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Abstract 
The electrically evoked compound action potential (eCAP) has been widely studied for its 

clinical value for the evaluation of the surviving auditory nerve (AN) cells. However, many 

unknowns remain about the temporal firing properties of the AN fibers that underlie the eCAP 

in CI recipients. These temporal properties may contain valuable information about the condition 

of the AN. Here, we propose an iterative deconvolution model for estimating the human evoked 

unitary response (UR) and for extracting the compound discharge latency distribution (CDLD) 

from eCAP recordings, under the assumption that all AN fibers have the same UR. In this model, 

an eCAP is modeled by convolving a parameterized UR and a parameterized CDLD model. Both 

the UR and CDLD are optimized with an iterative deconvolution fitting error minimization 

routine to minimize the error between the modeled eCAP and the recorded eCAP. 

 This method first estimates the human UR from eCAP recordings. The human eCAP is 

unknown at the time of this writing. The UR is subsequently used to extract the 

underlying temporal neural excitation pattern (the CDLD) that reflects the contributions 

from individual AN fibers in human eCAPs. 

 By calculating the CDLD, the synchronicity of AN fibers can be evaluated. 

Keywords: Cochlear implants, sensorineural hearing loss, electrically evoked compound action 

potential; deconvolution, unitary response, temporal properties 

2.1 Background 
A cochlear implant (CI) is an intracochlear device that can restore hearing with direct electrical 

stimulation of the auditory nerve (AN). A CI can also be applied to measure electrically evoked 

AN responses using the reverse telemetry function. Typically, AN activity is evoked with short 

electrical pulses, and the response comprises the superposition of many action potentials from 

AN fibers over time. This response is called the electrically evoked compound action potential 

(eCAP). To date, single-fiber action potentials have not been recorded from the human AN. 
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ECAP recordings can provide information on the amplitude and latency of the evoked compound 

AN response, but they do not provide information about the underlying excitation patterns of 

individual AN fibers. Clinically, the eCAP is typically evaluated by examining the main peaks 

of the eCAP; i.e., the first negative peak (N1) and the first positive peak (P1) (Lai and Diller, 

2000; Stypulkowski & van den Honert,1984). Previously, animal studies have reported that the 

eCAP waveform was dependent on both the number of action potentials and the degree of 

synchronicity in the AN fiber population (Versnel et al., 1992; Stypulkowski & van den 

Honert,1984; van den Honert & Stypulkowski, 1984). The temporal firing properties in eCAPs 

can potentially reflect additional, valuable information, such as the survival of AN fibers (Strahl 

et al., 2016; Stypulkowski & van den Honert,1984). However, extracting the temporal firing 

properties of single fibers directly from the eCAP is mathematically complex. As a result, these 

properties are often overlooked (Khan et al., 2005; Fayad et al., 2006; Ramekers et al., 2014; 

Seyyedi et al., 2017). Here we propose a method to extract the temporal firing properties of the 

AN fibers in eCAPs. The procedure is based on the findings of our previous study (Dong et al., 

2020). 

The action potential generated by a single fiber can be registered by a recording electrode and is 

called the unitary response (UR). The UR is generally thought to be constant, and all URs are 

assumed to contribute equally to the acoustically evoked CAP (Goldstein et al., 1958; Versnel et 

al., 1992). We assume this concept also holds for eCAPs (Strahl et al., 2016; van Gendt et al., 

2019; Dong et al., 2020) because the eCAP also represents a superposition of a series of action 

potentials from individual AN fibers in response to an electric stimulus over time. Thus, based 

on these assumptions, we describe the eCAP as the convolution of many URs with a compound 

discharge latency distribution (CDLD), according to Eq. 2.1 (see also Fig. 2.1): 

eCAP(t) =  CDLD(τ) ∗ UR(t − τ) dτ୲ିஶ               (2.1)            

Here, the CDLD is the probability density function, t is time, and 𝝉 is the variable of integration. 

