72—86

[3] Liu Y-K, Christandl M and Verstraete F 2007 Quantum computational complexity of the N-representability problem: QMA

complete Phys. Rev. Lett. 98 110503

] Kempe J and Regev O 2003 3-local Hamiltonian is QMA-complete Quantum Info. Comput. 3 258—64

] Kempe J, Kitaev A and Regev O 2006 The complexity of the local Hamiltonian problem SIAM J. Comput. 35 1070-97

[6] Aharonov D, Gottesman D, Irani S and Kempe J 2009 The power of quantum systems on a line Commun. Math. Phys. 287 41-65

] Kitaev A'Y 1995 Quantum measurements and the abelian stabilizer problem (arXiv:quant-ph/9511026v1)

] Poulin D and Wocjan P 2009 Preparing ground states of quantum many-body systems on a quantum computer Phys. Rev. Lett.
102 130503
[9] AbramsD S and Lloyd S 1999 Quantum algorithm providing exponential speed increase for finding eigenvalues and

eigenvectors Phys. Rev. Lett. 83 51625

[10] GeY, Tura ] and Cirac J I 2019 Faster ground state preparation and high-precision ground energy estimation with fewer qubits J.
Math. Phys. 60 022202

25


https://orcid.org/0000-0002-1401-0184
https://orcid.org/0000-0002-1401-0184
https://orcid.org/0000-0003-3653-0030
https://orcid.org/0000-0003-3653-0030
https://orcid.org/0000-0002-6123-1422
https://orcid.org/0000-0002-6123-1422
https://doi.org/10.1088/1742-6596/36/1/014
https://doi.org/10.1088/1742-6596/36/1/014
https://doi.org/10.1088/1742-6596/36/1/014
https://doi.org/10.1088/1742-6596/36/1/014
https://doi.org/10.1103/physrevlett.98.110503
https://doi.org/10.1103/physrevlett.98.110503
https://doi.org/10.5555/2011534.2011541
https://doi.org/10.5555/2011534.2011541
https://doi.org/10.5555/2011534.2011541
https://doi.org/10.5555/2011534.2011541
https://doi.org/10.1137/s0097539704445226
https://doi.org/10.1137/s0097539704445226
https://doi.org/10.1137/s0097539704445226
https://doi.org/10.1137/s0097539704445226
https://doi.org/10.1007/s00220-008-0710-3
https://doi.org/10.1007/s00220-008-0710-3
https://doi.org/10.1007/s00220-008-0710-3
https://doi.org/10.1007/s00220-008-0710-3
https://arxiv.org/abs/quant-ph/9511026
https://doi.org/10.1103/physrevlett.102.130503
https://doi.org/10.1103/physrevlett.102.130503
https://doi.org/10.1103/physrevlett.83.5162
https://doi.org/10.1103/physrevlett.83.5162
https://doi.org/10.1103/physrevlett.83.5162
https://doi.org/10.1103/physrevlett.83.5162
https://doi.org/10.1063/1.5027484
https://doi.org/10.1063/1.5027484

10P Publishing

New J. Phys. 23 (2021) 033026 A Aloy et al

(11]
(12]
(13]

(14]
(15]

(16]
(17]
(18]

(19]

(53]

(54]
(55]

Ruskai M B 1969 N-representability problem: conditions on geminals Phys. Rev. 183 12941

Yukalov V I and Coleman A J 2000 Reduced Density Matrices (Berlin: Springer)

Walter M, Doran B, Gross D and Christandl M 2013 Entanglement polytopes: multiparticle entanglement from single-particle
information Science 340 1205-8

Klyachko A 2004 Quantum marginal problem and representations of the symmetric group (arXiv:quant-ph/0409113v1)
Christandl M, Doran B, Kousidis S and Walter M 2014 Eigenvalue distributions of reduced density matrices Commun. Math.
Phys. 332 1-52

Schilling C, Benavides-Riveros C L and Vrana P 2017 Reconstructing quantum states from single-party information Phys. Rev. A
96 052312

Huber F 2017 Quantum states and their marginals: from multipartite entanglement to quantum error-correcting codes PhD
Thesis Universitat Siegen

Wyderka N, Huber F and Giithne O 2017 Almost all four-particle pure states are determined by their two-body marginals Phys.
Rev. A96 010102

Gidofalvi G and Mazziotti D A 2004 Boson correlation energies via variational minimization with the two-particle reduced
density matrix: exact N-representability conditions for harmonic interactions Phys. Rev. A 69 042511

Beste A, Runge K and Bartlett R 2002 Ensuring N-representability: Coleman’s algorithm Chem. Phys. Lett. 355 263—9
Mazziotti D A 2012 Structure of fermionic density matrices: complete N-representability conditions Phys. Rev. Lett. 108 263002
Navascues M, Baccari F and Acin A 2020 Entanglement marginal problems (arXiv:2006.09064v2)

Yu X-D, Simnacher T, Wyderka N, Chau Nguyen H and Giithne O 2020 Complete hierarchy for the quantum marginal problem
(arXiv:2008.02124v1)

Kim I H 2020 Entropy scaling law and the quantum marginal problem (arXiv:2010.07424v1)

Gnutzmann S, Haake F and Kus M 1999 Quantum chaos of SU3 observables J. Phys. A: Math. Gen. 33 143-61

Wei T-C, Mosca M and Nayak A 2010 Interacting boson problems can be QMA hard Phys. Rev. Lett. 104 040501

Lipkin H J, Meshkov N and Glick A J 1965 Validity of many-body approximation methods for a solvable model Nucl. Phys. 62
188-98

Meshkov N, Glick A J and Lipkin H J 1965 Validity of many-body approximation methods for a solvable model Nucl. Phys. 62
199-210

Glick A J, Lipkin H J and Meshkov N 1965 Validity of many-body approximation methods for a solvable model Nucl. Phys. 62
211-24

Tura J, Augusiak R, Sainz A B, Vértesi T, Lewenstein M and Acin A 2014 Detecting nonlocality in many-body quantum states
Science 344 12568

Schmied R, Bancal J-D, Allard B, Fadel M, Scarani V, Treutlein P and Sangouard N 2016 Bell correlations in a Bose—Einstein
condensate Science 352 441—4

Tura J, Augusiak R, Sainz A B, Liicke B, Klempt C, Lewenstein M and Acin A 2015 Nonlocality in many-body quantum systems
detected with two-body correlators Ann. Phys., NY 362 370—423

Aloy A 2020 Exploring quantum many-body systems from an entanglement and nonlocality perspective Ph.D. Thesis Universitat
Politecnica de Catalunya

Eckert K, Schliemann J, Bruf D and Lewenstein M 2002 Quantum correlations in systems of indistinguishable particles Ann.
Phys., NY 299 88-127

Dicke R H 1954 Coherence in spontaneous radiation processes Phys. Rev. 93 99—110

Wieczorek W, Krischek R, Kiesel N, Michelberger P, T6th G and Weinfurter H 2009 Experimental entanglement of a six-photon
symmetric Dicke state Phys. Rev. Lett. 103 020504

Liicke B, Peise J, Vitagliano G, Arlt J, Santos L, Téth G and Klempt C 2014 Detecting multiparticle entanglement of Dicke states
Phys. Rev. Lett. 112 155304

McConnell R, Zhang H, Hu J, Cuk S and Vuleti¢ V 2015 Entanglement with negative wigner function of almost 3000 atoms
heralded by one photon Nature 519 439-42

Tura J, Augusiak R, Hyllus P, Ku$ M, Samsonowicz ] and Lewenstein M 2012 Four-qubit entangled symmetric states with
positive partial transpositions Phys. Rev. A 85 060302

Augusiak R, Tura J, Samsonowicz ] and Lewenstein M 2012 Entangled symmetric states of N qubits with all positive partial
transpositions Phys. Rev. A 86 042316

Tura J, Aloy A, Quesada R, Lewenstein M and Sanpera A 2018 Separability of diagonal symmetric states: a quadratic conic
optimization problem Quantum 2 45

Supié I, Coladangelo A, Augusiak R and Acin A 2018 Self-testing multipartite entangled states through projections onto two
systems New J. Phys. 20 083041