The CDLD weighs all URs of each excited AN fiber across time and reflects the neural 
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synchronicity (i.e., the temporal properties). Thus, the temporal firing properties of the AN fibers 

in eCAPs can be captured from the CDLDs. Mathematically, the CDLD cannot assume negative 

values, and the area under a CDLD curve reflects the number of excited AN fibers. 

 

Fig.2. 1. An example of the deconvolution model. (A) According to Eq. 2.1, the recorded 
electrically evoked compound action potential (R-eCAP, green interrupted line) was predicted 
(P-eCAP, blue interrupted line) with the convolution of (B) a UR model (also see Eq. 2.3) and 
(C) a compound discharge latency distribution (CDLD) model (blue line, see Eq. 2.4), by 
implementing the deconvolution fitting error minimization routine. The CDLD model consists of 
two Gaussian components: the early Gaussian component (E-Gauss, red dotted line) and the 
late Gaussian component (L-Gauss, green dashed line). 

The only study on the human CDLD was conducted by Strahl et al. (2016). They predicted the 

CDLD by a direct deconvolution of the human eCAP using the guinea pig UR (URgp) (Strahl et 

al., 2016). The deconvolution was performed with Eq. (2.2): 

CDLD(t) =  Fିଵ[(ୣେ(୲))(ୖ(୲)) ]                       (2.2)            

Here, t is time, F represents the Fourier transform, and  𝑭ି𝟏 represents the inverse Fourier 

transform. Strahl et al. observed a CDLD with two Gaussian components, which could be 

attributed to two separate groups of neural responses. However, when we reproduced their 

method on human patient data (see details in Dong et al., 2020) we obtained unrealistic CDLDs 

because they contained negative phases and high-frequency components. To suppress these 

negative phases and high-frequency components, Strahl et al. filtered the CDLD with a 2.5 kHz 

low-pass filter and shifted the CDLD upward. However, this post-processing might have 
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compromised the validity of the CDLD in its ability to reflect the temporal firing properties of 

the AN.  

To facilitate a direct deconvolution of the human eCAP into a CDLD to describe the temporal 

firing properties of AN fibers underlying the eCAP, Strahl et al. used the URgp, because the 

human UR (URh) was, and still is unknown. However, there are several anatomical differences 

between the two species that potentially can affect the shape of the UR. There are differences in 

the size and shape of the cochlea (Nadol et al., 1988; Dong et al., 2020) and the spiral ganglion 

cell body is myelinated in guinea pigs, but not in humans (Rask-Andersen et al., 2015). Moreover, 

eCAP recordings in humans are usually performed at intracochlear sites, e.g., Strahl et al., 2016; 

van Gendt et al., 2019; Dong et al., 2020, whereas the URgp used in Strahl et al. (2016) was 

recorded at the round window niche (Versnel et al., 1992). The application of a direct 

deconvolution of the human eCAP into a CDLD using the URgp can thus be expected to yield a 

less valid CDLD. 

To overcome these problems we propose an iterative deconvolution model to simulate the 

deconvolution computation. The recorded eCAPs are entered as input for this model to obtain 

the URh and the corresponding CDLDs. This model consists of a two-step procedure (Fig. 2.2). 

It estimates the URh in step one (Fig. 2.2A) and derives the temporal firing properties of AN 

fibers underlying the eCAP in step two (Fig. 2.2B), without the need for any post-processing of 

the CDLD. In both steps, an eCAP is modeled by convolving a UR model with a CDLD model. 

Then, the modeled eCAP is optimized by iteratively adjusting the variables in the parameterized 

UR and CDLD models, until the modeled eCAP matches the recorded eCAPs. In step one, the 

descriptive parameters of both the UR and CDLD model are variable. After optimization, an 

estimate of the URh and CDLD is obtained for each eCAP waveform available. A unified URh is 

subsequently estimated by averaging the available collection of individual URhs (Fig. 2.2A). 

Using the unified URh obtained in step one, a similar procedure is used in step two where only 

the CDLD parameters are iteratively varied (Fig. 2.2B). The resulting CDLDs can reveal the 

temporal firing properties of AN. More detailed information about the deconvolution model is 
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given in the below sections. 

2.2 Model Construction 

2.2.1 Construction of the UR and CDLD 

According to Eq. 2.1, the UR and the CDLD are required to simulate the recorded eCAPs. At 

present, the URh has not been described with electrophysiological recordings. Because the URh 

might be different from the URgp (Nadol et al., 1988) or other animals, it is preferable to estimate 

the URh (Dong et al., 2020). As a starting point, we used the URgp function reported in Versnel 

et al. (1992) to estimate the URh. For this purpose, the UR was parameterized as shown in Eq. 

(2.3). 

UR୮(t) =  (t − t)e[ି(౪ష౪బ)మమಚమ ]                    (2.3)            

The UR model consists of a negative (N) and positive (P) phase; the transition point between the 

negative component and the positive component is defined as 𝒕𝟎 . Hence, for t < 𝒕𝟎 , the 

magnitude, U (V), of the negative peak is 𝑼𝑵, and the width, σ (sec), of the negative component 

is 𝝈𝑵; and for t > 𝒕𝟎, the magnitude of the positive peak is 𝑼𝑷 and the width of the positive 

component is 𝝈𝑷. Boundary limits for the variables in Eq. 2.3 are introduced to constrain the 

solutions (see details in step one, Fig. 2.2). 

Earlier studies have observed eCAPs with two positive peaks, which might originate from two 

separate groups of neural responses (Stypulkowski & van den Honert,1984; Lai & Dillier 2000). 

Consistent with Strahl et al. (2016) our method implements a parameterization of the CDLD with 

a mixture of two Gaussian components, as shown in Eq. (2.4) (also see Fig. 2.1C).  

  CDLD୮ = αଵ ∗ N(μଵ, σଵ) + αଶ ∗ N(μଶ, σଶ)                (2.4)            

where N is a Gaussian distribution; the variables 𝜶𝟏, µ𝟏 and 𝝈𝟏 belong to the early Gaussian 

component (in time), and the variables, 𝜶𝟐, µ𝟐 and 𝝈𝟐 belong to the late Gaussian component. 
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The variables 𝜶𝟏  and 𝜶𝟐  represent the peak amplitudes; µ𝟏 and µ𝟐  are the peak latencies; 

and 𝝈𝟏 and 𝝈𝟐 represent the peak widths. Similar to Eq. 2.3, boundary limits for the variables 

in Eq. 2.4 are set to constrain the solutions (see details in step one and two, Fig. 2.2). Details are 

given below. 

2.2.2 Optimization routine 

The procedure described here involves the application of a deconvolution fitting error 

minimization routine (DMR) in step one and two. The parameterized UR model (URp, Eq. 2.3) 

and the parameterized CDLD model (CDLDp, Eq. 2.4) are used to predict a recorded eCAP 

waveform using indirect deconvolution. This indirect procedure uses a convolution step to 

estimate URh and CDLD by implementing DMR to optimize the match between eCAPp and the 

recorded eCAP. The initial values and boundary limits of the URp and CDLDp parameters must 

be assigned for the DMR to run. Then, the eCAPp and the baseline-corrected eCAP (eCAPc) (see 

details in the next section), initial values and boundary limits of the URp and CDLDp parameters 

are used as input into the DMR. The DMR iteratively manipulates the parameters of the URp and 

the CDLDp in step one (Fig. 2.2A), or only the CDLDp in step two (Fig. 2.2B) within the 

boundary limits to minimize the fitting error (see Fig. 2.2) with the lsqcurvefit function provided 

in MATLAB (Mathworks 2016a, Natick, MA, USA). The fitting error refers to the difference 

between the eCAPp and the eCAPc. Accordingly, the eCAPp gradually converges to the eCAPc. 

When the fitting error reaches the minimum value (i.e., the eCAPp optimally approximates the 

eCAPc), the DMR outputs the values of the URp and CDLDp parameters. With these values, the 

UR and CDLD (step one) and subsequently the final CDLD estimate (step two) can be generated. 