Fadel M 2017 Self-testing dicke states (arXiv:1707.01215v1)

Oszmaniec M, Augusiak R, Gogolin C, Kolodynski J, Acin A and Lewenstein M 2016 Random Bosonic states for robust quantum
metrology Phys. Rev. X 6 041044

Grigoriy Blekherman R T and Parrilo P A (ed) 2013 Semidefinite Optimization and Convex Algebraic Geometry (Philadelphia:
Society for Industrial and Applied Mathematics)

Tura J, De las Cuevas G, Augusiak R, Lewenstein M, Acin A and Cirac J 1 2017 Energy as a detector of nonlocality of many-body
spin systems Phys. Rev. X 7 021005

Latorre J I, Orts R, Rico E and Vidal J 2005 Entanglement entropy in the lipkin-meshkov-glick model Phys. Rev. A 71 064101
Barthel T, Dusuel S and Vidal J 2006 Entanglement entropy beyond the free case Phys. Rev. Lett. 97 220402

Vidal J, Dusuel S and Barthel T 2007 Entanglement entropy in collective models J. Stat. Mech. P01015

Orts R 2008 Universal geometric entanglement close to quantum phase transitions Phys. Rev. Lett. 100 130502

Pan F and Draayer ] P 1999 Analytical solutions for the LMG model Phys. Lett. B 451 1-10

Links J, Zhou H-Q, McKenzie R H and Gould M D 2003 Algebraic Bethe ansatz method for the exact calculation of energy
spectra and form factors: applications to models of Bose Einstein condensates and metallic nanograins J. Phys. A: Math. Gen. 36
R63-R104

Ribeiro P, Vidal ] and Mosseri R 2008 Exact spectrum of the Lipkin—Meshkov—Glick model in the thermodynamic limit and
finite-size corrections Phys. Rev. E 78 021106

Sturm J F 1999 Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones Optim. Methods Softw. 11 625—53
Fadel M and Tura J 2018 Bell correlations at finite temperature Quantum 2 107