The MATLAB script of this DMR is attached in the supplementary material of this publication. 
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Fig. 2.2. Iterative deconvolution model workflow. The recorded electrically evoked action 
potential (eCAP) waveforms are pre-processed and used as the input for the deconvolution fitting 
error minimization routine (DMR, enclosed in the dashed square) in both step one and step two. 
This DMR is conducted by the lsqcurvefit function provided in MATLAB. In the DMR, the 
predicted eCAP (𝑒𝐶𝐴𝑃) is calculated by the convolution of the parameterized unitary response 
(UR) model (𝑈𝑅) with the parameterized compound discharge latency distribution (CDLD) 
model (𝐶𝐷𝐿𝐷). (A) In step one, both the 𝑈𝑅 and the 𝐶𝐷𝐿𝐷 are optimized with the DMR to 
achieve an approximate match between the 𝑒𝐶𝐴𝑃 and the baseline-corrected (𝑒𝐶𝐴𝑃). When 
the fitting error (i.e., the difference between the 𝑒𝐶𝐴𝑃 and the 𝑒𝐶𝐴𝑃) reaches the minimum, 
the UR and CDLD are obtained. In this step, each eCAP generates a UR. The URs are obtained 
from a series of eCAPs, and the average of these URs is defined as the human UR (𝑈𝑅, enclosed 
in the red square). (B) In step two, the 𝑈𝑅 is fixed, and only the 𝐶𝐷𝐿𝐷 is iteratively adjusted 
with the DMR to generate the best fitting CDLD for each individual eCAP (CDLD, enclosed in 
the red square). Conv represents the convolution function in MATLAB. 

2.2.3 Extraction of temporal AN firing properties from eCAPs 

In this section, we will describe the workflow to calculate the CDLD from recorded eCAP 

waveforms. Before any analysis can be performed, the raw eCAP waveforms have to be pre-

processed. First, a baseline correction is carried out. The eCAP tail can be used to determine the 

baseline, because neural responses and any remaining artifacts are not expected to be present in 

this part of the eCAP waveform. At approximately 1.5 ms after stimulus artifact a reliable 

baseline estimate can be obtained (de Sauvage et al., 1987; Dong et al., 2020). The baseline 

correction is performed by subtracting the average amplitude of the tail section from the eCAP 
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waveform. In addition, we have observed that performing a convolution on a finite-length signal 

typically introduces distortions at the leading and trailing ends of the signal. To prevent distortion 

of the eCAP waveforms, signal extensions can be deployed (Esfandiari & Bei 2018) by adding 

50 samples to the start and end of each waveform. This is realized by performing a linear 

extrapolation to baseline. This extrapolation only affects the CDLD before and after the 

recording window (Versnel et al., 1992; Dong et al., 2020; Esfandiari & Bei 2018).  

The two steps proposed for deriving the temporal firing properties of the AN from eCAPs are 

shown in Fig. 2.2. Before the CDLD can be determined, the URh has to be estimated from the 

available eCAP dataset with the DMR (Fig. 2.2A). In step one (Fig. 2.2A), the parameters of 

both the URp (Eq. 2.3) and the CDLDp (Eq. 2.4) are variable and will be optimized by the DMR. 

This ensures that the eCAPp optimally matches the baseline-corrected eCAP (eCAPc). After the 

last iteration, the UR and CDLD of the optimal eCAPp are derived. In our data set Dong et al., 

2020 a series of eCAPs were recorded at different electrode contacts with different stimulus 

levels from different subjects. According to the assumption that the UR is identical in all 

contributing AN fibers and across electrode contacts, stimulus levels and subjects (Strahl et al., 

2016; van Gendt et al., 2019; Dong et al., 2020), a representative human UR can be estimated 

by averaging all these URs obtained from a series of eCAPs. The UR model and the CDLD 

model can interact freely in step one; thus, the temporal firing properties can be manifested in 

both the UR and the CDLD. Consequently, the resulting CDLDs do not accurately reflect the 

temporal information in eCAPs and these CDLDs are discarded and re-calculated by using a 

constant UR, as outlined below. 