26


https://doi.org/10.1103/physrev.183.129
https://doi.org/10.1103/physrev.183.129
https://doi.org/10.1103/physrev.183.129
https://doi.org/10.1103/physrev.183.129
https://doi.org/10.1126/science.1232957
https://doi.org/10.1126/science.1232957
https://doi.org/10.1126/science.1232957
https://doi.org/10.1126/science.1232957
https://arxiv.org/abs/quant-ph/0409113
https://doi.org/10.1007/s00220-014-2144-4
https://doi.org/10.1007/s00220-014-2144-4
https://doi.org/10.1007/s00220-014-2144-4
https://doi.org/10.1007/s00220-014-2144-4
https://doi.org/10.1103/physreva.96.052312
https://doi.org/10.1103/physreva.96.052312
https://doi.org/10.1103/physreva.96.010102
https://doi.org/10.1103/physreva.96.010102
https://doi.org/10.1103/physreva.69.042511
https://doi.org/10.1103/physreva.69.042511
https://doi.org/10.1016/s0009-2614(02)00239-7
https://doi.org/10.1016/s0009-2614(02)00239-7
https://doi.org/10.1016/s0009-2614(02)00239-7
https://doi.org/10.1016/s0009-2614(02)00239-7
https://doi.org/10.1103/physrevlett.108.263002
https://doi.org/10.1103/physrevlett.108.263002
https://arxiv.org/pdf/2006.09064.pdf
https://arxiv.org/abs/2008.02124
https://arxiv.org/abs/2010.07424
https://doi.org/10.1088/0305-4470/33/1/309
https://doi.org/10.1088/0305-4470/33/1/309
https://doi.org/10.1088/0305-4470/33/1/309
https://doi.org/10.1088/0305-4470/33/1/309
https://doi.org/10.1103/physrevlett.104.040501
https://doi.org/10.1103/physrevlett.104.040501
https://doi.org/10.1016/0029-5582(65)90862-x
https://doi.org/10.1016/0029-5582(65)90862-x
https://doi.org/10.1016/0029-5582(65)90862-x
https://doi.org/10.1016/0029-5582(65)90862-x
https://doi.org/10.1016/0029-5582(65)90863-1
https://doi.org/10.1016/0029-5582(65)90863-1
https://doi.org/10.1016/0029-5582(65)90863-1
https://doi.org/10.1016/0029-5582(65)90863-1
https://doi.org/10.1016/0029-5582(65)90864-3
https://doi.org/10.1016/0029-5582(65)90864-3
https://doi.org/10.1016/0029-5582(65)90864-3
https://doi.org/10.1016/0029-5582(65)90864-3
https://doi.org/10.1126/science.1247715
https://doi.org/10.1126/science.1247715
https://doi.org/10.1126/science.1247715
https://doi.org/10.1126/science.1247715
https://doi.org/10.1126/science.aad8665
https://doi.org/10.1126/science.aad8665
https://doi.org/10.1126/science.aad8665
https://doi.org/10.1126/science.aad8665
https://doi.org/10.1016/j.aop.2015.07.021
https://doi.org/10.1016/j.aop.2015.07.021
https://doi.org/10.1016/j.aop.2015.07.021
https://doi.org/10.1016/j.aop.2015.07.021
https://doi.org/10.1006/aphy.2002.6268
https://doi.org/10.1006/aphy.2002.6268
https://doi.org/10.1006/aphy.2002.6268
https://doi.org/10.1006/aphy.2002.6268
https://doi.org/10.1103/physrev.93.99
https://doi.org/10.1103/physrev.93.99
https://doi.org/10.1103/physrev.93.99
https://doi.org/10.1103/physrev.93.99
https://doi.org/10.1103/physrevlett.103.020504
https://doi.org/10.1103/physrevlett.103.020504
https://doi.org/10.1103/physrevlett.112.155304
https://doi.org/10.1103/physrevlett.112.155304
https://doi.org/10.1038/nature14293
https://doi.org/10.1038/nature14293
https://doi.org/10.1038/nature14293
https://doi.org/10.1038/nature14293
https://doi.org/10.1103/physreva.85.060302
https://doi.org/10.1103/physreva.85.060302
https://doi.org/10.1103/physreva.86.042316
https://doi.org/10.1103/physreva.86.042316
https://doi.org/10.22331/q-2018-01-12-45
https://doi.org/10.22331/q-2018-01-12-45
https://doi.org/10.1088/1367-2630/17/8/083041
https://doi.org/10.1088/1367-2630/17/8/083041
https://arxiv.org/abs/1707.01215
https://doi.org/10.1103/physrevx.6.041044
https://doi.org/10.1103/physrevx.6.041044
https://doi.org/10.1103/physrevx.7.021005
https://doi.org/10.1103/physrevx.7.021005
https://doi.org/10.1103/physreva.71.064101
https://doi.org/10.1103/physreva.71.064101
https://doi.org/10.1103/physrevlett.97.220402
https://doi.org/10.1103/physrevlett.97.220402
https://doi.org/10.1088/1742-5468/2007/01/p01015
https://doi.org/10.1103/physrevlett.100.130502
https://doi.org/10.1103/physrevlett.100.130502
https://doi.org/10.1016/s0370-2693(99)00191-4
https://doi.org/10.1016/s0370-2693(99)00191-4
https://doi.org/10.1016/s0370-2693(99)00191-4
https://doi.org/10.1016/s0370-2693(99)00191-4
https://doi.org/10.1088/0305-4470/36/19/201
https://doi.org/10.1088/0305-4470/36/19/201
https://doi.org/10.1088/0305-4470/36/19/201
https://doi.org/10.1088/0305-4470/36/19/201
https://doi.org/10.1103/physreve.78.021106
https://doi.org/10.1103/physreve.78.021106
https://doi.org/10.1080/10556789908805766
https://doi.org/10.1080/10556789908805766
https://doi.org/10.1080/10556789908805766
https://doi.org/10.1080/10556789908805766
https://doi.org/10.22331/q-2018-11-19-107
https://doi.org/10.22331/q-2018-11-19-107