As mentioned in the Model Construction section, the initial values and boundary limits of the 

parameters have to be assigned before performing the DMR. Because the URh and URgp are 

expected to be similar (Briaire & Frijns 2005), we used the morphological parameters of the 

URgp as a reference for the URh (Versnel et al., 1992). Accordingly, the UR and CDLD outcomes 

were constrained with the following domain values Dong et al., 2020: U  [0.02, 0.25], σ 

[0.02, 0.13], U [0, 0.12], σ [0.08, 0.25], t [-0.25, 0.06], αଵ [0, 0.35], μଵ [0.04, 1.3], σଵ 
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[0, 0.3], αଶ [0, 0.35], μଶ [0.04, 1.3], σଶ [0, 0.3]. Based on the parameters of URgp, the initial 

starting values of the DMR parameters are set to: U  (0.12), σ  (0.045), U  (0.06), σ 

(0.12), t  (-0.06), αଵ  (0.08), μଵ  (0.38), σଵ  (0.06), αଶ  (0.05), μଶ  (0.5), σଶ  (0.14). Then, 

the parameters of the UR model (Eq. 2.3) and the CDLD model (Eq. 2.4) are iteratively 

manipulated simultaneously with the DMR, until they approximate the recorded eCAPs (Fig. 2.1, 

green line). 

Setting appropriate starting values and boundaries for the DMR parameters is necessary, both to 

obtain a realistic URh and CDLD with the DMR and to converge to an optimal eCAPp. An 

important factor to consider when setting the starting values and boundaries for the DMR 

parameters is the morphology of eCAP recordings, particularly the eCAP waveforms that have 

the maximal and minimal amplitudes in one’s dataset. The morphological characteristics of 

eCAPs include, but are not limited to the main peak (i.e., the N1 and P1) and, maybe, a second 

peak (i.e., the N2 and P2) and the corresponding peak latencies (Stypulkowski & van den Honert, 

1984; Dong et al., 2020). These parameters are influenced by extrinsic factors, including the 

stimulation level, intra-cochlear test electrode location, the separation between the stimulating 

and recording electrodes, stimulus polarity, artifact reduction methods, and implant designs 

(Ramekers et al., 2014; Stypulkowski & van den Honert, 1984). For instance, a larger eCAP 

main peak would most likely require wider boundaries for αଵ and αଶ, and longer peak latencies 

would require wider boundaries for μଵ and μଶ. Moreover, because the parameter estimates are 

sensitive to the initial values of the DMR parameters, they should be optimized manually, when 

needed, to achieve an adequate fit. The goodness of fit to overall data was evaluated by 

calculating the normalized root mean square error (NRMSE). Therefore, the initial values and 

boundaries might need to be optimized with different datasets. In Dong et al. (2020), the 

parameters of human UR were estimated: U = 0.155 µV, σ = 0.038 ms, U = 0.022 µV, σ = 0.155 ms, t = -0.128. For the human dataset, this UR can be used directly for step two. 

Nevertheless, we strongly recommend that researchers should examine the consistency of human 

UR when using their own datasets. 
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In step two (Fig. 2.2B), the temporal firing properties of the AN in human eCAPs are extracted 

by calculating CDLDs (Fig. 2.2B). Due to the interaction between the URh and CDLD (see 

above), the CDLD calculation with the DMR must use a constant URh. With the fixed UR 

obtained in step one, the DMR can only adjust the parameters of the CDLD model (Eq. 2.3), 

with the recorded eCAPs as input. Consequently, because the fixed URh and CDLD model can 

no longer interact, all the temporal firing properties in eCAPs are driven into CDLDs. Thus, 

these CDLDs validly reflect the temporal firing properties in the eCAPs. Similar to step one, we 

constrain the domains for the variables in the CDLD model with the following values: αଵ [0, 

0.35], μଵ [0.15, 1.35], σଵ [0, 0.45], αଶ [0, 0.35], μଶ [0.15, 1.35], σଶ [0, 0.45]. The starting 

values of the DMR parameters were set as follows: αଵ  (0.08), μଵ  (0.59), σଵ  (0.06), αଶ 

(0.05), μଶ (0.6), σଶ (0.14). The combined boundary limits of these variables allow the model 

to produce CDLDs without negative phases; thus, unrealistic CDLDs can be avoided without 

any post-processing. Similar to step one, the starting values and the boundary limits for the 

CDLD parameters in Eq. 2.4 can be optimized manually, when needed, to achieve an adequate 

fit according to the morphology of eCAPs in different datasets.  

2.3 Method validation 
The validation of the method was discussed in detail in our previous study (Dong et al., 2020). 

In that study, the model presented here was applied to a relatively large data set of human eCAP 

growth function recordings. This data set consisted of 4982 eCAPs from 111 CI recipients who 

received a HiRes90K device (Advanced Bionics, Valencia, CA), either with a 1J or a Mid-Scala 

electrode array. The eCAPs were recorded measured on eight odd electrode contacts with 

stimulus levels from 50 to 500 current unit. We have validated both steps of the method.  

First, we validated step one, namely the estimation of the URh, by comparing the resulting 

eCAPps obtained with our estimated URh (Dong et al., 2020) to the eCAPps obtained with URgp 

(Versnel et al., 1992) in step two. Based on the goodness of fit measure (NRMSE, the normalized 

root mean square error provided in MATLAB), the eCAPs achieved with URh were better than 
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those achieved with URgp (Dong et al., 2020). The URh reduced the fitting error for all eCAPs 

by approximately 18%. This result supported our assumption that the UR of human AN fibers 

differs from the URgp (Versnel et al., 1992). The assumption that the UR is constant may be 

contested, as it can hypothetically vary across subjects, electrodes and/or current levels. However, 

the assumption of UR constancy is necessary, because a fixed UR is needed to optimize the 

derivation of CDLD in step two. As such, the UR is used solely as a necessary intermediate step 

to extract a valid CDLD from the eCAP. While a fixed UR is necessary and sufficient for our 

goal, our deconvolution model can nonetheless be used to investigate whether the UR differs 

across subjects or different stimulus conditions by running the deconvolution model for each 

condition separately. However, to more conclusively resolve such questions, direct recordings of 

the URh are necessary. 

Second, we validated the extraction of the CDLD with the fixed UR by evaluating the goodness 

of fit of the predicted eCAPs. In general, 93.6% of the recorded eCAPs were predicted accurately, 

with a >0.9 goodness of fit (NRMSE). Thus, these CDLDs provided a good picture of the 

temporal firing properties of the AN fibers in eCAPs. Importantly, realistic CDLDs were 

obtained that lacked any negative phases without any post-processing. The remaining 322 eCAPs 

had deviant waveforms, with relatively small N1 peaks and large P1 peaks; thus, they could not 

be predicted well with our model (NRMSE <0.9). This may have been caused by the use of a 

fixed UR that was based on the group-average. This unified UR consisted of a large negative 

phase and a small positive phase, with a strictly positive CDLD. A UR with this shape could not 

be used to model the deviant eCAP waveforms with the DMR method (for details, see Dong et 

al., 2020). However, those cases were fairly rare (6.4%).  

Third, we validated the assumption that the CDLD model with two Gaussian components was 

the optimal model. We designed alternative CDLD models with 1-6 Gaussian components and 

simulated the recorded eCAPs with the DMR. When the number of Gaussian components 

increased from 1 to 2, the fitting error diminished substantially (by 78%). When the number of 

Gaussian components rose from 2 to 6, the fitting outcome remained fairly similar and showed 
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little benefit (error reduced by 7.6%; see Figure 2.7 in Dong et al., 2020). This result was 

consistent with the finding of Strahl et al. (2016), who also observed CDLDs with two Gaussian 

components. Taken together, these validations demonstrated that our method can validly unravel 

the temporal firing properties of the human AN fibers in eCAPs. 

2.4 Conclusion 
This study proposes an indirect iterative deconvolution model that provides an estimation of the 

human UR and derives the underlying neural excitation pattern that reflects the contributions 

from individual AN fibers to human eCAPs. The observed CDLD with two Gaussian 

components can be attributed to two separate neural response components, which cannot be 

easily identified in the raw eCAP waveforms. 