10P Publishing

New J. Phys. 23 (2021) 033026 A Aloy et al

(56]
(57]
(58]

(59]
(60]

(61]

(62]

Koffel T, Lewenstein M and Tagliacozzo L 2012 Entanglement entropy for the long-range Ising chain in a transverse field Phys.
Rev. Lett. 109 267203

Knap M, Kantian A, Giamarchi T, Bloch I, Lukin M D and Demler E 2013 Probing real-space and time-resolved correlation
functions with many-body Ramsey interferometry Phys. Rev. Lett. 111 147205

Gabbrielli M, Lepori L and Pezze L 2019 Multipartite-entanglement tomography of a quantum simulator New J. Phys. 21 033039

Piga A, Aloy A, Lewenstein M and Frérot I 2019 Bell correlations at Ising quantum critical points Phys. Rev. Lett. 123 170604
Toh K C, Todd M J, Tiitiincii R H and Tutuncu R H 1998 Sdpt3—a matlab software package for semidefinite programming
Optim. Methods Softw. 11 54581

Crosswhite G M, Doherty A C and Vidal G 2008 Applying matrix product operators to model systems with long-range
interactions Phys. Rev. B 78 035116

Frowis F, Nebendahl V and Diir W 2010 Tensor operators: constructions and applications for long-range interaction systems
Phys. Rev. A 81 062337

Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Bell nonlocality Rev. Mod. Phys. 86 419—78

Fadel M and Tura ] 2017 Bounding the set of classical correlations of a many-body system Phys. Rev. Lett. 119 230402

Brugués ] T 2017 Characterizing Entanglement and Quantum Correlations Constrained by Symmetry (Berlin: Springer)

Tavakoli A, Rosset D and Renou M-O 2019 Enabling computation of correlation bounds for finite-dimensional quantum
systems via symmetrization Phys. Rev. Lett. 122 070501

Orts R 2014 A practical introduction to tensor networks: matrix product states and projected entangled pair states Ann. Phys.,
NY 349 117-58

Perez-Garcia D, Verstraete F, Wolf M M and Cirac J 1 2007 Matrix product state representations Quantum Inf. Comput. 7 401-30
Biamonte ] and Bergholm V 2017 Tensor networks in a nutshell (arXiv:1708.00006v1)

Sanz M, Wolf M M, Pérez-Garcia D and Cirac J 12009 Matrix product states: symmetries and two-body Hamiltonians Phys. Rev.
A 79042308

Sanz M, Braak D, Solano E and Egusquiza I L 2017 Entanglement classification with algebraic geometry J. Phys. A: Math. Theor.
50 195303

Sanz M, Egusquiza I L, Di Candia R, Saberi H, Lamata L and Solano E 2016 Entanglement classification with matrix product
states Sci. Rep. 6 30188

Mayers D and Yao A 2004 Self testing quantum apparatus Quantum Inf. Comput. 4 273—86

Supié I and Bowles ] 2020 Self-testing of quantum systems: a review (arXiv:1904.10042v2)

Yang T H and Navascués M 2013 Robust self-testing of unknown quantum systems into any entangled two-qubit states Phys.
Rev. A 87 050102

Bamps C and Pironio S 2015 Sum-of-squares decompositions for a family of Clauser—Horne—Shimony—Holt-like inequalities
and their application to self-testing Phys. Rev. A 91 052111

Kaniewski J 2016 Analytic and nearly optimal self-testing bounds for the Clauser—Horne—Shimony—Holt and Mermin
inequalities Phys. Rev. Lett. 117 070402

Wang J et al 2018 Multidimensional quantum entanglement with large-scale integrated optics Science 360 285-91

Zhang W-H et al 2019 Experimental demonstration of robust self-testing for bipartite entangled states npj Quantum Inf. 5 4
Salavrakos A, Augusiak R, Tura J, Wittek P, Acin A and Pironio S 2017 Bell inequalities tailored to maximally entangled states
Phys. Rev. Lett. 119 040402

Kaniewski J, Supic I, Tura J, Baccari F, Salavrakos A and Augusiak R 2020 Maximal nonlocality from maximal entanglement and
mutually unbiased bases, and self-testing of two-qutrit quantum systems (arXiv:1807.03332v1)