 

 

 

 

 

 

 

 



Chapter 2                          Construction of An Iterative Deconvolution Model 

44 

 

References 
Briaire, J. J., & Frijns, J. H. M. (2005). Unraveling the electrically evoked compound action potential. 

Hearing Research, 205(1–2), 143–156.  

de Sauvage, R. C., Aran, J. M., & Erre, J. P. (1987). Mathematical analysis of VIIIth nerve cap with a 
linearly-fitted experimental unit response. Hearing Research, 29(2–3), 105–115. 

Dong, Y., Briaire, J. J., Biesheuvel, J. D., Stronks, H. C., & Frijns, J. H. M. (2020). Unravelling the 
Temporal Properties of Human eCAPs through an Iterative Deconvolution Model. Hearing Research, 
395, 108037.  

Fayad, J. N., & Linthicum, F. H. (2006). Multichannel cochlear implants: Relation of histopathology to 
performance. Laryngoscope, 116(8), 1310–1320.  

Goldstein, M. H., & Kiang, N. Y. S. (1958). Synchrony of Neural Activity in Electric Responses Evoked 
by Transient Acoustic Stimuli. Jasa, 30(2), 107–114.  

Khan, A. M., Whiten, D. M., Nadol, J. B., & Eddington, D. K. (2005). Histopathology of human cochlear 
implants: Correlation of psychophysical and anatomical measures. Hearing Research, 205(1–2), 83–
93.  

Mohammad Seyyedi, Lucas M Viana, & Nadol, J. B. (2016). Within-Subject Comparison of Word 
Recognition and Spiral Ganglion Cell Count in Bilateral Cochlear Implant Recipients Mohammad. 
Physiology & Behavior, 176(1), 139–148. 

Nadol, J. B. (1988). Comparative anatomy of the cochlea and auditory nerve in mammals. Hearing 
Research, 34(3), 253–266. 

Ramekers, D., Versnel, H., Strahl, S. B., Smeets, E. M., Klis, S. F. L., & Grolman, W. (2014). Auditory-
nerve responses to varied inter-phase gap and phase duration of the electric pulse stimulus as 
predictors for neuronal degeneration. JARO - Journal of the Association for Research in 
Otolaryngology, 15(2), 187–202.  

Rask-Andersen, H., & Liu, W. (2015). Auditory nerve preservation and regeneration in man: Relevance 
for cochlear implantation. Neural Regeneration Research, 10(5), 710–712. 

Strahl, S. B., Ramekers, D., Marjolijn M. B. Nagelkerke, K. E. S., Spitzer, P., Klis, S. F. L., Grolman, W., 
& Versnel, H. (2016). Assessing the Firing Properties of the Electrically Stimulated Auditory Nerve 
Using a Convolution Model. Adv Exp Med Biol, 894. 

Stypulkowski, P. H., & van den Honert, C. (1984). Physiological properties of the electrically stimulated 
auditory nerve. I. Compound action potential recordings. Hearing Research, 14(3), 205–223. 



Construction of An Iterative Deconvolution Model                                  Chapter 2 

45 

 

van den Honert, C., & Stypulkowski, P. H. (1984). Physiological properties of the electrically stimulated 
auditory nerve. II. Single fiber recordings. Hearing Research, 14(3), 225–243.  

van Gendt, M. J., Briaire, J. J., & Frijns, J. H. M. (2019). Effect of neural adaptation and degeneration on 
pulse-train ECAPs: A model study. Hearing Research, 377, 167–178. 

Versnel, H., Prijs, V. F., & Schoonhoven, R. (1992). Round-window recorded potential of single-fibre 
discharge (unit response) in normal and noise-damaged cochleas. Hearing Research, 59(2), 157–
170.  

Wai Kong Lai, & Dillier, N. (2000). A simple two-component model of the electrically evoked compound 
action potential in the human cochlea. Audiology and Neuro-Otology, 5(6), 333–345. 

Whiten, D. M. (Darren M. (2007). Electro-anatomical models of the cochlear implant. 

 

 

 

 

 

 

 

 

 

 

 

 

 