Supié I, Augusiak R, Salavrakos A and Acin A 2016 Self-testing protocols based on the chained bell inequalities New J. Phys. 18
035013

Wu X, CaiY, Yang T H, Le H N, Bancal J-D and Scarani V 2014 Robust self-testing of the three-qubit W state Phys. Rev. A 90
042339

Wu X 2016 Self-testing: walking on the boundary of the quantum set PhD Thesis National University of Singapore

Li X, CaiY, Han Y, Wen Q and Scarani V 2018 Self-testing using only marginal information Phys. Rev. A 98 052331

Baccari F, Augusiak R, gupié I, Tura J and Acin A 2018 Scalable bell inequalities for qubit graph states and robust self-testing
(arXiv:1812.10428v1)

Augusiak R, Salavrakos A, Tura J and Acin A 2019 Bell inequalities tailored to the Greenberger—Horne—Zeilinger states of
arbitrary local dimension (arXiv:1907.10116v1)

Tura J, Sainz A B, Vértesi T, Acin A, Lewenstein M and Augusiak R 2014 Translationally invariant multipartite bell inequalities
involving only two-body correlators J. Phys. A: Math. Theor. 47 424024

Scarani V 2012 The device-independent outlook on quantum physics Acta Phys. Slovaca 62 347—409

Baccari F, Tura J, Fadel M, Aloy A, Bancal J-D, Sangouard N, Lewenstein M, Acin A and Augusiak R 2019 Bell correlation depth
in many-body systems Phys. Rev. A 100 022121

Aloy A, Tura J, Baccari F, Acin A, Lewenstein M and Augusiak R 2019 Device-independent witnesses of entanglement depth
from two-body correlators Phys. Rev. Lett. 123 100507

Tura J, Aloy A, Baccari F, Acin A, Lewenstein M and Augusiak R 2019 Optimization of device-independent witnesses of
entanglement depth from two-body correlators Phys. Rev. A 100 032307

Fadel M, Aloy A and Tura J 2020 Bounding the fidelity of quantum many-body states from partial information Phys. Rev. A 102
020401

Doherty A C, Parrilo P A and Spedalieri F M 2004 Complete family of separability criteria Phys. Rev. A 69 022308

Navascués M, Owari M and Plenio M B 2009 Power of symmetric extensions for entanglement detection Phys. Rev. A 80 052306
Té6th G and Githne O 2009 Entanglement and permutational symmetry Phys. Rev. Lett. 102 170503

Bachoc C, Gijswijt D C, Schrijver A and Vallentin F 2011 Invariant semidefinite programs Handbook on Semidefinite, Conic and
Polynomial Optimization (Berlin: Springer) pp 219-69

Fadel M, Zibold T, Décamps B and Treutlein P 2018 Spatial entanglement patterns and Einstein—Podolsky—Rosen steering in
bose-einstein condensates Science 360 409—13

Navascués M, Pironio S and Acin A 2008 A convergent hierarchy of semidefinite programs characterizing the set of quantum
correlations New J. Phys. 10 073013

27


https://doi.org/10.1103/physrevlett.109.267203
https://doi.org/10.1103/physrevlett.109.267203
https://doi.org/10.1103/physrevlett.111.147205
https://doi.org/10.1103/physrevlett.111.147205
https://doi.org/10.1088/1367-2630/aafb8c
https://doi.org/10.1088/1367-2630/aafb8c
https://doi.org/10.1103/physrevlett.123.170604
https://doi.org/10.1103/physrevlett.123.170604
https://doi.org/10.1080/10556789908805762
https://doi.org/10.1080/10556789908805762
https://doi.org/10.1080/10556789908805762
https://doi.org/10.1080/10556789908805762
https://doi.org/10.1103/physrevb.78.035116
https://doi.org/10.1103/physrevb.78.035116
https://doi.org/10.1103/physreva.81.062337
https://doi.org/10.1103/physreva.81.062337
https://doi.org/10.1103/revmodphys.86.419
https://doi.org/10.1103/revmodphys.86.419
https://doi.org/10.1103/revmodphys.86.419
https://doi.org/10.1103/revmodphys.86.419
https://doi.org/10.1103/physrevlett.119.230402
https://doi.org/10.1103/physrevlett.119.230402
https://doi.org/10.1103/physrevlett.122.070501
https://doi.org/10.1103/physrevlett.122.070501
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://arxiv.org/abs/1708.00006
https://doi.org/10.1103/physreva.79.042308
https://doi.org/10.1103/physreva.79.042308
https://doi.org/10.1088/1751-8121/aa6926
https://doi.org/10.1088/1751-8121/aa6926
https://doi.org/10.1038/srep30188
https://doi.org/10.1038/srep30188
https://doi.org/10.5555/2011827.2011830
https://doi.org/10.5555/2011827.2011830
https://doi.org/10.5555/2011827.2011830
https://doi.org/10.5555/2011827.2011830
https://arxiv.org/pdf/2001.04440.pdf
https://doi.org/10.1103/physreva.87.050102
https://doi.org/10.1103/physreva.87.050102
https://doi.org/10.1103/physreva.91.052111
https://doi.org/10.1103/physreva.91.052111
https://doi.org/10.1103/physrevlett.117.070402
https://doi.org/10.1103/physrevlett.117.070402
https://doi.org/10.1126/science.aar7053
https://doi.org/10.1126/science.aar7053
https://doi.org/10.1126/science.aar7053
https://doi.org/10.1126/science.aar7053
https://doi.org/10.1038/s41534-018-0120-0
https://doi.org/10.1038/s41534-018-0120-0
https://doi.org/10.1103/physrevlett.119.040402
https://doi.org/10.1103/physrevlett.119.040402
https://arxiv.org/pdf/2001.04440.pdf
https://doi.org/10.1088/1367-2630/18/3/035013
https://doi.org/10.1088/1367-2630/18/3/035013
https://doi.org/10.1103/physreva.90.042339
https://doi.org/10.1103/physreva.90.042339
https://doi.org/10.1103/physreva.98.052331
https://doi.org/10.1103/physreva.98.052331
https://arxiv.org/abs/1812.10428
https://arxiv.org/abs/1907.10116
https://doi.org/10.1088/1751-8113/47/42/424024
https://doi.org/10.1088/1751-8113/47/42/424024
https://doi.org/10.2478/v10155-012-0003-4
https://doi.org/10.2478/v10155-012-0003-4
https://doi.org/10.2478/v10155-012-0003-4
https://doi.org/10.2478/v10155-012-0003-4
https://doi.org/10.1103/physreva.100.022121
https://doi.org/10.1103/physreva.100.022121
https://doi.org/10.1103/physrevlett.123.100507
https://doi.org/10.1103/physrevlett.123.100507
https://doi.org/10.1103/physreva.100.032307
https://doi.org/10.1103/physreva.100.032307
https://doi.org/10.1103/physreva.102.020401
https://doi.org/10.1103/physreva.102.020401
https://doi.org/10.1103/physreva.69.022308
https://doi.org/10.1103/physreva.69.022308
https://doi.org/10.1103/physreva.80.052306
https://doi.org/10.1103/physreva.80.052306
https://doi.org/10.1103/physrevlett.102.170503
https://doi.org/10.1103/physrevlett.102.170503
https://doi.org/10.1126/science.aao1850
https://doi.org/10.1126/science.aao1850
https://doi.org/10.1126/science.aao1850
https://doi.org/10.1126/science.aao1850
https://doi.org/10.1088/1367-2630/10/7/073013
https://doi.org/10.1088/1367-2630/10/7/073013

10P Publishing

New J. Phys. 23 (2021) 033026 A Aloy et al

[100]

(101]
[102]

[103]
[104]
[105]
[106]

[107]

[108]

Cavalcanti D and Skrzypczyk P 2016 Quantum steering: a review with focus on semidefinite programming Rep. Prog. Phys. 80
024001

Jordan P and Wigner E 1928 ber das Paulische quivalenzverbot Z. Phys. 47 631-51

Dmitriev D V, Krivnov V'Y, Ovchinnikov A A and Langari A 2002 One-dimensional anisotropic Heisenberg model in the
transverse magnetic field J. Exp. Theor. Phys. 95 538—49

Alcaraz F C and Malvezzi A L 1995 Critical and off-critical properties of the XXZ chain in external homogeneous and staggered
magnetic fields J. Phys. A: Math. Gen. 28 1521-34

Zhou J, Hu 'Y, Zou X-B and Guo G-C 2011 Ground-state preparation of arbitrarily multipartite dicke states in the
one-dimensional ferromagnetic spin-12 chain Phys. Rev. A 84 042324

Meredith D C, Koonin S E and Zirnbauer M R 1988 Quantum chaos in a schematic shell model Phys. Rev. A 37 3499-513
Mangasarian O L 1984 Normal solutions of linear programs Mathematical Programming Studies (Berlin: Springer) pp 206—16
Zhu Z, Man-Cho So A and Ye Y 2010 Universal rigidity: towards accurate and efficient localization of wireless networks 2010
Proc. IEEE INFOCOM (IEEE)

Alfakih A'Y 2007 On dimensional rigidity of bar-and-joint frameworks Discrete Appl. Math. 155 124453

28


https://doi.org/10.1088/1361-6633/80/2/024001
https://doi.org/10.1088/1361-6633/80/2/024001
https://doi.org/10.1007/bf01331938
https://doi.org/10.1007/bf01331938
https://doi.org/10.1007/bf01331938
https://doi.org/10.1007/bf01331938
https://doi.org/10.1134/1.1513828
https://doi.org/10.1134/1.1513828
https://doi.org/10.1134/1.1513828
https://doi.org/10.1134/1.1513828
https://doi.org/10.1088/0305-4470/28/6/009
https://doi.org/10.1088/0305-4470/28/6/009
https://doi.org/10.1088/0305-4470/28/6/009
https://doi.org/10.1088/0305-4470/28/6/009
https://doi.org/10.1103/physreva.84.042324
https://doi.org/10.1103/physreva.84.042324
https://doi.org/10.1103/physreva.37.3499
https://doi.org/10.1103/physreva.37.3499
https://doi.org/10.1103/physreva.37.3499
https://doi.org/10.1103/physreva.37.3499
https://doi.org/10.1016/j.dam.2006.11.011
https://doi.org/10.1016/j.dam.2006.11.011
https://doi.org/10.1016/j.dam.2006.11.011
https://doi.org/10.1016/j.dam.2006.11.011

	The quantum marginal problem for symmetric states: applications to variational optimization, nonlocality and self-testing
	1.  Introduction
	2.  Preliminaries
	3.  Main result: the QMP for symmetric states
	3.1.  Compatibility conditions with a global symmetric state
	3.2.  Efficient solution as a feasibility problem
	3.3.  Variational ansatz

	4.  Some applications
	4.1.  Benchmarking the variational ansatz
	4.1.1.  Lipkin–Meshkov–Glick model
	4.1.2.  Ising chain with variable-range interactions under a transverse field
	4.1.3.  Benchmarking performance with existing methods

	4.2.  Bell non-local correlations
	4.2.1.  Optimizing permutationally invariant two-body Bell inequalities
	4.2.2.  Looking for Bell non-local correlations in a direction specified by a Hamiltonian

	4.3.  Generically expressing symmetric states as TI diagonal MPS
	4.4.  Determining which symmetric states cannot be self-tested from their marginals

	5.  Conclusions and outlook
	Acknowledgments
	Data availability statement
	Appendix A.  Proof of theorem 
	Appendix B.  Basics of semidefinite programming
	Appendix C.  Variational method: further examples
	C.1.  Ising chain for nearest neighbors interactions
	C.2.  XXZ model under a transverse field
	C.3.  Ferromagnetic XXZ with periodic boundary conditions
	C.4.  Many-body Hamiltonian with collective interactions

	Appendix D.  Alternative solution to the system of equations in lemma 
	Appendix E.  Linear programming approach for Dicke-diagonal states
	ORCID iDs
	References


